Multiple scattering of light in shock compression experiments Jayamanne, J. A. D., J. R. Burie, O. Durand, R. Pierrat, and R. Carminati AIP Conference Proceedings 3066, 610001 (2024)
|
|
Recovering particle velocity and size distributions in ejecta with photon Doppler velocimetry Don Jayamanne, J. A., R. Outerovitch, F. Ballanger, J. Bénier, E. Blanco, C. Chauvin, P. Hereil, J. Tailleur, O. Durand, R. Pierrat, R. Carminati, A. Hervouët, P. Gandeboeuf, and J. R. Burie Journal of Applied Physics 136, no. 8 (2024)
Résumé: When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characterization, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the corresponding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level. This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.
|
|
Multiple scattering theory in one dimensional space and time dependent disorder: average field [Invited] Selvestrel, A., J. Rocha, R. Carminati, and R. Pierrat Optical Materials Express 14, no. 3, 801-815 (2024)
Résumé: We theoretically study the propagation of light in one-dimensional space- and time-dependent disorder. The disorder is described by a fluctuating permittivity ε(x, t) exhibiting short-range correlations in space and time, without cross correlation between them. Depending on the illumination conditions, we show that the intensity of the average field decays exponentially in space or in time, with characteristic length or time defining the scattering mean-free path ℓs and the scattering mean-free time τs. In the weak scattering regime, we provide explicit expressions for ℓs and τs, that are checked against rigorous numerical simulations.
|
|
Light in correlated disordered media Vynck, K., R. Pierrat, R. Carminati, L. S. Froufe-Pérez, F. Scheffold, R. Sapienza, S. Vignolini, and J. J. Sáenz Reviews of Modern Physics 95, no. 4 (2023)
|
|
Characterization of ejecta in shock experiments with multiple light scattering Don Jayamanne, J. A., J. R. Burie, O. Durand, R. Pierrat, and R. Carminati Journal of Applied Physics 135, no. 7 (2024)
Résumé: Upon impact, the free surface of a solid metal may eject a cloud of fast and fine particles. Photon Doppler Velocimetry (PDV) is one of the optical diagnostics used to characterize these ejecta. Although the technique provides a direct way to estimate the particle velocities in the single scattering regime, it has been shown that multiple scattering cannot be neglected in real ejecta. Here, we derive a model for PDV measurements starting from the first principles of wave scattering. We establish rigorously the relationship between the specific intensity and the measured signal, as well as the Radiative Transport Equation (RTE) that describes the evolution of the specific intensity upon scattering and absorption in dynamic ejecta, including the effects of inelastic scattering and inhomogeneities in the optical properties. We also establish rigorously the connection between the Monte Carlo scheme used for numerical simulations and the solution to the RTE. Using numerical simulations, we demonstrate the crucial contribution of multiple scattering to PDV spectrograms as well as the effect of statistical inhomogeneities in particle size distribution. These results could substantially impact the analysis of ejecta by PDV.
|
|
Photon diffusion in space and time in a second-order-nonlinear disordered medium Samanta, R., R. Pierrat, R. Carminati, and S. Mujumdar Physical Review A 108, no. 5 (2023)
Résumé: We report experimental and theoretical investigations of photon diffusion in a second-order-nonlinear disordered medium under conditions of strong nonlinearity. Experimentally, photons at the fundamental wavelength (λ=1064nm) are launched into the structure in the form of a cylindrical pellet, and the second-harmonic (λ=532nm) photons are temporally analyzed in transmission. For comparison, separate experiments are carried out with incident green light at λ=532nm. We observe that the second-harmonic light peaks earlier compared to the incident green photons. Next, the sideways spatial scattering of the fundamental as well as second-harmonic photons is recorded. The spatial diffusion profiles of second-harmonic photons are seen to peak deeper inside the medium in comparison to both the fundamental and incident green photons. In order to give more physical insights into the experimental results, a theoretical model is derived from first principles. It is based on the coupling of transport equations. Solved numerically using a Monte Carlo algorithm and experimentally estimated transport parameters at both wavelengths, it shows excellent semiquantitative agreement with the experiments for both fundamental and second-harmonic light.
|
|
Degree of polarization of light scattered from correlated surface and bulk disorders Banon, J. P., I. Simonsen, and R. Carminati Optics Express 31, no. 17, 28026-28039 (2023)
Résumé: Using a single scattering theory, we derive the expression of the degree of polarization of the light scattered from a layer exhibiting both surface and volume scattering. The expression puts forward the intimate connection between the degree of polarization and the statistical correlation between surface and volume disorders. It also permits a quantitative analysis of depolarization for uncorrelated, partially correlated and perfectly correlated disorders. We show that measuring the degree of polarization could allow one to assess the surface-volume correlation function, and that, reciprocally, the degree of polarization could be engineered by an appropriate design of the correlation function.
|
|
Principles of Scattering and Transport of Light Carminati, R., and J. Schotland Livre (2021)
|
|
Modeling of full-field optical coherence tomography in scattering media Tricoli, U., and R. Carminati Journal of the Optical Society of America A 36, no. 11, C122 (2019)
|
|
Speckle Decorrelation in Fundamental and Second-Harmonic Light Scattered from Nonlinear Disorder Samanta, R., R. Pierrat, R. Carminati, and S. Mujumdar Physical Review Applied 18, no. 5 (2022)
Résumé: Speckle patterns generated in a disordered medium carry a lot of information despite the apparent complete randomness in the intensity pattern. When the medium possesses ?(2) nonlinearity, the speckle is sensitive to the phase of the incident fundamental light, as well as the light generated within. Here, we examine the speckle decorrelation in the fundamental and second-harmonic transmitted light as a function of the varying power in the fundamental beam. At low incident powers, the speckle patterns produced by successive pulses exhibit strong correlations, which decrease with increasing power. The average correlation in the second-harmonic speckle decays faster than in the fundamental speckle. Next, we construct a theoretical model, backed up by numerical computations, to obtain deeper physical insights into the faster decorrelations in the second-harmonic light. While providing excellent qualitative agreement with the experiments, the model sheds light on the contribution of two effects in the correlations, namely, the generation of second-harmonic light and the propagation thereof.
|
|
Purcell effect with extended sources: the role of the cross density of states Carminati, R., and M. Gurioli Optics Express 30, no. 10, 16174-16183 (2022)
Résumé: We analyze the change in the spontaneous decay rate, or Purcell effect, of an extended quantum emitter in a structured photonic environment. Based on a simple theory, we show that the cross density of states is the central quantity driving interferences in the emission process. Using numerical simulations in realistic photonic cavity geometries, we demonstrate that a structured cross density of states can induce subradiance or superradiance, and change substantially the emission spectrum. Interestingly, the spectral lineshape of the Purcell effect of an extended source cannot be predicted from the sole knowledge of the spectral dependence of the local density of states.
|
|
Universal Statistics of Waves in a Random Time-Varying Medium Carminati, R., H. Chen, R. Pierrat, and B. Shapiro Physical Review Letters 127, no. 9 (2021)
Résumé: We study the propagation of waves in a medium in which the wave velocity fluctuates randomly in time. We prove that at long times, the statistical distribution of the wave energy is log-normal, with the average energy growing exponentially. For weak disorder, another regime preexists at shorter times, in which the energy follows a negative exponential distribution, with an average value growing linearly with time. The theory is in perfect agreement with numerical simulations, and applies to different kinds of waves. The existence of such universal statistics bridges the fields of wave propagation in time-disordered and space-disordered media.
|
|
Quantitative Temperature Measurements in Gold Nanorods Using Digital Holography Lalisse, A., A. A. Mohtar, M. C. Nguyen, R. Carminati, J. Plain, and G. Tessier ACS Applied Materials and Interfaces (2021)
Résumé: © Temperature characterization and quantification at the nanoscale remain core challenges in applications based on photoinduced heating of nanoparticles. Here, we propose a new approach to obtain quantitative temperature measurements on individual nanoparticles by combining modulated photothermal stimulation and heterodyne digital holography. From full-field reconstructed holograms, the temperature is determined with a precision of 0.3 K via a simple approach without requiring any calibration or fitting parameters. As an application, the dependence of temperature on the aspect ratio of gold nanoparticles is investigated. A good agreement with numerical simulation is observed.
|
|
Quantitative Measurement of the Thermal Contact Resistance between a Glass Microsphere and a Plate Doumouro, J., E. Perros, A. Dodu, N. Rahbany, D. Leprat, V. Krachmalnicoff, R. Carminati, W. Poirier, and Y. De Wilde Physical Review Applied 15, no. 1 (2021)
Résumé: © 2021 American Physical Society. Accurate measurements of the thermal resistance between micro-objects made of insulating materials are complex because of their small size, low conductivity, and the presence of various ill-defined gaps. We address this issue using a modified scanning thermal microscope operating in vacuum and in air. The sphere-plate geometry is considered. Under controlled heating power, we measure the temperature on top of a glass microsphere glued to the probe as it approaches a glass plate at room temperature with nanometer accuracy. In vacuum, a jump is observed at contact. From this jump in temperature and the modeling of the thermal resistance of a sphere, the sphere-plate contact resistance RK=(1.4±0.18)×107KW-1 and effective radius r=36±4 nm are obtained. In air, the temperature on top of the sphere shows a decrease starting from a sphere-plate distance of 200μm. A jump is also observed at contact, with a reduced amplitude. The sphere-plate coupling out of contact can be described by the resistance shape factor of a sphere in front of a plate in air, placed in a circuit involving a series and a parallel resistance that are determined by fitting the approach curve. The contact resistance in air RK - =(1.2±0.46)×107KW-1 is then estimated from the temperature jump. The method is quantitative without requiring any tedious multiple-scale numerical simulation, and is versatile to describe the coupling between micro-objects from large distances to contact in various environments.
