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A fundamental insight in the theory of diffusive random walks

is that the mean length of trajectories traversing a finite open

system is independent of the details of the diffusion process.

Instead, the mean trajectory length depends only on the system’s

boundary geometry and is thus unaffected by the value of the

mean free path. Here we show that this result is rooted on a much

deeper level than that of a random walk, which allows us to ex-

tend the reach of this universal invariance property beyond the

diffusion approximation. Specifically, we demonstrate that an equiv-

alent invariance relation also holds for the scattering of waves in

resonant structures as well as in ballistic, chaotic or in Anderson

localized systems. Our work unifies a number of specific observa-

tions made in quite diverse fields of science ranging from the move-

ment of ants to nuclear scattering theory. Potential experimental

realizations using light fields in disordered media are discussed.

wave scattering | disordered media | random walk | diffusion | time delay

In the biological sciences it has been appreciated for some time
now that the movement of certain insects (such as ants) on a

planar surface can be modeled as a diffusive random walk with
a given constant speed v (1–3). Using this connection, Blanco
and Fournier (4) proved that the time that these insects spend on
average inside a given domain of area A and with an external
boundary C is independent of the parameters entering the random
walk such as, for example, the transport mean free path (MFP) ℓp.
Specifically, the average time t between the moments when an in-
sect enters the domain and when it first exits it again is given by the
simple relation hti= πA=ðCvÞ. One finds that the mean length hli of
the corresponding random walk trajectories inside the domain is
also constant, hli= hti  v= πA=C. Similar relations also hold in
three dimensions, hti= 4V=ðΣvÞ and hli= 4V=Σ, where V is the
volume and Σ is the external surface of a given domain. Extensions
of this result exist for trajectories beginning inside the domain (5) or
for the calculation of averaged residence times inside subdomains
(6). As a generalization of the mean-chord-length theorem (7) for
straight-line trajectories with an infinite MFP, this fundamental
theorem has numerous applications, for instance in the context of
food foraging (8) and for the reaction rates in chemistry (9).
The surprising element of this result can be well appreciated

when applied to the physical sciences and, in particular, to the
transport of light or of other types of waves in scattering media.
In that context it is well known that the relevant observable
quantities all do depend on ℓ

p: In the diffusive regime, the total
transmission of a slab of thickness L scales with ℓ

p=L through
Ohm’s law, and the characteristic dwell time scales with the so-
called Thouless time L2=ðv ℓpÞ (10). When considering coherent
wave effects, ℓp also determines the width of the coherent
backscattering cone in weak localization (11, 12) and drives the
phase-transition from diffusive to Anderson localization (13).
An invariant quantity that does not depend on ℓ

p would thus be
highly surprising to the community involved in wave scattering
through disordered media. Because, in addition, coherent effects
such as weak or strong (Anderson) localization clearly fall outside
the scope of a diffusive random walk model, one may also expect

that an invariance property simply does not exist when wave
interference comes into play. As we will demonstrate here ex-
plicitly, this expectation is clearly too pessimistic. Instead, we
find that an invariant time and length scale can also be defined
for waves, even when they scatter nondiffusively, as in the
ballistic or in the Anderson localization regime. The key insight
that allows us to establish such a very general relation for the
mean wave scattering time is its connection to the density of
states (DOS), which is the central quantity that stays invariant
on a level far beyond the scope of a diffusion approximation.
To describe wave transport in a disordered scattering medium

without solving the full wave equation numerically is a challeng-
ing task that can be approached from many different angles (10,
14, 15). As the first step, we will consider the radiative transfer
equation (RTE), which describes the transport of an averaged
radiation field through a disordered medium in the limit k ℓs � 1,
where k=ω=c= 2π=λ is the wave number and ℓs is the scattering
MFP (7, 16). In nonabsorbing media, as considered here, the
scattering MFP ℓs is connected to ℓ

p by the anisotropy parameter
g, which measures the degree of forward scattering at a scattering
event, ℓs = ℓ

