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Near-field interactions and nonuniversality in speckle patterns produced by a point
source in a disordered medium
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A point source in a disordered scattering medium generates a speckle pattern with nonuniversal features, giving
rise to the so-called C0 correlation. We analyze theoretically the relationship between the C0 correlation and
the statistical fluctuations of the local density of states, based on simple arguments of energy conservation. This
derivation leads to a clear physical interpretation of the C0 correlation. Using exact numerical simulations, we
show that C0 is essentially a correlation resulting from near-field interactions. These interactions are responsible
for the nonuniversality of C0 that confers to this correlation a huge potential for sensing and imaging at the
subwavelength scale in complex media.
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I. INTRODUCTION

Waves propagating in a disordered medium generate a
strongly fluctuating spatial distribution of intensity known as
a speckle pattern [1]. The spatial structure of a speckle pattern
is often characterized by the intensity spatial correlation
function 〈I (r)I (r′)〉, or its angular counterpart 〈I (u)I (u′)〉,
where the unit vector u defines an observation direction. In
usual experiments the medium is illuminated by an external
beam, and the speckle pattern is observed, e.g., in transmission.
Short-range and long-range contributions can be identified
in the intensity correlation function, which is written as a
sum of three terms denoted by C1 (short range), C2, and
C3 (long range) [2]. These correlations have been widely
studied since they are responsible for enhanced mesoscopic
fluctuations [3] and their sensitivity to changes in the medium
can be used for imaging in complex media [4]. Moreover,
the possibility of controlling speckle patterns by wavefront
shaping has generated new interest [5]. When the waves
are generated by a point source placed inside the medium,
a new type of spatial correlation appears, which has been
denoted by C0 [6]. This correlation has features that make
it particularly interesting: It is of infinite range and can
dominate the usual long-range correlations, and it is strongly
dependent on the local environment of the source [6,7]. This
nonuniversality makes C0 a valuable quantity for sensing
or imaging in complex media with a high sensitivity to the
microscopic structure of the medium [7]. Moreover, it has been
shown that the C0 correlation and the fluctuations of the local
density of states (LDOS) at the location of the point source
are equal [8]. This means that C0 could be obtained from
measurements of LDOS fluctuations instead of an analysis of
speckle patterns. In optics, LDOS fluctuations can be measured
from the fluorescence lifetime of nanoscopic emitters [9–12].
Note that the full statistical distribution of the LDOS can be
obtained experimentally by measuring temporal fluctuations of
the lifetime of one emitter in a slowly moving dynamic medium
[9] or by measuring the lifetime of a large number of emitters
spread over one configuration of a disordered sample [10–12].
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This statistical distribution is expected to provide information
on the local environment of the emitter [13,14] and on the
photon transport regime [15–19]. In this article, we revisit the
C0 correlation concept and its connection to LDOS fluctuations
in the framework of scattering of electromagnetic waves.
We consider electromagnetic waves since the most recent
relevant experiments have been performed in this context.
First, we give a novel derivation of the equality between C0

and the normalized variance of the LDOS based on energy
conservation, showing that the relationship is valid in any
regime, including strong localization [1]. This derivation leads
for the first time to a clear physical interpretation of the C0

correlation. Second, we analyze the nonuniversality of C0 and
show that it is due to a large extent to near-field interactions.
The sensitivity to the degree of correlation of disorder around
the location of the source is demonstrated based on numerical
simulations on three-dimensional open systems.

