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Abstract: In this paper, we study the possibility of using lifetime data to
estimate the position and orientation of a fluorescent dipole source within a
disordered medium. The vector Foldy-Lax equations are employed to calcu-
late the interaction between the fluorescent source and the scatterers that are
modeled as point-scatterers. The numerical experiments demonstrate that
if good prior knowledge about the positions of the scatterers is available,
the position and orientation of the dipole source can be retrieved from its
lifetime data with precision. If there is uncertainty about the positions of the
scatterers, the dipole source position can be estimated within the same level
of uncertainty.
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1. Introduction

The excited-state lifetime of a fluorescent emitter is a sensitive probe of its chemical and electro-
magnetic environment. In biology, this property has led to the development of sensitive imaging
techniques [1]. In nanophotonics, the change in the lifetime of emitters close to metallic sur-
faces has been demonstrated long ago [2], and explained in terms of classical electromagnetic
interaction between a dipole source and its reflection by the surface [3]. Lifetime changes of
emitters have been used for mapping the local density of optical states (LDOS) in the near field
of cavities or nano-antennas [4,5]. In disordered scattering media, the fluorescence lifetime ex-
hibits fluctuations due to changes of the local environment [6–11]. It has been demonstrated that
even in a multiple scattering regime the amplitude of the fluctuations is sensitive to near-field
interactions between the emitter and the nearby scatterers, thus providing a way to get struc-
tural information at subwavelength scale in complex media [11, 12]. The lifetime fluctuations
are also influenced by the orientation of the transition dipole [13], leading to the development
of new fluorescence polarization-based imaging techniques.

Near-field imaging techniques for the detection of objects are receiving great attention. It
should be emphasized, however, that these techniques suffer from two drawbacks. First, to
achieve good resolutions they should include high spatial frequency evanescent components
of the waves, and these exponentially small components have to be measured very close to
the object. Furthermore, if evanescent components are used, the problem is noise amplification
that arises from the inversion of evanescent waves since the noisy measurements are multiplied
by exponentially increasing functions [14]. Second, in near-field imaging the measurements
must be phase sensitive which is notoriously difficult in optics. To overcome this problem, new
imaging methods from measurements only of the power received at the detectors have been
developed [15]. The authors in [15] observed that the power is a linear function of a rank one
matrix associated with the unknown source positions and, thus, the reconstruction is formulated
as a rank minimization problem.

Alternatively, in this paper we propose a novel strategy based on lifetime data. Lifetime
measurements provide a novel, intensity-independent mechanism in imaging with single-
molecule sensitivity. Since the lifetime of a fluorophore in a scattering environment strongly
depends on its position and orientation, it should be possible to recover them from the lifetime
data, provided that a certain degree of prior information is available (in particular the geometry
of the environment). The purpose of this work is to study this question on the basis of numerical
experiments.

A first proof of principle has been given recently in the case of the scalar approximation to
the problem, showing the feasibility of the source location in a medium consisting of discrete
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point-like scatterers [16]. Here, we address the problem in a much more general context. First,
we perform numerical experiments taking into account the polarization of the light field. This is
a key point since near-field interactions strongly depend on the orientation of the dipole source
(emitter) with respect to nearby scatterers. Second, we study the robustness of this method by
reducing the degree of knowledge on the geometry of the scattering medium. To this end, we
introduce some uncertainty on the positions of the scatterers and we quantify the impact on the
accuracy of the results.

The paper is organized as follows. In section 2, we introduce the numerical model. In section
3, we present numerical experiments with the reconstructions of the positions and orientations
of a dipole source in different environments. We consider different scattering strength regimes
and we relax the prior knowledge on the positions of scatterers. Section 4 contains our conclu-
sions.

2. Numerical model

In the weak coupling regime, the relative change in the decay rate Γ of a fluorescent source
located at position r0 due to the interaction with the surrounding medium is given by [17]

Γ(r0,u,ω)−Γ0

Γ0
=

2μ0ω2|peg|2
h̄Γ0

Im[u·
↔
Gs (r0,r0,ω)u] . (1)

In Eq. (1), Γ0 is the decay rate in free space, ω is the emission frequency, peg is the transition

dipole between the excited and ground states,
↔
Gs is the scattered part of the dyadic Green func-

tion, and u = peg/|peg| is the normalized dipole direction. From this expression, it is apparent
that decay rate data encode the flourophore position through the imaginary part of the scattered

field Es(r0,ω) = μ0ω2
↔
Gs (r0,r0,ω)peg at its position.