|
|
Perfect depolarization in single scattering of light from uncorrelated surface and volume disorder Banon, J.-P., I. Simonsen, and R. Carminati Optics Letters 45, no. 23, 6354 (2020)
Résumé: © 2020 Optical Society of America We demonstrate that single scattering of p-polarized waves from uncorrelated surface and volume disorder can lead to perfect depolarization. The degree of polarization vanishes in specific scattering directions that can be characterized based on simple geometric arguments. Depolarization results from a different polarization response of each source of disorder, which provides a clear physical interpretation of the depolarization mechanism.
|
|
Absorption of scalar waves in correlated disordered media and its maximization using stealth hyperuniformity Sheremet, A., R. Pierrat, and R. Carminati Physical Review A 101, no. 5, 053829 (2020)
|
|
Origin of transparency in scattering biomimetic collagen materials Salameh, C., F. Salviat, E. Bessot, M. Lama, J.-M. Chassot, E. Moulongui, Y. Wang, M. Robin, A. Bardouil, M. Selmane, F. Artzner, A. Marcellan, C. Sanchez, M.-M. Giraud-Guille, M. Faustini, R. Carminati, and N. Nassif Proceedings of the National Academy of Sciences of the United States of America 117, no. 22, 11947-11953 (2020)
Résumé: Living tissues, heterogeneous at the microscale, usually scatter light. Strong scattering is responsible for the whiteness of bones, teeth, and brain and is known to limit severely the performances of biomedical optical imaging. Transparency is also found within collagen-based extracellular tissues such as decalcified ivory, fish scales, or cornea. However, its physical origin is still poorly understood. Here, we unveil the presence of a gap of transparency in scattering fibrillar collagen matrices within a narrow range of concentration in the phase diagram. This precholesteric phase presents a three-dimensional (3D) orientational order biomimetic of that in natural tissues. By quantitatively studying the relation between the 3D fibrillar network and the optical and mechanical properties of the macroscopic matrices, we show that transparency results from structural partial order inhibiting light scattering, while preserving mechanical stability, stiffness, and nonlinearity. The striking similarities between synthetic and natural materials provide insights for better understanding the occurring transparency.
Mots-clés: collagen; mechanical properties; photonic materials; self-assembly; transparency
|
|
Single scattering of polarized light by correlated surface and volume disorder Banon, J.-P., I. Simonsen, and R. Carminati Physical Review A 101, no. 5 (2020)
Résumé: © 2020 American Physical Society. We study light scattering by systems combining randomly rough surface and volume dielectric fluctuations. We introduce a general model including correlations between surface and volume disorders, and we study the scattering properties within a single-scattering approach. We identify different regimes of surface and volume dominated scattering depending on length scales characterizing the surface and volume disorders. For uncorrelated disorders, we discuss the polarization response of each source of disorder, and show how polarimetric measurements can be used to separate the surface and volume contributions in the total measured diffusely scattered intensity. For correlated systems, we identify two configurations of volume disorder which, respectively, couple weakly or strongly to surface scattering via surface-volume cross correlations. We illustrate these effects on different configurations exhibiting interference patterns in the diffusely scattered intensity, which may be of interest for the characterization of complex systems or for the design of optical components by engineering the degree of surface-volume correlations.
|
|
Influence of the Local Scattering Environment on the Localization Precision of Single Particles Bouchet, D., R. Carminati, and A. P. Mosk Physical Review Letters 124, no. 13, 133903 (2020)
Résumé: We study the fundamental limit on the localization precision for a subwavelength scatterer embedded in a strongly scattering environment, using the external degrees of freedom provided by wavefront shaping. For a weakly scattering target, the localization precision improves with the value of the local density of states at the target position. For a strongly scattering target, the localization precision depends on the dressed polarizability that includes the backaction of the environment. This numerical study provides new insights for the control of the information content of scattered light by wavefront shaping, with potential applications in sensing, imaging, and nanoscale engineering.
|
|
Optimizing Light Storage in Scattering Media with the Dwell-Time Operator Durand, M., S. M. Popoff, R. Carminati, and A. Goetschy Physical Review Letters 123, no. 24 (2019)
Résumé: © 2019 American Physical Society. We prove that optimal control of light energy storage in disordered media can be reached by wave front shaping. For this purpose, we build an operator for dwell times from the scattering matrix and characterize its full eigenvalue distribution both numerically and analytically in the diffusive regime, where the thickness L of the medium is much larger than the mean free path â.,". We show that the distribution has a finite support with a maximal dwell time larger than the most likely value by a factor (L/â.,")2≫1. This reveals that the highest dwell-time eigenstates deposit more energy than the open channels of the medium. Finally, we show that the dwell-time operator can be used to store energy in resonant targets buried in complex media, without any need for guide stars.
|
|
Blind ghost imaging Paniagua-Diaz, A. M., I. Starshynov, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti Optica 6, no. 4, 460-464 (2019)
Résumé: © 2019 Optical Society of America. Ghost imaging is an unconventional optical imaging technique that reconstructs the shape of an object by combining the measurement of two signals: one that interacted with the object, but without any spatial information; the other containing spatial information, but that never interacted with the object. Here we demonstrate that ghost imaging can be performed without ever knowing the patterns that illuminate the object, by instead using patterns correlated with them, no matter how weakly. As an experimental proof, we reconstruct the image of an object hidden behind a scattering layer using only the reflected light, which never interacts with the object.
|
|
Enhanced absorption of waves in stealth hyperuniform disordered media Bigourdan, F., R. Pierrat, and R. Carminati Optics Express 27, no. 6, 8666-8682 (2019)
Résumé: © 2019 Optical Society of America We study the propagation of waves in a set of absorbing subwavelength scatterers positioned on a stealth hyperuniform point pattern. We show that spatial correlations in the disorder substantially enhance absorption compared to a fully disordered structure with the same density of scatterers. The non-resonant nature of the mechanism provides broad angular and spectral robustness. These results demonstrate the possibility to design low-density materials with blackbody-like absorption.
|
|
Terahertz and Visible Probing of Particles Suspended in Air Prophete, C., H. Sik, E. Kling, R. Carminati, and J. De Rosny IEEE Transactions on Terahertz Science and Technology 9, no. 2, 120-125 (2019)
Résumé: © 2011-2012 IEEE. The attenuation of air suspended particles is measured with a terahertz (THz) time-domain spectrometer. Simultaneously, the attenuation at a wavelength of 650 nm is probed with a laser diode. On the one hand, this dual measurement allows a direct assessment of the visibility evolution in the THz range compared to the visible range. On the other hand, this setup provides an estimation of the scattering strength and the density of particles. Using the Mie theory, the method is successfully applied to experimentally characterize the refractive index of sand grains and glass beads. The refractive indexes of sand grains and glass beads, average over the acquisitions, are 1.67 and 2.54, respectively. The estimation of the scattering properties of sand grains is crucial to evaluate the performance of THz systems to image through brownout clouds that are created by helicopter rotors when landing in arid areas.
Mots-clés: Propagation; refractive index; terahertz (THz) scattering; THz time-domain spectroscopy (THz-TDS)
|
|
Quantum dipole emitters in structured environments: A scattering approach: Tutorial Bouchet, D., and R. Carminati Journal of the Optical Society of America A: Optics and Image Science, and Vision 36, no. 2, 186-195 (2019)
Résumé: © 2019 Optical Society of America. We provide a simple semi-classical formalism to describe the coupling between one or several quantum emitters and a structured environment. Describing the emitter by an electric polarizability, and the surrounding medium by a Green function, we show that an intuitive scattering picture allows one to derive a coupling equation from which the eigenfrequencies of the coupled system can be extracted. The model covers a variety of regimes observed in light–matter interaction, including weak and strong coupling, coherent collective interactions, and incoherent energy transfer. It provides a unified description of many processes, showing that different interaction regimes are actually rooted on the same ground. It can also serve as a basis for the development of more refined models in a full quantum electrodynamics framework.
|
|
Cross density of states and mode connectivity: Probing wave localization in complex media Canaguier-Durand, A., R. Pierrat, and R. Carminati Physical Review A 99, no. 1 (2019)
Résumé: © 2019 American Physical Society. We introduce the mode connectivity as a measure of the number of eigenmodes of a wave equation connecting two points at a given frequency. Based on numerical simulations of scattering of electromagnetic waves in disordered media, we show that the connectivity discriminates between the diffusive and the Anderson localized regimes. For practical measurements, the connectivity is encoded in the second-order coherence function characterizing the intensity emitted by two incoherent classical or quantum dipole sources. The analysis applies to all processes in which spatially localized modes build up, and to all kinds of waves.
|
|
Modeling of an active terahertz imaging system in brownout conditions Prophète, C., R. Pierrat, H. Sik, E. Kling, R. Carminati, and J. De Rosny Applied Optics 57, no. 21, 6017-6026 (2018)
Résumé: © 2018 Optical Society of America. We present a theoretical evaluation of a subterahertz (subTHz) system to image through a scattering medium composed of scatterers of sizes close to the wavelength. We specifically study the case of sand grain clouds created by helicopter rotor airflow during landing in arid areas. The different powers received by one pixel of a matrix made of subTHz sensors are identified. Photometric and antenna-based sensors are considered. Besides the thermal contribution to the noise, we focus our attention on the radiation backscattered by the brownout. It appears that a configuration where the source and the camera are distant is the most promising configuration and is realistic for embedded systems.
|
|
Photon echoes in strongly scattering media: A diagrammatic approach Pierrat, R., R. Carminati, and J. L. Le Gouët Physical Review A 97, no. 6 (2018)
Résumé: © 2018 American Physical Society. We study photon echo generation in disordered media with the help of multiple scattering theory based on diagrammatic approach and numerical simulations. We show that a strong correlation exists between the driving fields at the origin of the echo and the echo beam. Opening the way to a better understanding of nonlinear wave propagation in complex materials, this work supports recent experimental results with applications to the measurement of the optical dipole lifetime T2 in powders.