pð1− gÞ. In its standard formulation where the RTE
does not include wave interference effects it should fully reproduce
the predictions by Blanco and Fournier (4) from above. However,
one can enhance the scope of the RTE to include specific wave
effects such as the dispersion in a medium containing strongly
resonant scatterers such as atomic dipoles or Mie spheres (17,
18). In what follows we will consider identical, but randomly
placed, resonant and nonabsorbing dipole scatterers described by
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a polarizability αðδÞ=−4π=k3½i+ 2δ=Γ�−1, with δ= ω−ω0 the
detuning with respect to the resonance frequency ω0, and Γ the
linewidth (modeling losses due to scattering only). This specific
expression is valid close to the resonance (i.e., δ � ω0) and ensures
energy conservation (i.e., the optical theorem is fulfilled). In this
case and for a dilute system such that N λ3 � 1, where N is the
density of scatterers, a dispersive form of the RTE can be derived
from the Bethe–Salpeter equation (an exact equation for the
spatiotemporal autocorrelation function of the electric field) (18):
�

−
iΩ

c
+u ·∇r + μeðδ;ΩÞ

�

Iðu; r; δ;ΩÞ=
1

4π
μsðδ;ΩÞ

×

Z

I
�

u′; r; δ;Ω
�

du′;

[1]

where du′ stands for integration over the solid angle. The spe-
cific intensity Iðu; r; δ; τÞ (also called spectral radiance) is de-
fined through the Wigner transform of the electric field and
describes the radiative flux at position r, along direction u, at
frequency δ and at time τ. Eq. 1 is Fourier-transformed with
respect to τ (with Ω being the conjugate Fourier variable). The
expressions for the extinction and scattering MFP are given
by μeðδ;ΩÞ=−iN k=2½αðδ+Ω=2Þ− αpðδ−Ω=2Þ� and μsðδ;ΩÞ=
N k4=ð4πÞαðδ+Ω=2Þαpðδ−Ω=2Þ. The Boltzmann scattering MFP
ℓsðδÞ= ℓ0½1+ 4δ2=Γ2�, with ℓ0 = ½4πN =k2�−1 the value at resonance
(δ= 0), can be changed by varying the detuning δ or the linewidth
Γ. Note that the condition N λ3 � 1 is then equivalent to k ℓs � 1.
On this basis we can evaluate the average time spent by light

trajectories inside the medium by calculating the weighted temporal
average htðδÞi=

R

τϕoutðδ; τÞdτ=
R

ϕoutðδ; τÞdτ, where the weight-
ing function ϕout =

R

Σ

R

2πIðu; r; δ; τÞu ·n  du  d
2
r is the outgoing flux

at time τ, Σ is the medium boundary, and n the outward normal.
In frequency domain, this expression can be cast in the following
compact form (Supporting Information):

htðδÞi=
−i

ϕoutðδ;Ω= 0Þ

∂ϕoutðδ;ΩÞ

∂Ω

�

�

�

�

Ω=0

; [2]

where we define t= 0 as the time when the incident flux enters
the medium. This expression is also convenient for a numerical
computation of htðδÞi based on Eq. 1. In the numerical simulation, we
consider a 3D slab geometry of length L with on-resonance optical
thickness b0 =L=ℓ0, illuminated by an isotropic and uniform specific
intensity on its left interface only (Fig. 1A). This corresponds to a sit-
uation where the incident specific intensity does not depend on the
point and direction of incidence (Lambert’s cosine law is satisfied).
Using a Monte-Carlo scheme (18), we solved Eq. 1 without approx-
imation and obtained the results plotted in Fig. 2. By tuning the
linewidth Γ of the scatterers, we can either simulate a nonresonant

medium in which the intensity spends most of the time between the
scatterers (Γℓ0 � c) or a resonant medium where the transport time
is dominated by intensity trapping inside the scatterers (Γℓ0 � c).
In the nonresonant case (Fig. 2A), we recover the results by