We consider here that the fluorophore is immersed within a discrete multiple scattering
medium that is composed of M scatterers with polarizability α(ω) and that are small compared
to the wavelength. The scatterers are distributed randomly in the free space an have positions
r j, j = 1, . . . ,M. Wave propagation and multiple scattering in such a medium can be formulated
in terms of the so-called Foldy-Lax equations [18, 19]

Es(r;r0,u,ω) = k2 ∑
j

↔
G0 (r,r j,ω)α(ω)Eexc(r j;r0,u,ω) , (2)

Eexc(r j;r0,u,ω) = Einc(r j;r0,u,ω) (3)

+ k2
M

∑
m�= j

↔
G0 (r j,rm,ω)α(ω)Eexc(rm;r0,u,ω) .

Here,
↔
G0 is the dyadic free space Green function, k =ω/c is the wavenumber, and c is the speed

of light in free space. The summations are extended over the discrete set of scatterers. Eq. (2)
gives the scattered field Es(r;r0,u,ω) at point r and frequency ω in terms of the exciting fields
Eexc(r j;r0,u,ω) at each scatterer position. Both depend on the position r0, dipole direction
u, and emision frequency ω of the fluorophore. The self-consistent system of M equations (3)
gives the exciting fields at each scatterer position r j. The exciting field Eexc(r j;r0,u,ω) is equal
to the sum of the incident field Einc(r j;r0,u,ω) at r j (radiated by the fluorophore with dipole
direction u placed at r0) and the scattered fields at r j due to all scatterers at rm �= r j. This system
can be written in matrix form and solved numerically by standard techniques if the number of
scatterers M is not too large. In our experiments, M is small (M = 20) and we solve the linear
system of equations (3) with a standard LU factorization technique. For M large, Eqs. (3) can
be solved efficiently using, for example, the Fast Multipole Method [20].
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In the numerical experiments shown in the next section we will consider a 2D configuration.
The scatterers lie in the xy plane, and the dipole moment of the fluorophore is parallel to this
plane (p polarization). In this case, the free-space dyadic Green function is given by

↔
G0 (r− r’,ω) =

i
4
(
↔
I −r̂⊗ r̂)H(1)

0 (k0R)+
i
4

{

(

2r̂⊗ r̂−
↔
I
) H(1)

1 (k0R)
k0R

}

. (4)

Here, R = ||r−r’||, r̂ = r−r’
||r−r’|| , r̂⊗ r̂ is the tensor product of r̂ with itself,

↔
I is the unit tensor,

and H(1)
i are the Hankel functions of the first type and order i= 0,1. The scatterers are described

by the resonant polarizability

α(ω) =−(4γ/k2)
1

ω −ω0 + iγ/2
, (5)

where ω0 is the resonance frequency and γ is the linewidth. This form of the polarizability
describes a lossless scatterer, and includes self interaction. This is the reason why only the
exciting field on each scatterer is involved in Eq. (3). Including self-interaction (radiation re-
action) is also a requirement for energy conservation, or equivalently the optical theorem [21].
We note that multiple scattering regimes with different strengths can be explored by adjusting
the detuning frequency δ = ω −ω0, with δ � ω0. As a measure of the scattering strength,
we use (kls)−1 , where �s = 1/[ρσs(ω)] is the scattering mean free path. In this last expres-
sion, ρ denotes the density of scatterers and σs(ω) = (k3/8)|α(ω)|2 denotes the scattering
cross section. In our experiments, ω0 = 2 · 106 GHz (λ0 = 0.94 μm) and γ = 5 GHz. In order
to study scattering regimes with different strengths, we select appropriate ranges of frequen-
cies. For frequencies ω in the range (δ1,δ2) = (1GHz,2GHz), (kls)−1 varies from 0.23 to
0.18. These are frequencies close to the resonance frequency ω0. For frequencies in the range
(δ1,δ2) = (3GHz,5GHz), (kls)−1 decreases and varies from 0.11 to 0.09. For frequencies in
the range (δ1,δ2) = (10GHz,12GHz), (kls)−1 decreases even more and varies from 0.02 to
0.01.

3. Numerical experiments

The lifetime of a fluorophore in a disordered medium strongly depends on its position and
orientation with respect to the scatterers [6, 8, 13]. To illustrate this phenomenon, we have
carried out a set of numerical experiments for the same configuration of scatterers but different
fluorophore positions and orientations. The top row in Fig. 1 shows with dots the positions of
the scatterers, and with a star the position of the fluorophore. The fluorophore’s orientations are
indicated with arrows.