|
|
Non-Gaussian Correlations between Reflected and Transmitted Intensity Patterns Emerging from Opaque Disordered Media Starshynov, I., A. M. Paniagua-Diaz, N. Fayard, A. Goetschy, R. Pierrat, R. Carminati, and J. Bertolotti Physical Review X 8, no. 2 (2018)
Résumé: © 2018 authors. Published by the American Physical Society. The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here, we demonstrate experimentally that the reflected and transmitted speckle patterns are robustly correlated, and we unravel all the complex and unexpected features of this fundamentally non-Gaussian and long-range correlation. In particular, we show that it is preserved even for opaque media with thickness much larger than the scattering mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of correlations between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.
|
|
One-Shot Measurement of the Three-Dimensional Electromagnetic Field Scattered by a Subwavelength Aperture Tip Coupled to the Environment Rahbany, N., I. Izeddin, V. Krachmalnicoff, R. Carminati, G. Tessier, and Y. De Wilde ACS Photonics 5, no. 4, 1539-1545 (2018)
Résumé: © 2018 American Chemical Society. Near-field scanning optical microscopy (NSOM) achieves subwavelength resolution by bringing a nanosized probe close to the surface of the sample. This extends the spectrum of spatial frequencies that can be detected with respect to a diffraction limited microscope. The interaction of the probe with the sample is expected to affect its radiation to the far field in a way that is often hard to predict. Here we address this question by proposing a general method based on full-field off-axis digital holography microscopy which enables to study in detail the far-field radiation from a NSOM probe as a function of its environment. A first application is demonstrated by performing a three-dimensional (3D) tomographic reconstruction of light scattered from the subwavelength aperture tip of a NSOM, in free space or coupled to transparent and plasmonic media. A single holographic image recorded in one shot in the far field contains information on both the amplitude and the phase of the scattered light. This is sufficient to reverse numerically the propagation of the electromagnetic field all the way to the aperture tip. Finite Difference Time Domain (FDTD) simulations are performed to compare the experimental results with a superposition of magnetic and electric dipole radiation.
|
|
Mutual Information between Reflected and Transmitted Speckle Images Fayard, N., A. Goetschy, R. Pierrat, and R. Carminati Physical Review Letters 120, no. 7 (2018)
Résumé: © 2018 American Physical Society. We study theoretically the mutual information between reflected and transmitted speckle patterns produced by wave scattering from disordered media. The mutual information between the two speckle images recorded on an array of N detection points (pixels) takes the form of long-range intensity correlation loops that we evaluate explicitly as a function of the disorder strength and the Thouless number g. Our analysis, supported by extensive numerical simulations, reveals a competing effect of cross-sample and surface spatial correlations. An optimal distance between pixels is proven to exist that enhances the mutual information by a factor Ng compared to the single-pixel scenario.
|
|
Optimizing Hyperuniformity in Self-Assembled Bidisperse Emulsions Ricouvier, J., R. Pierrat, R. Carminati, P. Tabeling, and P. Yazhgur Physical Review Letters 119, no. 20 (2017)
Résumé: © 2017 American Physical Society. We study long range density fluctuations (hyperuniformity) in two-dimensional jammed packings of bidisperse droplets. Taking advantage of microfluidics, we systematically span a large range of size and concentration ratios of the two droplet populations. We identify various defects increasing long range density fluctuations mainly due to organization of local particle environment. By choosing an appropriate bidispersity, we fabricate materials with a high level of hyperuniformity. Interesting transparency properties of these optimized materials are established based on numerical simulations.
|
|
Quantitative analysis of THz imaging systems in brownout conditions Prophete, C., R. Pierrat, H. Sik, E. Kling, R. Carminati, and J. De Rosny International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz (2017)
Résumé: © 2017 IEEE. Brownout refers to dust cloud created by the rotor downwash of a helicopter. When it occurs, the visibility becomes limited, or even null. The pilot can be desorientated and accident may happen. No existing imaging systems can see through dust clouds, in real-time and with sufficient resolution. Using waves between 100GHz and 1THz seems to be a good solution to make a compact and suitable imaging system. After defining a brownout model, we establish theoretically the power balance of the involved sources of signal and noise. We compare a photometric detection system with one compounded of antennas.
|
|
Observation of mean path length invariance in light-scattering media Savo, R., R. Pierrat, U. Najar, R. Carminati, S. Rotter, and S. Gigan Science 358, no. 6364, 765-768 (2017)
Résumé: © 2017, American Association for the Advancement of Science. All rights reserved. The microstructure of a medium strongly influences how light propagates through it. The amount of disorder it contains determines whether the medium is transparent or opaque. Theory predicts that exciting such a medium homogeneously and isotropically makes some of its optical properties depend only on the medium’s outer geometry. Here, we report an optical experiment demonstrating that the mean path length of light is invariant with respect to the microstructure of the medium it scatters through. Using colloidal solutions with varying concentration and particle size, the invariance of the mean path length is observed over nearly two orders of magnitude in scattering strength. Our results can be extended to a wide range of systems—however ordered, correlated, or disordered—and apply to all wave-scattering problems.
|
|
Structure and dynamics of multicellular assemblies measured by coherent light scattering Brunel, B., C. Blanch, A. Gourrier, V. Petrolli, A. Delon, J. F. Joanny, R. Carminati, R. Pierrat, and G. Cappello New Journal of Physics 19, no. 7 (2017)
Résumé: © 2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. Determining the structure and the internal dynamics of tissues is essential to understand their functional organization. Microscopy allows for monitoring positions and trajectories of every single cell. Those data are useful to extract statistical observables, such as intercellular distance, tissue symm etry and anisotropy, and cell motility. However, this procedure requires a large and supervised computational effort. In addition, due to the large cross-section of cells, the light scattering limits the use of microscopy to relatively thin samples. As an alternative approach, we propose to take advantage of light scattering and to analyze the dynamical diffraction pattern produced by a living tissue illuminated with coherent light. In this article, we illustrate with a few examples that supra-cellular structures produce an exploitable diffraction signal. From the diffraction signal, we deduce the mean distance between cells, the anisotropy of the supra-cellular organization and, from its fluctuations, the mean speed of moving cells. This easy to implement technique considerably reduces analysis time, allowing real time monitoring.
Mots-clés: coherent optics; dynamic light scattering; multicellular structures
|
|
Spatial correlations of the spontaneous decay rate as a probe of dense and correlated disordered materials Leseur, O., R. Pierrat, and R. Carminati European Physical Journal: Special Topics 226, no. 7, 1423-1432 (2017)
Résumé: © 2017, The Author(s).We study theoretically and numerically a new kind of spatial correlation for waves in disordered media. We define CΓ as the correlation function of the fluorescent decay rate of an emitter at two different positions inside the medium. We show that the amplitude and the width of CΓ provide decoupled information on the structural correlation of the disordered medium and on the local environment of the emitter. This result may stimulate the emergence of new imaging and sensing modalities in complex media.
|
|
Causality, Nonlocality, and Negative Refraction Forcella, D., C. Prada, and R. Carminati Physical Review Letters 118, no. 13 (2017)
Résumé: © 2017 American Physical Society. American Physical Society.The importance of spatial nonlocality in the description of negative refraction in electromagnetic materials has been put forward recently. We develop a theory of negative refraction in homogeneous and isotropic media, based on first principles, and that includes nonlocality in its full generality. The theory shows that both dissipation and spatial nonlocality are necessary conditions for the existence of negative refraction. It also provides a sufficient condition in materials with weak spatial nonlocality. These fundamental results should have broad implications in the theoretical and practical analyses of negative refraction of electromagnetic and other kinds of waves.
|
|
Correlated blinking of fluorescent emitters mediated by single plasmons Bouchet, D., E. Lhuillier, S. Ithurria, A. Gulinatti, I. Rech, R. Carminati, Y. De Wilde, and V. Krachmalnicoff Physical Review A - Atomic, Molecular, and Optical Physics 95, no. 3 (2017)
Résumé: © 2017 American Physical Society.We observe time-correlated emission between a single CdSe/CdS/ZnS quantum dot exhibiting single-photon statistics and a fluorescent nanobead located micrometers apart. This is accomplished by coupling both emitters to a silver nanowire. Single plasmons are created on the latter from the quantum dot, and transfer energy to excite in turn the fluorescent nanobead. We demonstrate that the molecules inside the bead show the same blinking behavior as the quantum dot.
|
|
Temperature of a nanoparticle above a substrate under radiative heating and cooling Kallel, H., R. Carminati, and K. Joulain Physical Review B - Condensed Matter and Materials Physics 95, no. 11 (2017)
Résumé: © 2017 American Physical Society.Controlling the temperature in architectures involving nanoparticles and substrates is a key issue for applications involving micro- and nanoscale heat transfer. We study the thermal behavior of a single nanoparticle interacting with a flat substrate under external monochromatic illumination, and with thermal radiation as the unique heat loss channel. We develop a model to compute the temperature of the nanoparticle, based on an effective dipole-polarizability approach. Using numerical simulations, we thoroughly investigate the impacts of various parameters affecting the nanoparticle temperature, such as the nanoparticle-to-substrate gap distance, the incident light wavelength and polarization, or the material resonances. This study provides a tool for the thermal characterization and design of micro- or nanoscale systems coupling substrates with nanoparticles or optical antennas.
|
|
Multiple scattering of polarized light in disordered media exhibiting short-range structural correlations Vynck, K., R. Pierrat, and R. Carminati Physical Review A 94, no. 3 (2016)
|
|
High-density hyperuniform materials can be transparent Leseur, O., R. Pierrat, and R. Carminati Optica 3, no. 7, 763-767 (2016)
|
|
Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials Parigi, V., E. Perros, G. Binard, C. Bourdillon, A. Maitre, R. Carminati, V. Krachmalnicoff, and Y. De Wilde Optics Express 24, no. 7, 7019-7027 (2016)
|
|
Quantum coherence of light emitted by two single-photon sources in a structured environment Canaguier-Durand, A., and R. Carminati Physical Review A - Atomic, Molecular, and Optical Physics 93, no. 3 (2016)
Résumé: © 2016 American Physical Society. We develop a theoretical framework for the analysis of the quantum coherence of light emitted by two independent single-photon sources in an arbitrary environment. The theory provides design rules for the control of the degree of quantum coherence in terms of classical quantities widely used in nanophotonics. As an important example, we derive generalized conditions to generate superradiant and subradiant states of the emitters and demonstrate the ability of a structured environment to induce long-range quantum coherence. These results should have broad applications in quantum nanophotonics and for the sensing of fluorescent sources in complex environments.
|
|
Long-Range Plasmon-Assisted Energy Transfer between Fluorescent Emitters Bouchet, D., D. Cao, R. Carminati, Y. De Wilde, and V. Krachmalnicoff Physical Review Letters 116, no. 3 (2016)
|
|
Thermal emission by a subwavelength aperture Joulain, K., Y. Ezzahri, and R. Carminati Journal of Quantitative Spectroscopy and Radiative Transfer 173, 1-6 (2016)
Résumé: © 2015 Elsevier Ltd. We calculate, by means of fluctuational electrodynamics, the thermal emission of an aperture separating from the outside, vacuum or a material at temperature T. We show that thermal emission is very different whether the aperture size is large or small compared to the thermal wavelength. Subwavelength apertures separating vacuum from the outside have their thermal emission strongly decreased compared to classical blackbodies which have an aperture much larger than the wavelength. A simple expression of their emissivity can be calculated and their total emissive power scales as T8 instead of T4 for large apertures. Thermal emission of disk of materials with a size comparable to the wavelength is also discussed. It is shown in particular that emissivity of such a disk is increased when the material can support surface waves such as phonon polaritons.