II. ENERGY CONSERVATION, LDOS,
AND C0 CORRELATION

In this first part, we define the C0 correlation and derive its
relationship with LDOS fluctuations based on energy conser-
vation. We consider a nonabsorbing disordered system of finite
size, embedded in a sphere with radius R (this geometry is that
used in the subsequent numerical simulations). The system is
illuminated by a classical point dipole p radiating at frequency
ω, placed at the center of the cluster at position rs . The
medium is assumed statistically isotropic and homogeneous
within the sphere of radius R. For a given configuration of
disorder, the LDOS ρ(rs ,ω) can be computed using the dyadic
Green function that describes the response at point r to the
dipole source through the relation E(r) = µ0 ω2 G(r,rs ,ω)p.
It is given by ρ(rs ,ω) = 2ω/(πc2) Im[Tr G(rs ,rs ,ω)], where
Tr denotes the trace of a tensor and c is the speed of light
in vacuum [20]. In terms of the LDOS, the power radiated
outside the system, and averaged over the orientation of the
dipole source, reads P = πω2/(12ε0) |p|2 ρ(rs ,ω). Denoting
by ρ0 and P0 the LDOS and the radiated power in vacuum,
respectively, we obtain the simple equality

ρ(rs ,ω)

ρ0(ω)
= P

P0
. (1)
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As a characterization of the far-field speckle produced by the
point source, we consider the angular intensity correlation
function

C(u,u′) = 〈I (u)I (u′)〉
〈I (u)〉〈I (u′)〉 − 1, (2)

where I (u) is the directional radiated power in direction u, such
that

∫
4π

I (u)du = P . From Eqs. (1) and (2), the fluctuations
of the normalized LDOS can be written〈

ρ2(rs ,ω)

ρ2
0 (ω)

〉
= 1

P 2
0

∫ ∫
〈I (u)I (u′)〉 du du′

= 1

P 2
0

∫ ∫
〈I (u)〉〈I (u′)〉[1 + C(u,u′)] du du′.

(3)

Using the hypothesis of statistical isotropy, the av-
eraged directional radiated power reduces to 〈I (u)〉 =
(P0/4π )〈ρ(r0,ω)〉/ρ0(ω), and the angular intensity correlation
becomes a function of x = u · u′. This allows us to simplify
Eq. (3) into

〈ρ2(rs ,ω)〉
〈ρ(rs ,ω)〉2

= 1 + 1

16π2

∫ ∫
C(u · u′) du du′

= 1 + 1

2

∫ +1

−1
C(x) dx. (4)

The correlation function can be expanded on the basis of
Legendre polynomials in the form C(x) = ∑∞

n=0 anPn(x).
Since P0(x) = 1, the first term is constant and corresponds
to an infinite range correlation. To be consistent with initial
considerations of the C0 correlation [6,8], we define the C0

contribution as that given by the constant term, such that a0 =
C0. The integral in Eq. (4) is performed by writing C(x) =∑∞

n=0 anP0(x)Pn(x) and using the orthogonality condition of

Legendre polynomials
∫ +1
−1 Pn(x)Pm(x)dx = 2δnm/(2n + 1)

where δnm is the Kronecker delta. We finally obtain

C0 = 〈ρ2(rs ,ω)〉
〈ρ(rs ,ω)〉2

− 1 = Var[ρ(rs ,ω)]

〈ρ(rs ,ω)〉2
. (5)

Equation (5) shows that the C0 speckle correlation and the
normalized variance of the LDOS at the position of the emitter
are the same, a result that was first derived in Ref. [8] based
on a diagrammatic approach. Our derivation relies only on
considerations of energy conservation and the assumption
of a nonabsorbing and statistically isotropic medium. In
particular, Eq. (5) holds in all wave transport regimes, from
weakly scattering to strongly scattering, including Anderson
localization. Another feature of our derivation is that it leads
to a simple interpretation of the C0 correlation. For a classical
point dipole source, changes in the LDOS correspond to
changes in the power transferred to the environment (for
a quantum emitter, this corresponds to a change in the
spontaneous decay rate). In a nonabsorbing medium, this
power coincides with the total power radiated in the far field,
whose angular (or spatial) variations generate the speckle
pattern. Therefore LDOS fluctuations are transferred into
global fluctuations of the speckle patterns, which themselves
are encoded into angular (or spatial) correlations.