To compute the decay rate of a dipole source we have introduced the orientation parameter
θ that defines the angle between the dipole direction u and the x-axis, that is, cos(θ) = u · x̂.
For a fluorophore placed at r0 = (x,y) with orientation parameter θ , we have solved the M×M
linear system (3) for the exciting fields, and we have computed the scattered field at r0 using
Eq. (2). M=20 in all the numerical experiments shown in the paper. The fluorescent decay rates
d(ω) = Γ(r0,θ ,ω) at different frequencies ω are then computed using Eq. (1). The results are
shown in the bottom row of Fig. 1. The decay rate strongly depends on the frequency ω because
the interaction between the fluorophore and the environment is very sensitive to the frequency.
This figure motivates the idea of recovering the fluorophore’s position r0 and its orientation θ
from the knowledge of the decay rate at different frequencies. In the next numerical experiments
we show that this can, in fact, be accomplished easily.
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Fig. 1. Top row: Different fluorophore positions and orientations (r0,θ) within the same
realization of a disordered medium. The fluorophore’s orientations are indicated with an ar-
row. Bottom row: Frequency dependence of the decay rates Γ(r0,θ ,ω) of the fluorophores
shown in the top row.

Mathematically, we formulate the problem as that of finding the position vector r0 and the
dipole direction θ that satisfy the nonlinear equations

Γ(r0,θ ,ωi) = d(ωi) i = 1,2, . . . . (6)

We consider a 2D configuration with r0 = (x,y) and, thus, we only seek for the values of three
unknowns: (x,y) and θ . Hence, we only need, in principle, data corresponding to three different
frequencies to recover these three unknowns by solving Eq. (6). If desired, we can use data from
more frequencies and compute the nonlinear least-squares solution to Eq. (6) for estimates of
those unknowns. This will be the case when the data is contaminated with noise and/or there is
uncertainty in the position of the scatterers.

In the numerical experiments shown below, we define a domain of interest (DOI) of size
1×1 μm2 around the true source position to restrict the search area. This can be done in practice
using, for example, a coarse-grain for locating the fluorophore using a standard microscope
fluorescence intensity image. Once the DOI is defined, the position and orientation of the dipole
source are found by minimizing the residual

R(r0,θ) =
Nω

∑
i=1

|Γ(r0,θ ,ωi)−d(ωi)|2 , (7)

using a standard iterative gradient method. We use the Matlab Optimization Toolbox that con-
tains an efficient gradient method that is easy to use. We note, though, that this is a local method
that finds only the nearest local minimum to the initial guess. Other local methods for solving
nonlinear equations can be used as well [22]. A good alternative for finding the global mini-
mum, at the cost of a much higher computational cost, is the use of global methods such as,
for example, interval methods, simulating annealing or Monte-Carlo methods [23, 24]. These
methods can only be used for small problems, though.
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Fig. 2. Reconstructions of the source positions in the same disordered medium as in
Fig. 1. We consider a 1 × 1 μm2 DOI (black square), and noiseless data from 3 fre-
quencies. The scattering strength regimes are from left to right : (kls)−1 = 0.18− 0.23,
(kls)−1 = 0.09− 0.11, and (kls)−1 = 0.01− 0.02. The dipole source positions are shown
by stars. The orientations are θ0 = 0 rad (top row) and θ0 = π/2 rad (bottom rows). The
estimates of the source positions are shown by circles, and their orientations by arrows.

3.1. Noiseless data

In the first example we assume perfect data and exact knowledge of the positions of the M = 20
scatterers, as well as their polarizability. We do not know neither the position nor the dipole
orientation of the fluorophore.

Since different ranges of frequency correspond to distinct regimes of interaction between the
source and its environment, we investigate first the best frequency range for which the solution
to Eq. (6) is found more reliably. In Fig. 2, the scattering strength (kls)−1 decreases from the
left column to the right column. For each frequency range (or each scattering regime), we
use synthetic data corresponding to only Nω = 3 frequencies within that range of frequency.
We keep the same 3.7× 3.7 μm2 disordered medium in all the 6 experiments shown in the
figure. The positions of the scatterers are shown by dots and the real fluorophore position by a
star. The estimated position of the fluorophore found by solving Eq. (6) is shown by a circle.
The orientations of both, the real and reconstructed dipole source, are represented by arrows.
As reported in [16], we observe that the realiability of the reconstruction deteriorates as the
scattering strength decreases. While for (kls)−1 = 0.18− 0.23 (left column) the estimates are
very precised, for (kls)−1 = 0.01−0.02 the estimates are not as good. This is so because lifetime
data is more sensitive to small changes in the position or orientation of the dipole source when
its interaction with the environment is stronger and, hence, the global minimum of Eq. (7) is
better defined. When the interaction between the dipole source an the environment is weak,
many positions and orientations of the dipole source give rise to nearly the same lifetime data.
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are: 1%, 3% and 8%. The estimates of the source positions are shown by circles, and their
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Fig. 4. Reconstructions of the positions and orientations of dipole sources for different
realizations of a disordered medium. We use data from 3 frequencies corrupted with 1% of
additive noise. The scattering strength regime is (kls)−1 = 0.18−0.23.