Mots-clés: Fluctuational electrodynamics; Nanoscale Thermal emission; Phonon-polaritons
|
|
Intensity correlations between reflected and transmitted speckle patterns Fayard, N., A. Cazé, R. Pierrat, and R. Carminati Physical Review A - Atomic, Molecular, and Optical Physics 92, no. 3 (2015)
Résumé: © 2015 American Physical Society. ©2015 American Physical Society. We study theoretically the spatial correlations between the intensities measured at the input and output planes of a disordered scattering medium. We show that at large optical thicknesses, a long-range spatial correlation persists and takes negative values. For small optical thicknesses, short-range and long-range correlations coexist, with relative weights that depend on the optical thickness. These results may have direct implications for the control of wave transmission through complex media by wave-front shaping, thus finding applications in sensing, imaging, and information transfer.
|
|
Breakthroughs in photonics 2014: Random lasers Sebbah, P., and R. Carminati IEEE Photonics Journal 7, no. 3 (2015)
Résumé: © 2015 IEEE. Multiple scattering of light in a disordered medium with gain may provide for the necessary feedback to achieve lasing action without an optical cavity. In addition to the fundamental interest raised by this regime of light-matter interaction in open cavity, the relatively simple design of these so-called "random lasers" and the possibility to control their emission open perspective of new applications in domains not yet covered by conventional lasers.
Mots-clés: Laser; random media
|
|
Linear and nonlinear Rabi oscillations of a two-level system resonantly coupled to an Anderson-localized mode Bachelard, N., R. Carminati, P. Sebbah, and C. Vanneste Physical Review A 91, no. 4 (2015)
|
|
Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna Cao, D., A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde ACS Photonics 2, no. 2, 189-193 (2015)
Résumé: © 2015 American Chemical Society. We present a novel method to extract the various contributions to the photonic local density of states from near-field fluorescence maps. The approach is based on the simultaneous mapping of the fluorescence intensity and decay rate and on the rigorous application of the reciprocity theorem. It allows us to separate the contributions of the radiative and the apparent nonradiative local density of states to the change in the decay rate. The apparent nonradiative contribution accounts for losses due to radiation out of the detection solid angle and to absorption in the environment. Data analysis relies on a new analytical calculation, and does not require the use of numerical simulations. One of the most relevant applications of the method is the characterization of nanostructures aimed at maximizing the number of photons emitted in the detection solid angle, which is a crucial issue in modern nanophotonics.
Mots-clés: fluorescence microscopy; local density of states; near-field scanning probe; plasmonic nanoantennas; radiative decay rate; reciprocity theorem
|
|
Electromagnetic field correlations in three-dimensional speckles Dogariu, A. C., and R. Carminati Physics Reports 559, 1-29 (2015)
Résumé: © 2015. We describe recent developments in the characterization of three-dimensional speckle fields produced by scattering of electromagnetic waves. In many practical situations the description of such fields requires approaches going beyond the Gaussian statistics approximation. Quantitative measures of spatial coherence and polarization can be defined from the field-field correlation matrix, known as the cross-spectral density matrix in coherence theory. The complex degree of mutual polarization provides a measure of the similarity between polarization states at two different points. The degree of spatial coherence describes spatial coherence and averages out the polarization properties. We discuss their behavior in speckle fields produced by multiple scattering in disordered materials. A number of non-universal properties arise, that are related to the internal microscopic structure of the scattering medium. Non-universality affects observables quantities, such as spatial correlations in speckle patterns measured in the near field of the medium surface, statistics of the local density of states or the depolarization of the exciting electromagnetic field due to scattering. Specific microscopic scales are necessary to describe the non-universal behaviors, that characterize the scale-dependent morphology of the scattering medium.
Mots-clés: Coherence; Polarization; Random fields; Speckle
|
|
Speckle fluctuations resolve the interdistance between incoherent point sources in complex media Carminati, R., G. A. Cwilich, L. S. Froufe-Pérez, and J. J. Sáenz Physical Review A - Atomic, Molecular, and Optical Physics 91, no. 2 (2015)
Résumé: © 2015 American Physical Society. We study the fluctuations of the light emitted by two identical incoherent point sources in a disordered environment. The intensity-intensity correlation function and the speckle contrast, obtained after proper temporal and configurational averaging, encode the relative distance between the two sources. This suggests the intriguing possibility that intensity measurements at only one point in a speckle pattern produced by two incoherent sources can provide information about the relative distance between the sources, with a precision that is not limited by diffraction. The theory also suggests an alternative approach to the Green's-function retrieval technique, where the correlations of the isotropic ambient noise detected by two receivers are replaced by a measurement at a single point of the noise due to two fluctuating incoherent sources.
|
|
Image transmission through a scattering medium: Inverse problem and sparsity-based imaging Gigan, S., S. M. Popoff, A. Liutkus, D. Martina, O. Katz, G. Chardon, R. Carminati, G. Lerosey, M. A. Fink., A. C. Boccara, I. Carron, and L. Daudet 2014 13th Workshop on Information Optics, WIO 2014 (2014)
Résumé: © 2014 IEEE. We demonstrate how to measure accurately the transmission matrix of a complex medium. With this information, we show how to focus light, recover an image, and even perform efficient reconstruction of a sparse object.
|
|
Probing two-dimensional Anderson localization without statistics Leseur, O., R. Pierrat, J. J. Sáenz, and R. Carminati Physical Review A - Atomic, Molecular, and Optical Physics 90, no. 5 (2014)
Résumé: © 2014 American Physical Society. We investigate the possibility of using the independence of the transmitted speckle pattern on the illumination condition as a signature of Anderson localization in a single configuration of a two-dimensional and open disordered medium. The analysis is based on exact numerical simulations of multiple light scattering. We introduce a similarity function that we propose as a reliable observable to probe Anderson localization without requiring any statistical averaging over an ensemble.
|
|
Invariance property of wave scattering through disordered media Pierrat, R., P. Ambichl, S. Gigan, A. Haber, R. Carminati, and S. Rotter Proceedings of the National Academy of Sciences of the United States of America 111, no. 50, 17765-17770 (2014)
Résumé: A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the system's boundary geometry and is thus unaffected by the value of the mean free path. Here we show that this result is rooted on a much deeper level than that of a random walk, which allows us to extend the reach of this universal invariance property beyond the diffusion approximation. Specifically, we demonstrate that an equivalent invariance relation also holds for the scattering of waves in resonant structures as well as in ballistic, chaotic or in Anderson localized systems. Our work unifies a number of specific observations made in quite diverse fields of science ranging from the movement of ants to nuclear scattering theory. Potential experimental realizations using light fields in disordered media are discussed.
Mots-clés: Diffusion; Disordered media; Random walk; Time delay; Wave scattering
|
|
Electromagnetic density of states in complex plasmonic systems Carminati, R., A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. De Wilde Surface Science Reports 70, no. 1, 1-41 (2015)
Résumé: © 2014 Elsevier B.V. All rights reserved. Nanostructured materials offer the possibility to tailor light-matter interaction at scales below the wavelength. Metallic nanostructures benefit from the excitation of surface plasmons that permit light concentration at ultrasmall length scales and ultrafast time scales. The local density of states (LDOS) is a central concept that drives basic processes of light-matter interaction such as spontaneous emission, thermal emission and absorption. We introduce theoretically the concept of LDOS, emphasizing the specificities of plasmonics. We connect the LDOS to real observables in nanophotonics, and show how the concept can be generalized to account for spatial coherence. We describe recent methods developed to probe or map the LDOS in complex nanostructures ranging from nanoantennas to disordered metal surfaces, based on dynamic fluorescence measurements or on the detection of thermal radiation.