III. NEAR-FIELD INTERACTIONS AND INFLUENCE
OF DISORDER CORRELATIONS

We have carried out numerical simulations in order to
analyze the dependance of C0 on the local environment of
the emitter. The scattering medium is a three-dimensional
cluster of N resonant point scatterers randomly distributed
inside a sphere with radius R. A dipole emitter is placed at the
center of the cluster (position rs) and is surrounded by a small
exclusion volume with radius R0. The geometry is shown in the
inset in Fig. 1. In the generation of the random configurations
of the disorder (i.e., of the positions of the N scatterers), a
minimum distance d0 is forced between the scatterers. This
permits to induce a degree of correlation in the disorder, since
this amounts to simulating an effective hard-sphere potential
between scatterers. One can define a fictitious volume fraction
f = N (d0/2)3/(R3 − R3

0) that can be taken as a measure of
the degree of correlation of the disorder (f will be denoted
by “correlation parameter” in the following). For large f , the
hard-sphere potential is long range (d0 is large), so there is a
weak probability of getting two closely separated scatterers.
Small values of f correspond to nonoverlapping point scatter-
ers (delta-correlated disorder). The scatterers are described by
their electric polarizability α(ω) = −3πc3γ /[ω3(ω − ω0 +
iγ /2)], where ω0 is the resonance frequency and γ is the
linewidth. This corresponds to the polarizability of a resonant
nonabsorbing point scatterer (which is similar to that of a two-
level atom far from saturation). The scattering cross section
is σs(ω) = (k4/6π )|α(ω)|2, with k = ω/c. The parameter k	B

measures the scattering strength, where 	B = [ρσs(ω)]−1 is
the independent-scattering (or Boltzmann) mean-free path,
ρ = N/V being the density of scatterers. In all the numerical
computations that follow, we have taken the following set
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FIG. 1. (Color online) Statistical distribution of the normalized
LDOS ρ(rs ,ω)/ρ0(ω) for a uncorrelated system with correlation
parameter (effective volume fraction) f = 0.001% in a double
logarithmic plot. Others parameters are N = 100, ω0 = 3 × 1015 Hz,
ω − ω0 = 1 × 109 Hz (wavelength λ = 0.63 µm), γ = 1 × 109 Hz,
R = 1.2 µm, and R0 = 0.05 µm. The calculations are performed
with 3 × 108 configurations. This large number of configurations is
necessary to correctly describe the tail of the distribution. The dashed
line indicates a power-law behavior P (ρ/ρ0) ∝ (ρ/ρ0)−3/2. The
vertical solid line indicates the one-particle cutoff. (Inset) Schematic
view of the system.
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of parameters: N = 100, ω0 = 3 × 1015 Hz, ω − ω0 =
1 × 109 Hz (wavelength λ = 0.63 µm), γ = 1 × 109 Hz,
R = 1.2 µm, and R0 = 0.05 µm. The Boltzmann scattering
mean-free path is 	B = 1.9 µm which corresponds to k	B =
19 and R/	B = 0.63. The value of R is chosen to be compatible
with computation time and a system size on the order of the
mean-free path.

The calculation of the statistical distribution of the LDOS,
from which C0 can be deduced, amounts to calculating the
Green function G(r,rs ,ω) = G0(r,rs ,ω) + S(r,rs ,ω) for an
ensemble of realizations of the scattering medium. Since
the free-space Green function G0 is known analytically, we
only need to calculate the Green function S(r,rs ,ω0) which
corresponds to the scattered field. To proceed, we perform
a coupled-dipole numerical computation. The field exciting
scatterer number j is given by the contribution of the dipole
source and of all other scatterers, leading to a set of 3N

self-consistent equations [21]:

Ej = µ0ω
2G0(rj ,rs)p + α(ω)k2

N∑
k=1
k �=j

G0(rj ,rk)Ek, (6)

where rj is the position of scatterer number j and the
dependence of the Green functions on ω have been omitted.
This linear system is solved numerically for each configuration
of the disordered medium. Once the exciting electric field on
each scatterer is known, it is possible to compute the scattered
field at the source position rs and deduce the Green dyadic,
from which the LDOS ρ is readily obtained. In this numerical
approach, near-field and far-field dipole-dipole interactions
and multiple scattering are taken into account exactly. We
stress that for the computation of near-field interactions, the
vectorial nature of the field has to be taken into account, as
is well known in near-field optics [22]. In particular, dipole-
dipole interactions through near (quasistatic) fields cannot be
described with a scalar model.