3.2. Noisy data

In the next examples we investigate the robusteness of the proposed method to noise in the data.
We still assume perfect knowledge of the positions of the scatterers and we use 3 frequencies
within the range (δ1,δ2) = (1GHz,2GHz), so the scattering regime is (kls)−1 = 0.18−0.23.

Figure 3 shows the results when the data is corrupted with 1% (left column), 3% (middle
column) and 8% (right column) of additive gaussian noise. The positions and orientations of the
sources are the same as in Fig. 2. The positions of the scatterers are represented by dots, and the
positions of the real and recovered sources by a star and a circle, respectively. Their orientations
are represented by arrows. As expected, the estimates of the source positions and orientations
deteriorates with noise. We observe quite good estimates for noise below 3%, though.

Figure 4 displays results corresponding to more numerical experiments. We now consider
different realizations of the disordered media. In all the cases, 1% of noise is added to the data.
We observe that the estimates of the positions and orientations of the dipole sources are always
quite good.
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Fig. 5. Reconstructions of the same dipole sources as in Fig. 4, but with an uncertainty on
the scatterers positions of ±λ/8. We use data from 3 frequencies corrupted by 1% of noise.
The scattering strength is (kls)−1 = 0.18−0.23.

3.3. Uncertainty with respect to the scatterers positions

In the previous examples we have assumed that the positions of the scatterers were known ex-
actly. Under this assumption, the dipole source is localized and characterized correctly from
lifetime data if the noise in the data is not too large. Next, we investigate the robustness of
this method when the positions of the scatterers are not known exactly. We model this uncer-
tainty by adding arbitrary random fluctuations around the true positions of the scatterers for the
reconstructions.
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Fig. 6. Same as Fig. 5, but using data from 9 frequencies. There is a ±λ/8 uncertainty on
the scatterers positions and the data is corrupted with 1% of additive noise.
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In Fig. 5 we have assumed an uncertainty of ±λ/8 in the scatterer’s positions. We still use
data from 3 frequencies corrupted with 1% of gaussian noise. We now observe that in almost all
the cases the estimates of the positions and orientations of the dipole sources are not satisfactory.

Figure 6 shows the results for the same examples as in Fig. 5 but using data from 9 fre-
quencies within the range (δ1,δ2) = (1GHz,2GHz), instead of only 3 frequencies. When data
from more frequencies are used, the positions and orientations are better estimated. We note,
however, that beyond a certain number of frequencies the values of the estimates do not im-
prove anymore. In general, when enough frequencies are used the distances between the true
and estimated positions are of the same order as the uncertainty on the scatterer’s positions.

To better understand the role of the number of frequencies on the quality of the results,
we show in the middle and right plots of Fig. 7 the x and y cross-sections of the residual
∑n

i |Γ(r0,θ ,ωi)−d(ωi)|2 when 3 frequencies (dot-dashed lines) and 9 frequencies (solid lines)
are used. When 9 frequencies are used, we get a better defined local minimum of the residual. In
the left plot of Fig. 7 we show the results for 3 frequencies (circle) and 9 frequencies (diamond).
The true position of the fluorophore is depicted by a star.
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Fig. 8. Reconstructions of the same dipole sources as in Figs. 4 and 5, but using data from
9 frequencies (with 1% noise) and an uncertain on the scatterers positions of ±λ/4.
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Finally, in Fig. 8 we display the reconstructions of the same dipole sources shown in Fig. 5
but with an uncertainty of ±λ/4 in the scatterers positions. We use lifetime data from 9 fre-
quencies corrupted with 1% of gaussian noise. We have applied now a global optimization
method since multiply local minima in the cost functional exist within the DOI and, therefore,
a gradient method fails. The orientation of the dipoles are well estimated in all the cases, and
their positions are recovered within a precision of ±λ/4.

4. Conclusion

We have presented a novel intensity-independent strategy based on lifetime data that is able to
localize and characterize with precision the emission of a fluorescent molecule in a strongly
scattering medium. We have used the vector Foldy-Lax equations to calculate the interaction
between a dipole fluorescent source and the surrounding scatterers in a 2D configuration. The
more general 3D case can be carried out, in principle, without modification. The major differ-
ence is that in 3D we would have to find the values of five unknowns (three spatial variables
(x,y,z) and two directional variables (θ ,φ)) and, therefore, the resolution of the nonlinear opti-
mization problem is more complicated. The numerical experiments show that the position and
orientation of a dipole source inside a predetermined domain of interest can be retrieved with
high accuracy from multi-frequency fluorescence lifetime data (except for the ambiguity under
dipole inversion). The proposed strategy requires prior knowledge about the scatterers position.
Our results indicate, however, that the precision of the recovered source position deteriorates
only at the same rate as the uncertainty on the scatterer’s position increases.
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