Mots-clés: Cross density of states; Local density of states; Plasmonics; Spatial coherence; Spontaneous emission; Thermal radiation
|
|
Local control of the excitation of surface plasmon polaritons by near-field magneto-optical Kerr effect Vincent, R., H. Marinchio, J. J. Saenz, and R. Carminati Physical Review B 90, no. 24 (2014)
|
|
Mapping and Quantifying Electric and Magnetic Dipole Luminescence at the Nanoscale Aigouy, L., A. Caze, P. Gredin, M. Mortier, and R. Carminati Physical Review Letters 113, no. 7 (2014)
|
|
Analysis of coherence properties of partially polarized light in 3D and application to disordered media Refregier, P., V. Wasik, K. Vynck, and R. Carminati Optics Letters 39, no. 8, 2362-2365 (2014)
|
|
Magneto-optical Kerr effect in resonant subwavelength nanowire gratings Marinchio, H., R. Carminati, A. García-Martín, and J. J. Sáenz New Journal of Physics 16, no. 1, 015007-015007 (2014)
Résumé: Periodic arrays of nanorods can present a resonant response at specific geometric conditions. We use a multiple scattering approach to analyze the optical response of subwavelength nanowire gratings made of arbitrary anisotropic materials. When the rods are made of magneto-optical dielectrics we show that there is a complex interplay between the geometric resonances of the grating and the magneto-optical Kerr effects (MOKE) response. As we will show, for a given polarization of the incident light, a resonant magneto-optical response can be obtained by tuning the incidence angle and grating parameters to operate near the resonance condition for the opposite polarization. Our results could be important to understand and optimize MOKE structures and devices based on resonant subwavelength gratings and could open new perspectives in sensing applications.
|
|
Extraordinary magnetoplasmonic effect in SPP-MOKE configuration Vincent, R., H. Marinchio, J. J. Sáenz, and R. Carminati CLEO: QELS_Fundamental Science, CLEO:QELS FS 2013 (2013)
Résumé: An as yet unexploited Magneto Optical Kerr Effect (MOKE) at evanescent distance from a surface is introduced. In the case of a magnetic particle-metallic surface system, an extraordinary intensity is discovered and fully explained by the excitation of Surface Plasmon Polariton. © OSA 2013.
Mots-clés: Magneto-optical Kerr effects; Surface plasmon polaritons; Surface systems; Electromagnetic wave polarization; Surface plasmon resonance; Optical Kerr effect
|
|
Polarization and spatial coherence of electromagnetic waves in uncorrelated disordered media Vynck, K., R. Pierrat, and R. Carminati Physical Review A 89, no. 1, 013842 (2014)
Résumé: Spatial field correlation functions represent a key quantity for the description of mesoscopic phenomena in disordered media and the optical characterization of complex materials. Yet many aspects related to the vector nature of light waves have not been investigated so far. We study theoretically the polarization and coherence properties of electromagnetic waves produced by a dipole source in a three-dimensional uncorrelated disordered medium. The spatial field correlation matrix is calculated analytically using a multiple-scattering theory for polarized light. This allows us to provide a formal description of the light depolarization process in terms of “polarization eigenchannels” and to derive analytical formulas for the spatial coherence of multiply scattered light.
|
|
Surface plasmons: A probe for graphene electronics Carminati, R. Nature Nanotechnology (2013)
|
|
Strong coupling to two-dimensional Anderson localized modes Cazé, A., R. Pierrat, and R. Carminati Physical Review Letters 111, no. 5 (2013)
Résumé: We use a scattering formalism to derive a condition of strong coupling between a resonant scatterer and an Anderson localized mode for electromagnetic waves in two dimensions. The strong coupling regime is demonstrated based on exact numerical simulations, in perfect agreement with theory. The strong coupling threshold can be expressed in terms of the Thouless conductance and the Purcell factor. This connects key concepts in transport theory and cavity quantum electrodynamics, and provides a practical tool for the design or analysis of experiments. © 2013 American Physical Society.
|
|
Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe Krachmalnicoff, V., D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. De Wilde Optics Express 21, no. 9, 11536-11545 (2013)
Résumé: We report on the experimental and theoretical study of the spatial fluctuations of the local density of states (EM-LDOS) and of the fluorescence intensity in the near-field of a gold nanoantenna. EM-LDOS, fluorescence intensity and topography maps are acquired simultaneously by scanning a fluorescent nanosource grafted on the tip of an atomic force microscope at the surface of the sample. The results are in good quantitative agreement with numerical simulations. This work paves the way for a full near-field characterization of an optical nanoantenna. © 2013 Optical Society of America.
Mots-clés: Atomic force microscope (AFM); Fluorescence intensities; Local density of state; Near-field characterizations; Optical nano antennas; Plasmonic nanostructures; Quantitative agreement; Spatial fluctuation; Atomic force microscopy; Nanostructures; Surface topography; Fluorescence
|
|
Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna Pierrat, R., C. Vandenbem, M. Fink, and R. Carminati Physical Review A - Atomic, Molecular, and Optical Physics 87, no. 4 (2013)
Résumé: We study theoretically light focusing at subwavelength scale inside a disordered strongly scattering open medium. We show that broadband time reversal at a single point antenna, in conjunction with near-field interactions and multiple scattering, produces spatial focusing with a quality comparable to that obtained in an ideal closed cavity. This provides different perspectives for super-resolved optical imaging and coherent control of single nanosources or absorbers in complex media. © 2013 American Physical Society.
Mots-clés: Closed cavity; Coherent control; Disordered medium; Near field interactions; Optical imaging; Spatial focusing; Sub-wavelength focusing; Subwavelength scale; Antennas; Focusing
|
|
Spatial coherence in complex photonic and plasmonic systems Cazé, A., R. Pierrat, and R. Carminati Physical Review Letters 110, no. 6 (2013)
Résumé: The concept of cross density of states characterizes the intrinsic spatial coherence of complex photonic or plasmonic systems, independently of the illumination conditions. Using this tool and the associated intrinsic coherence length, we demonstrate unambiguously the spatial squeezing of eigenmodes on disordered fractal metallic films, thus clarifying a basic issue in plasmonics. © 2013 American Physical Society.
Mots-clés: Coherence lengths; Density of state; Eigen modes; Illumination conditions; Plasmonic; Plasmonics; Spatial coherence; Atomic physics; Physics; Plasmons
|
|
Recovering fluorophore location and orientation from lifetimes Irishina, N., M. Moscoso, and R. Carminati Optics Express 21, no. 1, 421-430 (2013)
Résumé: In this paper, we study the possibility of using lifetime data to estimate the position and orientation of a fluorescent dipole source within a disordered medium. The vector Foldy-Lax equations are employed to calculate the interaction between the fluorescent source and the scatterers that are modeled as point-scatterers. The numerical experiments demonstrate that if good prior knowledge about the positions of the scatterers is available, the position and orientation of the dipole source can be retrieved from its lifetime data with precision. If there is uncertainty about the positions of the scatterers, the dipole source position can be estimated within the same level of uncertainty. © 2013 Optical Society of America.
Mots-clés: Dipole sources; Disordered medium; Lifetime data; Numerical experiments; Prior knowledge; Fluorescence; Uncertainty analysis; Scattering
|
|
Dressed polarizability and absorption of a dipole nano-antenna in an arbitrary environment Castanié, E., R. Vincent, R. Pierrat, and R. Carminati AIP Conference Proceedings 1475, 116-118 (2012)
Résumé: In this work, we show how the absporption cross-section of a dipole nano-antenna is modified by the local environment. In particular, we clarify the key role of the Local Density of States (LDOS) and show the analogy that exists with quantum emitters. This link with the LDOS shows that it is possible to probe the LDOS inside a structured environment with a nano-particle. Conversely, we can design nano-structures to control the level of absorption in a nano-particle, a strong limitation for applications in nanophotonics. The theoretical results are illustrated numerically in the simple case of a silver particle near a perfect mirror. © 2012 American Institute of Physics.
Mots-clés: absorption; local density of states; nanoantenna
|
|
Radiative and non-radiative local density of states on disordered plasmonic films Cazé, A., R. Pierrat, and R. Carminati Photonics and Nanostructures - Fundamentals and Applications 10, no. 4, 339-344 (2012)
Résumé: We present numerical calculations of the local density of optical states (LDOS) in the near field of disordered plasmonic films. The calculations are based on an integral volume method, that takes into account polarization and retardation effects, and allows us to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS fluctuations are dominated by non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial distributions. © 2012 Elsevier B.V. All rights reserved.
Mots-clés: Disordered systems; Fractals; Local density of states; Metallic films; Numerical simulations; Plasmons; Disordered system; Local density; Local density of state; Near fields; Non-radiative; Non-radiative channels; Numerical calculation; Optical state; Plasmon modes; Plasmonic; Retardation effect; Volume method; Computer simulation; Electrical engineering; Fractals; Hardware; Metallic films; Plasmons
|
|
Distance dependence of the local density of states in the near field of a disordered plasmonic film Castanié, E., V. Krachmalnicoff, A. Cazé, R. Pierrat, Y. De Wilde, and R. Carminati Optics Letters 37, no. 14, 3006-3008 (2012)
Résumé: We measure the statistical distribution of the photonic local density of states in the near field of a semicontinuous gold film. By varying the distance between the measurement plane and the film, we show that near-field confined modes play a major role in the width of the distribution. Numerical simulations in good agreement with experiments allow us to point out the influence of nonradiative decay channels at short distance. © 2012 Optical Society of America.
Mots-clés: Confined modes; Gold film; Local density of state; Measurement planes; Near fields; Near-field; Nonradiative decay channels; Plasmonic; Semi-continuous; Statistical distribution; Optics; Optoelectronic devices
|
|
Light scattering by a magneto-optical nanoparticle in front of a flat surface: Perturbative approach Marinchio, H., J. J. Sáenz, and R. Carminati Physical Review B - Condensed Matter and Materials Physics 85, no. 24 (2012)
Résumé: We develop a perturbative formalism for the interaction of a magneto-optical nanoparticle with a flat surface made of a dielectric or metallic material. The formalism leads to a simple interpretation of the interplay between the purely dielectric and the magneto-optical responses, in terms of excitation of (and radiation by) two orthogonal electric dipoles. We analyze two different routes for the enhancement of the magneto-optical response with respect to the purely dielectric contribution, both based on the nanoparticle-surface interaction. The enhancement is discussed in terms of relevant magneto-optical signals, such as changes in reflectivity, polarization (Kerr) rotation, and ellipticity. © 2012 American Physical Society.
|
|
Absorption by an optical dipole antenna in a structured environment Castanié, E., R. Vincent, R. Pierrat, and R. Carminati International Journal of Optics 2012 (2012)
Résumé: We compute generalized absorption and extinction cross-sections of an optical dipole nanoantenna in a structured environment. The expressions explicitly show the influence of radiation reaction and the local density of states on the intrinsic absorption properties of the antenna. Engineering the environment could allow to modify the overall absorption as well as the frequency and the linewidth of a resonant antenna. Conversely, a dipole antenna can be used to probe the photonic environment, in a similar way as a quantum emitter. Copyright © 2012 E. Castanié et al.
|
|
Source location from fluorescence lifetime in disordered media Irishina, N., M. Moscoso, and R. Carminati Optics Letters 37, no. 5, 951-953 (2012)
Résumé: We show that the source location problem can be solved in a scattering medium using the fluorescence lifetime and realistic a priori information. The intrinsic ill-posedness of the problem is reduced when the level of scattering increases. This work is a proof of principle demonstrating the high potential of quantitative lifetime imaging in complex media. © 2012 Optical Society of America.