We show in Fig. 1 the statistical distribution of the
normalized LDOS ρ(rs ,ω)/ρ0(ω) in the case of a correlation
parameter f = 0.001% (minimum interparticle distance d0 =
7.5 nm) which corresponds to an almost uncorrelated medium.
The curve exhibits a broad distribution, with values of ρ/ρ0

ranging from 0.2 to 1000. This corresponds to much larger
fluctuations than those observed in the single scattering regime,
where ρ/ρ0 slightly deviates from unity [13]. The analysis of
the line shape allows us to distinguish three regimes. First,
the curve covers a zone corresponding to ρ/ρ0 < 1, which
means that some configurations lead to a reduction of the
LDOS compared to that in free space. This effect has been
analyzed previously and is due to collective interactions in the
multiple-scattering regime [19]. Recent measurements of the
fluorescence lifetime of emitters at the surface of a volume
scattering disordered medium seem to provide evidence of
this regime [10]. Second, in the region ρ/ρ0 > 1, a power-law
decay is observed, with a statistical distribution behaving as
P (ρ) ∝ ρ−3/2 (the power law is indicated by the dashed line in
Fig. 1). As originally discussed in Ref. [14], this behavior is due
to near-field interactions between the emitter and the nearest
scatterer, in the regime of dipole-dipole interactions, and in
the absence of absorption. Evidence of this regime, and of its
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FIG. 2. (Color online) Same as Fig. 1, with different values of
the correlation parameter f . As a result of near-field interactions,
the tail of the distribution is the signature of the local environment
of the emitter.

influence on the C0 correlation, have been reported recently
[11]. Third, in the region ρ/ρ0 � 1, the tail of the distribution
deviates from the power law ρ−3/2. The onset of the deviation
depends on the exclusion volume with radius R0 that encloses
the emitter. Indeed, in the single-scattering limit (the emitter
interacts chiefly with the nearest scatterer), one would observe
a sharp cutoff indicated by the vertical solid line in Fig. 1.
This corresponds to the value of ρ/ρ0 given by the near-field
dipole-dipole interaction between the emitter and one scatterer
located at a distance R0 (ρ/ρ0 = 62 in the present case) [14].
The observation of a tail beyond this single-scattering cutoff
is the evidence of near-field interactions with more than one
scatterer. As we shall see below, this tail also contains the
information on the local environment of the emitter, and in
particular on the degree of correlation of disorder.

We show in Fig. 2 the statistical distribution of ρ/ρ0 for
different values of the correlation parameter, ranging from 1%
to 4.2% (i.e., d0 ranging from 111 to 180 nm). Increasing f

amounts to increasing the level of correlation in the positions of
the scatterers (one imposes an effective hard-sphere potential
with a longer range). The tail of the distribution is substantially
affected by the level of correlations in the system. Also
note that the part of the distribution corresponding to ρ/ρ0

smaller than the single-scatterer cutoff remains unchanged.
This means that the sensitivity of C0 to the local environment
of the emitter is driven by the near-field interactions with the
surrounding scatterers, this information being encoded in the
tail of the statistical distribution of the LDOS. Although this
tail corresponds to events with a low probability, it is at the
core of the C0 correlation concept.

In order to visualize the influence of the correlation of
disorder directly on C0, we have plotted in Fig. 3 the values of
C0 versus the correlation parameter f obtained from numerical
simulations (for the same system as in Figs. 1 and 2). A sharp
transition is visible at f � 2%, the value of C0 dropping by
a factor of 2. In order to give a physical interpretation of
this behavior, we have also plotted in Fig. 3 the values of
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FIG. 3. (Color online) C0 speckle correlation versus the correla-
tion parameter f . Red solid line: Full numerical simulation with the
same parameters as in Fig. 1. Blue solid line with markers: Calculation
considering only the two nearest scatterers (double scattering). Black
dashed line: Calculation considering only the nearest scatterer (single
scattering).