Mots-clés: Complex media; Disordered media; Fluorescence lifetimes; High potential; Ill-posedness; Lifetime imaging; Priori information; Proof of principles; Scattering medium; Source location; Source location problem; Optics; Optoelectronic devices; Fluorescence
|
|
Time-domain radiation and absorption by subwavelength sources Bossy, E., and R. Carminati EuroPhysics Letters 97, no. 3, 34001 (2012)
Résumé: Radiation by elementary sources is a basic problem in wave physics. We show that the time-domain energy flux radiated from electromagnetic and acoustic subwalength sources exhibits remarkable features. In particular, a subtle trade-off between source emission and absorption underlies the mechanism of radiation. This behavior should be observed for any kind of classical waves, thus having broad potential implications. We discuss the implication for subwavelength focusing by time reversal with active sources. Copyright © EPLA, 2012.
|
|
Cramer-Rao analysis of steady-state and time-domain fluorescence diffuse optical imaging Boffety, M., M. Allain, A. Sentenac, M. Massonneau, and R. Carminati Biomedical Optics Express 2, no. 6, 1626-1636 (2011)
Résumé: Using a Cramer-Rao analysis, we study the theoretical performances of a time and spatially resolved fDOT imaging system for jointly estimating the position and the concentration of a point-wide fluorescent volume in a diffusive sample. We show that the fluorescence lifetime is a critical parameter for the precision of the technique. A time resolved fDOT system that does not use spatial information is also considered. In certain cases, a simple steady-state configuration may be as efficient as this time resolved fDOT system. © 2011 Optical Society of America.
Mots-clés: Critical parameter; Diffuse optical imaging; Fluorescence lifetimes; Spatial informations; Spatially resolved; Theoretical performance; Time domain; Time-resolved; Fluorescence; Time domain analysis
|
|
Near-field correlations and fluctuations in multiple scattering of light Carminati, R. AIP Conference Proceedings 1398, 19-20 (2011)
Résumé: The analysis of the photonic properties of disordered media structured at a submicron scale combines nanophotonics with light transport in the multiple scattering regime. We show that near-field interactions are fundamental in the analysis of speckle patterns observed at subwavelength distance from boundaries, or produced by nanosources immersed inside the scattering medium, as well as for the description of fluctuations of the local density of optical states. © 2011 American Institute of Physics.
Mots-clés: Disordered media; local density of states; multiple scattering; near field; speckle correlations
|
|
Luminescence diffuse optical tomography on a reflectance imaging set-up Boffety, M., M. Allain, A. Sentenac, M. Massonneau, and R. Carminati 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 (2011)
Résumé: Luminescence diffuse optical tomography has become a valuable tool in optical molecular imaging. As an actor of this recent field, the French company Quidd has developed a luminescence reflectance imaging system for small animal in vivo imaging. In previous studies, we have determined the potential and the limits of such approaches for the determination of the depth of fluorophores/bioluminescent substrates in tissues [1,2]. In the present work, we demonstrate the first reconstructions on test samples. For this study, we use a prototype of the Quidd Optical System (QOS) as well as calibrated phantom (cf. Fig. 1) and source. The optical detection set-up is composed of a cooled CCD camera with a telecentric lens. The camera can be translated along the z and x axes and rotated with an angular amplitude of 120. The phantom is a diffusive epoxy resin hemisphere whose optical properties are given in Fig. 1 for 635 nm. An optical fiber inserted inside the phantomand connected to an hallogen lamp with a 635 nm filter is used to modelized a point-like isotropic bioluminescent source. The output measured power of the fiber is 5 mW. The light-transport (forward) model relies on the diffusion equation and the inverse problem is solved using a least-squares criterion. The optimization method [3] is easy and fast to implement, and does not use an explicit Tikhonov regularization. Our aim is to localize the bioluminescent point-like source inside the phantom, and to reconstruct its power. Three experiments were performed for three positions of the fiber. In each case, a single reflectance image was taken with the camera right above the phantom. The results given by the algorithm are gathered in the following figure: the sources are located with sub-millimiter precision and their power is estimated with a fairly good accuracy © 2011 IEEE.
Mots-clés: Angular amplitude; Cooled CCD; Diffuse optical tomography; Diffusion equations; French companies; In-Vivo imaging; Least Square; Optical detection; Optical molecular imaging; Optimization method; Reflectance images; Reflectance imaging; Small Animal; Test samples; Tikhonov regularization; Bioluminescence; CCD cameras; Electron optics; Epoxy resins; Inverse problems; Lenses; Light; Optical fibers; Optical systems; Optical tomography; Optics; Partial differential equations; Quantum electronics; Re
|
|
Intrinsic precision limit in steady-state and time-domain fluorescence diffuse optical imaging Boffety, M., M. Allain, A. Sentenac, M. Massonneau, and R. Carminati 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 (2011)
Résumé: The precision limit for the considered setups are depicted below. For TD and ITD fDOT, we note that (i) the accuracy of the depth estimation decreases with the depth of the fluorescent volume and (ii) this accuracy substatially depends on the fluorescence life-time . The longer the lifetime, the poorer the precision limit. Moreover, for realistic lifetime, the CW and the ITD setups in reflection geometry achieve comparable precision limits. © 2011 IEEE.
Mots-clés: Depth Estimation; Diffuse optical imaging; Fluorescence lifetimes; Precision limits; Reflection geometry; Time domain; Electron optics; Optics; Quantum electronics; Fluorescence
|
|
Enhanced light-matter interaction at the nanoscale using localized plasmon modes on disordered metallic films Carminati, R., E. Castanié, V. Krachmalnicoff, A. Cazé, R. Pierrat, and Y. De Wilde 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 (2011)
Résumé: Disordered semi-continuous metallic films are a particularly striking example of complex photonic systems. They exhibit peculiar optical properties that cannot be explained from the behavior of bulk metals or ensembles of isolated nanoparticles [1]. The interplay between surface-plasmon excitations and scattering by multiscale (fractal) metallic clusters leads to spatial localization of the electromagnetic field in subwavelength areas (hot spots). A feature of these hot-spots modes is the expected coexistence of both localized and delocalized modes at the same frequency [2,3], a situation referred to as inhomogeneous localization. © 2011 IEEE.
Mots-clés: Bulk metals; Hot spot; Hotspots; Light-matter interactions; Metallic clusters; Multiscales; Nano scale; Photonic systems; Plasmon modes; Semi-continuous; Spatial localization; Sub-wavelength; Surface plasmon excitation; Electromagnetic fields; Electron optics; Metallic films; Optical properties; Optics; Quantum electronics; Plasmons
|
|
Transmission matrix in optics: Taking advantage of transmission channels for image transmission in disordered materials Popoff, S. M., G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 (2011)
Résumé: Recently, a method has been proposed by I. Vellekoop et al. [1] to focus light through a multiple scattering material, using a spatial light modulator as a tool to shape the incoming beam to obtain a maximal interference on a speckle spot of the output speckle pattern. The result is a bright, diffraction limited, spot which can be several hundred times brighter than the rest of the speckle. © 2011 IEEE.
Mots-clés: Diffraction limited; Disordered materials; Spatial light modulators; Speckle patterns; Transmission channels; Transmission matrix; Electron optics; Light modulators; Optics; Quantum electronics; Speckle; Light
|
|
Long-tail statistics of the purcell factor in disordered media driven by near-field interactions Sapienza, R., P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. Van Hulst Physical Review Letters 106, no. 16 (2011)
Résumé: In this Letter, we study the Purcell effect in a 3D disordered dielectric medium through fluorescence decay rates of nanosized light sources. We report distributions of Purcell factor with non-Gaussian long-tailed statistics and an enhancement of up to 8 times the average value. We attribute this large enhancement to strong fluctuations of the local density of states induced by near-field scattering sustained by more than one particle. Our findings go beyond standard diagrammatic and single-scattering models and can be explained only by taking into account the full near-field interaction. © 2011 American Physical Society.
Mots-clés: Average values; Disordered dielectrics; Disordered media; Fluorescence decays; Local density of state; Nano-sized; Near field interactions; Near-field scattering; Non-Gaussian; Purcell effect; Purcell factor; Single-scattering model; Light sources; Dielectric materials
|
|
Magneto-optical control of Förster energy transfer Vincent, R., and R. Carminati Physical Review B - Condensed Matter and Materials Physics 83, no. 16 (2011)
Résumé: We introduce a general framework to study dipole-dipole energy transfer between an emitter and an absorber in a nanostructured environment. The theory allows us to address Förster resonant energy transfer (FRET) between a donor and an acceptor in the presence of a nanoparticle with an anisotropic electromagnetic response. In the particular case of a magneto-optical anisotropy, we compute the generalized FRET rate and discuss the orders of magnitude. The distance dependence, the FRET efficiency, and the sensitivity to the orientation of the transition dipoles orientation differ from standard FRET and can be controlled using the static magnetic field as an external parameter. © 2011 American Physical Society.
|
|
Magneto-optical control of förster energy transfer Vincent, R., and R. Carminati AIP Conference Proceedings 1291, 93-96 (2010)
Résumé: We study dipole-dipole energy transfer between an emitter and an absorber in the presence of a nanoparticle with an anisotropic dielectric response. We demonstrate that the presence of the nanoparticle modifies the Förster Resonant Energy Transfer (FRET), and we present a general framework to deal with systems involving a donor-acceptor couple and a nanostructure. In the particular case of a magneto-optical nanoparticle, for which the anisotropy can be tuned by an external magnetic field, we compute the generalized FRET rate and discuss the orders of magnitude. We show that the distance dependence can be different from the R -6 law of standard FRET. © 2010 American Institute of Physics.
Mots-clés: Fluorescence; FRET; Magneto-optics; Nanoparticle; Quenching.; Single molecule
|
|
Near-field interactions and fluctuations of the local density of states in a strongly scattering environment Pierrat, R., A. Cazé, and R. Carminati AIP Conference Proceedings 1291, 85-87 (2010)
Résumé: We study the local density of states (LDOS) statistics near a dipole emitter embedded in a strongly scattering medium. We perform numerical simulations that emphasize the fact that LDOS fluctuations are strongly affected by the local environment of the emitter and is very sensitive to near-field interactions and correlation of disorder. © 2010 American Institute of Physics.
Mots-clés: Local density of states; Near-field; Strongly scattering medium
|
|
Fluctuations of the local density of states probe localized surface plasmons on disordered metal films Krachmalnicoff, V., E. Castanié, Y. De Wilde, and R. Carminati Physical Review Letters 105, no. 18 (2010)
Résumé: We measure the statistical distribution of the local density of optical states (LDOS) on disordered semicontinuous metal films. We show that LDOS fluctuations exhibit a maximum in a regime where fractal clusters dominate the film surface. These large fluctuations are a signature of surface-plasmon localization on the nanometer scale. © 2010 The American Physical Society.
Mots-clés: Disordered metals; Film surfaces; Fractal clusters; Local density; Local density of state; Localized surface plasmon; Nano-meter scale; Optical state; Semicontinuous metal films; Statistical distribution; Surface-plasmon; Metallic films; Plasmons; Optical data storage
|
|
Near-field interactions and nonuniversality in speckle patterns produced by a point source in a disordered medium Cazé, A., R. Pierrat, and R. Carminati Physical Review A - Atomic, Molecular, and Optical Physics 82, no. 4 (2010)
Résumé: A point source in a disordered scattering medium generates a speckle pattern with nonuniversal features, giving rise to the so-called C0 correlation. We analyze theoretically the relationship between the C0 correlation and the statistical fluctuations of the local density of states, based on simple arguments of energy conservation. This derivation leads to a clear physical interpretation of the C0 correlation. Using exact numerical simulations, we show that C0 is essentially a correlation resulting from near-field interactions. These interactions are responsible for the nonuniversality of C0 that confers to this correlation a huge potential for sensing and imaging at the subwavelength scale in complex media. © 2010 The American Physical Society.
Mots-clés: Complex media; Disordered medium; Local density of state; Near field interactions; Nonuniversality; Numerical simulation; Physical interpretation; Point sources; Scattering medium; Sensing and imaging; Speckle patterns; Statistical fluctuations; Subwavelength scale; Ferroelectric materials; Speckle; Correlation methods
|
|
Measuring and exploiting the transmission matrix in optics Popoff, S. M., G. Lerosey, R. Carminati, M. Fink, A. C. Boceara, and S. Gigan Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference: 2010 Laser Science to Photonic Applications, CLEO/QELS 2010 (2010)
Résumé: We introduce a method to measure the transmission matrix of a complex medium. This matrix exhibits statistical properties in good agreement with random matrix theory and allows light focusing and imaging through the random medium. ©2010 IEEE.
Mots-clés: Complex medium; Light focusing; matrix; Random matrix theory; Random medium; Statistical properties; Transmission matrix
|
|
Theory of infrared nanospectroscopy by photothermal induced resonance Dazzi, A., F. Glotin, and R. Carminati Journal of Applied Physics 107, no. 12 (2010)
Résumé: We present a theoretical investigation of the physics involved in a recently developed spectromicroscopy technique, called photothermal induced resonance (PTIR). With this technique, one measures the local infrared absorption spectrum of a sample shined with a tunable infrared laser pulse, and detects the induced photothermal expansion with the tip of an atomic force microscope (AFM). Simple physical assumptions allow us to describe analytically the heating and expansion of the sample, the excitation of the vibration modes of the AFM cantilever, and the detected signal. We show that the signal depends on the thermal expansion velocity rather than on the absolute displacement of the tip, and we investigate the influence of the laser pulse length. Eventually, we express the PTIR signal in terms of relevant parameters, and prove its proportionality to the sample absorbance. This analytical approach complement our experimental results and validates the PTIR method as a technique of choice for infrared spectroscopy of nanoscopic samples, getting around optical artifacts like reflectance perturbation. © 2010 American Institute of Physics.
Mots-clés: Absolute displacement; Absorbances; AFM cantilevers; Analytical approach; Atomic force microscopes; Photo-thermal; Photothermal expansion; Physical assumptions; Spectromicroscopy; Theoretical investigations; Tunable infrared laser; Vibration modes; Absorption spectroscopy; Atomic force microscopy; Atomic spectroscopy; Infrared lasers; Infrared spectroscopy; Laser pulses; Photolithography; Pulsed laser applications; Resonance; Vibration analysis; Thermal expansion
|
|
Spontaneous decay rate of a dipole emitter in a strongly scattering disordered environment Pierrat, R., and R. Carminati Physical Review A - Atomic, Molecular, and Optical Physics 81, no. 6 (2010)
Résumé: We study the statistics of the fluorescence decay rate of a dipole emitter embedded in a strongly scattering medium. In the multiple-scattering regime, the probability of observing a decrease in the decay rate is substantial, as predicted by exact numerical simulations. The decrease originates from a reduction of the local density of optical states and is due to collective interactions and interferences. In the strong-scattering regime, signatures of recurrent scattering are visible in the behavior of the average decay rate. © 2010 The American Physical Society.
Mots-clés: Decay rate; Fluorescence decays; Local density; Numerical simulation; Optical state; Scattering medium; Scattering regime; Spontaneous decay rates; Computer simulation; Decay (organic); Optical waveguides; Scattering
|
|
Subwavelength spatial correlations in near-field speckle patterns Carminati, R. Physical Review A - Atomic, Molecular, and Optical Physics 81, no. 5 (2010)
Résumé: At subwavelength distance from the exit surface of a disordered medium, speckle patterns generated by multiple scattering of waves exhibit nonuniversal near-field correlations. A calculation of the field spatial correlation function shows that the correlation length is driven by the microscopic structure of the medium. The averaged speckle spot size can be smaller than the wavelength, even for nonresonant dielectric media. © 2010 The American Physical Society.
Mots-clés: Correlation lengths; Disordered medium; Microscopic structures; Near-field; Near-field speckles; Nonresonant dielectrics; Spatial correlation functions; Spatial correlations; Speckle patterns; Spot sizes; Sub-wavelength; Speckle
|
|
Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media Popoff, S. M., G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan Physical Review Letters 104, no. 10 (2010)
Résumé: We introduce a method to experimentally measure the monochromatic transmission matrix of a complex medium in optics. This method is based on a spatial phase modulator together with a full-field interferometric measurement on a camera. We determine the transmission matrix of a thick random scattering sample. We show that this matrix exhibits statistical properties in good agreement with random matrix theory and allows light focusing and imaging through the random medium. This method might give important insight into the mesoscopic properties of a complex medium. © 2010 The American Physical Society.
Mots-clés: Complex medium; Disordered media; Full-field; Interferometric measurement; matrix; Mesoscopic properties; Random matrix theory; Random medium; Random scattering; Spatial phase modulator; Statistical properties; Transmission matrix; Light; Light propagation; Light transmission
|
|
Controlling the quantum yield of a dipole emitter with coupled plasmonic modes Vandenbem, C., D. Brayer, L. S. Froufe-Pérez, and R. Carminati Physical Review B - Condensed Matter and Materials Physics 81, no. 8 (2010)
Résumé: We study theoretically the possibility of controlling the quantum yield of a single dipole emitter using coupled plasmonic modes. Plasmon hybridization offers spectral and spatial degrees of freedom that can be used to tune the spontaneous decay rate and the apparent quantum yield with high sensitivity. We demonstrate this concept on simple structures that could be implemented experimentally. © 2010 The American Physical Society.
|
|
Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle Albaladejo, S., R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz Optics Express 18, no. 4, 3556-3567 (2010)
Résumé: Radiative corrections to the polarizability tensor of isotropic particles are fundamental to understand the energy balance between absorption and scattering processes. Equivalent radiative corrections for anisotropic particles are not well known. Assuming that the polarization within the particle is uniform, we derived a closed-form expression for the polarizability tensor which includes radiative corrections. In the absence of absorption, this expression of the polarizability tensor is consistent with the optical theorem. An analogous result for infinitely long cylinders was also derived. Magneto optical Kerr effects in non-absorbing nanoparticles with magneto-optical activity arise as a consequence of radiative corrections to the electrostatic polarizability tensor. © 2010 Optical Society of America.
Mots-clés: Anisotropic dielectrics; Anisotropic particles; Closed-form expression; Isotropic particles; Magneto-optical activity; Magneto-optical Kerr effects; Optical theorem; Polarizability tensor; Radiative corrections; Scattering process; Absorption; Anisotropy; Gene expression; High energy physics; Kerr magnetooptical effect; Magnetic field effects; Magnetos; Tensors; Optical Kerr effect; anisotropy; article; computer simulation; electromagnetic field; impedance; particle size; radiation dose; radiati
|
|
Towards a random laser with cold atoms Guerin, W., N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Pérez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser Journal of Optics A: Pure and Applied Optics 12, no. 2 (2010)
Résumé: Atoms can scatter light and they can also amplify it by stimulated emission. From this simple starting point, we examine the possibility of realizing a random laser in a cloud of laser-cooled atoms. The answer is not obvious as both processes (elastic scattering and stimulated emission) seem to exclude one another: pumping atoms to make them behave as an amplifier drastically reduces their scattering cross-section. However, we show that even the simplest atom model allows the efficient combination of gain and scattering. Moreover, the supplementary degrees of freedom that atoms offer allow the use of several gain mechanisms, depending on the pumping scheme. We thus first study these different gain mechanisms and show experimentally that they can induce (standard) lasing. We then present how the constraint of combining scattering and gain can be quantified, which leads to an evaluation of the random laser threshold. The results are promising and we draw some prospects for a practical realization of a random laser with cold atoms. © 2010 IOP Publishing Ltd.