C0 computed by considering the interaction with the nearest
scatterer only (black dashed curve), and with the two nearest
scatterers (blue line with markers). For large f , the emitter
essentially interacts with one particle (the red solid line and
the black dashed curve have a similar behavior) and the C0

correlation can be understood in simple terms. This is the
regime found experimentally in Ref. [11]. We stress here that
this regime results from a near-field interaction, so the value

of C0 depends on local microscopic parameters (it cannot be
described with the scattering or transport mean free path as a
single parameter). For small f , the probability of getting more
than one scatterer in the vicinity of the emitter becomes non-
negligible, and the behavior of C0 cannot be explained (even
qualitatively) with a single-scattering model. One sees that by
including the interaction with the two nearest scatterers (blue
curve with markers), one reproduces nicely the behavior of the
transition. This result demonstrates the high sensitivity of C0

to the level of correlation of the disorder and the key role of
near-field interactions [23]. These interactions are responsible
for the nonuniversality of C0.

IV. CONCLUSION

In summary, we have derived the relation between the
C0 speckle correlation and the LDOS fluctuations using
arguments of energy conservation. This simple and exact
derivation leads for the first time to an interpretation of
C0 based on the fluctuations of the energy delivered by a
classical dipole source to a disordered environment. Using
exact numerical simulations, we have shown that C0 is
essentially a correlation resulting from near-field interactions.
These interactions give C0 its nonuniversal character, which
is reflected in its high sensitivity to the level of correlation
of disorder. This nonuniversality confers to C0 a potential for
imaging at the submicron scale in complex media.
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Phys. Rev. B 79, 241109 (2009).
[19] R. Pierrat and R. Carminati, Phys. Rev. A 81, 063802 (2010).
[20] A. Lagendijk and B. A. van Tiggelen, Phys. Rep. 270, 143

(1996).
[21] M. Lax, Phys. Rev. 85, 621 (1952).
[22] J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[23] The finite size of the scattering medium also induces some degree

of correlation in the positions of the scatterers. These finite-size
effects have been analyzed in Ref. [19]. They do not influence the
tails of the statistical distributions that arise from the near-field
interactions between the emitter and the surrounding scatterers.

043823-4

http://dx.doi.org/10.1103/PhysRevLett.61.834
http://dx.doi.org/10.1103/PhysRevLett.61.834
http://dx.doi.org/10.1364/OL.32.002309
http://dx.doi.org/10.1103/PhysRevLett.104.100601
http://dx.doi.org/10.1103/PhysRevLett.83.4733
http://dx.doi.org/10.1103/PhysRevB.62.886
http://dx.doi.org/10.1103/PhysRevB.62.886
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevE.73.045601
http://dx.doi.org/10.1103/PhysRevLett.97.217801
http://dx.doi.org/10.1364/OE.18.006360
http://dx.doi.org/10.1103/PhysRevLett.105.013904
http://arXiv.org/abs/arXiv:1007.3691
http://dx.doi.org/10.1103/PhysRevA.76.013835
http://dx.doi.org/10.1103/PhysRevA.76.013835
http://dx.doi.org/10.1002/pssa.200778176
http://dx.doi.org/10.1002/pssa.200778176
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
http://dx.doi.org/10.1103/PhysRevB.65.121101
http://dx.doi.org/10.1103/PhysRevLett.102.093902
http://dx.doi.org/10.1103/PhysRevLett.102.093902
http://dx.doi.org/10.1103/PhysRevB.79.241109
http://dx.doi.org/10.1103/PhysRevA.81.063802
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1016/0370-1573(95)00065-8
http://dx.doi.org/10.1103/PhysRev.85.621
http://dx.doi.org/10.1016/S0079-6816(98)00004-5