Mots-clés: Cold atoms; Random laser; Cold atoms; Degrees of freedom; Laser-cooled atoms; Practical realizations; Pumping schemes; Random lasers; Scattering cross section; Degrees of freedom (mechanics); Laser beams; Pumps; Scattering; Stimulated emission; Atoms
|
|
Fluorescence quenching by a metal nanoparticle in the extreme near-field regime Castanié, E., M. Boffety, and R. Carminati Optics Letters 35, no. 3, 291-293 (2010)
Résumé: We study the spontaneous decay rate of a dipóle emitter close to a metallic nanoparticle in the extreme nearfield regime. The metal is modeled using a nonlocal dielectric function that accounts for the microscopic length scales of the free electron gas. We describe quantitatively the crossover between the macroscopic and microscopic regimes and the enhanced nonradiative decay due to microscopic interactions. Our theory is in agreement with results previously established in the asymptotic near- and far-field regimes. © 2010 Optical Society of America.
Mots-clés: Dielectric functions; Far-field; Fluorescence quenching; Free electron gas; Metal nanoparticles; Metallic nanoparticles; Microscopic interaction; Microscopic length scale; Near-field; Nonlocal; Nonradiative decays; Spontaneous decay rates; Decay (organic); Electron gas; Nanoparticles
|
|
Fluorescence signal of a single emitter coupled to a nanoparticle through a plasmonic film Vandenbem, C., L. S. Froufe-Pérez, and R. Carminati Journal of Optics A: Pure and Applied Optics 11, no. 11 (2009)
Résumé: We study theoretically the detection of the fluorescence intensity emitted by a single emitter coupled to a nanoparticle through a metallic thin film. The coupling results from the overlap of the surface plasmon modes propagating on each interface of the film. We show that the distance between the nanoparticle and the film can be used to tune the apparent quantum yield and the radiation pattern with nanometer-scale sensitivity. Such a system is appealing from the experimental point of view since it involves simple structures that can be controlled using current scanning near-field optical techniques. It could be used to improve the detection sensitivity of molecules embedded in substrates, or to design sensitive biological or chemical plasmonic sensors. © 2009 IOP Publishing Ltd.
Mots-clés: Fluorescence; Molecular imaging; Plasmons; Quenching; Single molecule; Detection sensitivity; Fluorescence intensities; Fluorescence molecular; Fluorescence signals; Metallic thin films; Molecular imaging; Nano-meter-scale; Near-field; Optical technique; Plasmonic sensors; Radiation patterns; Simple structures; Single emitter; Single molecule; Surface plasmon modes; Fluorescence; Molecules; Optical data storage; Plasmons; Quenching; Nanoparticles
|
|
Single molecule fluorescence quenching by metallic nanoparticles: Crossover between macroscopic and microscopic interactions Castanié, E., M. Boffety, and R. Carminati AIP Conference Proceedings 1176, 49-51 (2009)
Résumé: We study the spontaneous decay rate of a single molecule close to a metallic nanopartiele in the extreme near-field regime. The electrodynamic response of the metal is modelled using a nou-local dielectric constant, that accounts for the relevant microscopic length scales. We describe quantitatively the crossover between the macroscopic and microscopic regimes. In the case of silver, for a nanoparlielc with radius 25 nm. the transition occurs for a distance between the emitter and the metal surface on the order of 10 nm. We show that below this distance, the non-radiative decay rate and the quenching efficiency are enhanced due to the non-local interaction. © 2009 American Institute of Physics.
Mots-clés: Fluorescence; Nanoparticle; Quenching; Single molecule
|
|
Threshold of a random laser with cold atoms Froufe-Pérez, L. S., W. Guerin, R. Carminati, and R. Kaiser Physical Review Letters 102, no. 17 (2009)
Résumé: We address the problem of achieving an optical random laser with a cloud of cold atoms, in which gain and scattering are provided by the same atoms. The lasing threshold can be defined using the on-resonance optical thickness b0 as a single critical parameter. We predict the threshold quantitatively, as well as power and frequency of the emitted light, using two different light transport models and the atomic polarizability of a strongly pumped two-level atom. We find a critical b0 on the order of 300, which is within reach of state-of-the-art cold-atom experiments. Interestingly, we find that random lasing can already occur in a regime of relatively low scattering. © 2009 The American Physical Society.
Mots-clés: Atomic polarizability; Cold atoms; Critical parameter; Emitted light; Lasing threshold; Light transport model; Optical thickness; Random lasers; Random lasing; Two-level atom; Laser beams; Atoms
|
|
Density of states and extinction mean free path of waves in random media: Dispersion relations and sum rules Carminati, R., and J. J. Sáenz Physical Review Letters 102, no. 9 (2009)
Résumé: We establish a fundamental relationship between the averaged local density of states and the extinction mean free path of waves propagating in random media. From the principle of causality and the Kramers-Kronig relations, we show that both quantities are connected by dispersion relations and are constrained by a frequency sum rule. The results should be helpful in the analysis of wave transport through complex media and in the design of materials with specific transport properties. © 2009 The American Physical Society.
Mots-clés: Transport properties; Complex medias; Density of state; Dispersion relations; Kramers-Kronig relations; Local density of state; Mean free paths; Random medias; Sum rules; Wave transports; Quantum theory
|
|
Analysis of the depth resolution limit of luminescence diffuse optical imaging Boffety, M., M. Allain, A. Sentenac, M. Massonneau, and R. Carminati Optics Letters 33, no. 20, 2290-2292 (2008)
Résumé: We introduce a methodology to determine quantitatively the depth resolution limit in luminescence diffuse optical imaging. The approach is based on a Cramer-Rao statistical analysis, a noise model, and calculations of photon transport in tissues. We illustrate the method in the case of luminescence imaging in a brain-skull model, showing its potential applications in molecular imaging on small animals. © 2008 Optical Society of America.
Mots-clés: Light emission; Luminescence; Optical image storage; Optical variables measurement; Depth resolutions; Diffuse optical imaging; Luminescence imaging; Molecular imaging; Noise models; Photon transports; Potential applications; Skull models; Small animals; Statistical analysis; Light sources
|
|
Controlling the fluorescence lifetime of a single emitter on the nanoscale using a plasmonic superlens Froufe-Pérez, L. S., and R. Carminati Physical Review B - Condensed Matter and Materials Physics 78, no. 12 (2008)
Résumé: Coupling a single dipole emitter to a metallic nanoparticle through the optical modes of a planar superlens made of left-handed material can lead to substantial modifications of its spontaneous decay rate. We provide a quantitative study based on exact numerical simulation and show that such a scheme could allow the detection, the localization, and the control of the emitter dynamics with nanometer-scale sensitivity, as well as the determination of its transition dipole orientation. © 2008 The American Physical Society.
|
|
Lifetime fluctuations of a single emitter in a disordered nanoscopic system: The influence of the transition dipole orientation Froufe-Pérez, L. S., and R. Carminati Physica Status Solidi (A) Applications and Materials Science 205, no. 6, 1258-1265 (2008)
Résumé: We study the fluctuations of the fluorescence decay rate of a single emitter in a random cluster of nanoparticles, in a regime dominated by near-field scattering. Configurational changes of the environment induce statistical changes of the decay rate. Two regimes are considered which differ in terms of transition dipole orientation. In one regime, the orientation of the transition dipole is assumed to remain constant while the configuration of the cluster changes randomly. In another regime, the orientation of the transition dipole is assumed unknown and continuously averaged over the three directions of space. Using exact numerical simulations and a simple analytical model, we show that the statistical distributions of the spontaneous decay rate are substantially different in both regimes. In both cases, the decay rate fluctuations are strongly dependent on the level of absorption at the nanoscale. We discuss the impact of this result in terms of imaging in complex media. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.
Mots-clés: Analytical models; Complex medias; Decay rates; Fluorescence decay rates; Imaging; Nanoscale; Nanoscopic systems; Near-field; Numerical simulations; Random clusters; Spontaneous decay rates; Statistical distributions; Three directions; Transition dipoles; Absorption; Computer simulation; Molecular vibrations; Nanotechnology; Optical waveguides; Statistical methods; Decay (organic)
|
|
Theory of the time reversal cavity for electromagnetic fields Carminati, R., R. Pierrat, J. De Rosny, and M. Fink Optics Letters 32, no. 21, 3107-3109 (2007)
Résumé: We derive a general expression of the electric dyadic Green function in a time-reversal cavity, based on vector diffraction theory in the frequency domain. Our theory gives a rigorous framework to time-reversal experiments using electromagnetic waves and suggests a methodology to design structures generating subwavelength focusing after time reversal. © 2007 Optical Society of America.
Mots-clés: Diffraction; Electromagnetic waves; Frequency domain analysis; Green's function; Microcavities; Time reversal cavity; Electromagnetic fields
|
|
Thermal radiation scanning tunnelling microscopy De Wilde, Y., F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet Nature 444, no. 7120, 740-743 (2006)
Résumé: In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical 'stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a 'thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission. ©2006 Nature Publishing Group.
Mots-clés: diffraction; scanning tunnelling microscopy; temperature effect; article; illumination; infrared radiation; microscope; near field scanning optical microscopy; priority journal; radiation; scanning tunneling microscopy; signal detection; surface plasmon resonance; thermal radiation scanning tunneling microscopy
|
|
Modal representation of spatial coherence in dissipative and resonant photonic systems Sauvan, C., J. P. Hugonin, R. Carminati, and P. Lalanne Physical Review A 89, no. 4 (2014)
|
|