Blanco and Fournier (4) and find an average time htðδÞi that is
independent of the scattering properties of the medium (i.e.,
independent of the detuning δ that determines the scattering
properties in the present RTE calculation). Moreover, we clearly
see that the times associated to the reflected and transmitted
parts of the outgoing flux, which can be computed separately,
strongly depend on δ, showing that the invariance of the average
time htðδÞi results from a delicate balance between reflection and
transmission (in both their intensities and time delays), as illus-
trated by light trajectories displayed in Fig. 1 B and C. Also note
that by varying the detuning δ from 0 to 2 in Fig. 2A we effec-
tively perform a cross-over from the diffusive to the single
scattering regime. In the latter (δJ 1:5), the invariance of htðδÞi
follows directly from the mean-chord-length theorem (7).
In case of a resonant medium (Fig. 2B) the situation is sub-

stantially different. The average time htðδÞi exhibits a significant
dependence on δ, and therefore on the scattering properties of the
medium. Because this result clearly falls outside the scope of the
invariance relation derived by Blanco and Fournier (4), the question
arises whether a new quantity can be defined that remains invariant
even in the limit of strongly dispersive scatterers. To address this
issue we rewrite the average time htðδÞi in Eq. 2 as the ratio of the
total energy U stored in the system and the outgoing flux ϕout,

htðδÞi=
Uðδ;Ω= 0Þ

ϕoutðδ;Ω= 0Þ
: [3]

As specified in more detail in Supporting Information, this re-
lation measures htðδÞi as the time the stored energy U takes to
flow out of the medium with flux ϕout =−ϕin (in stationary pro-
cesses without absorption or gain, the incoming and outgoing
fluxes are balanced) (19). Expressing ϕout and U in terms of
the specific intensity ϕoutðδ;ΩÞ=

R

Σ

R

2πIðu; r; δ;ΩÞu ·n  du  d
2
r and

Uðδ;ΩÞ= v−1E ðδÞ
R

V

R

4πIðu; r; δ;ΩÞdu  d
3
r, where vEðδÞ is the energy

(or transport) velocity (17), we obtain

htðδÞi=
�

1

vEðδÞ

Z

V

Z

4π

Iðu; r; δ;Ω= 0Þdu  d3r

�

×

�
Z

Σ

Z

2π

Iðu; r; δ;Ω= 0Þu ·n  du  d2r

�−1

:

[4]

In this expression V and Σ are the volume and the external
boundary of the medium, and n is the outward normal. For

A B C

Fig. 1. Sketch of the system and light trajectories. (A) Geometry of the 3D slab of length L investigated numerically using the RTE. ϕin is the incident flux and
ϕout,R and ϕout,T are the reflected and transmitted fluxes, respectively (ϕout =ϕout,R +ϕout,T). (B and C) Projections of light trajectories inside the system in the
case of normal incidence illumination at a specific point on the system boundary (see inward arrow) for two optical thicknesses, (B) b= 10 and (C) b= 0:59.
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a uniform and isotropic illumination on the surface (as assumed
here), the specific intensity is uniform, isotropic, and indepen-
dent on detuning inside the medium (a particular case of such
a situation is blackbody radiation) (14). As a result, Eq. 4 can be
drastically simplified into htðδÞi= 4V=½Σ  vEðδÞ�, which for a slab
of thickness L gives htðδÞi= 2L=vEðδÞ. This result turns out to be
strikingly similar to the invariance relation derived by Blanco and
Fournier (4), the only difference being that in resonant media the
dispersive form of the energy velocity vEðδÞ comes into play. The
expression of the energy velocity for resonant scatterers can be de-
termined explicitly (17), and takes the following form (Supporting
Information):

vEðδÞ=

�

1

c
+

1

ΓℓsðδÞ

�

−1

: [5]

The energy velocity allows us to introduce an invariant length
scale, hli= htðδÞivE = 4V=Σ, which is independent of the scatter-
ing properties of the medium for both resonant and nonresonant
scattering (in the latter the energy velocity simply reduces to the
constant velocity entering the random walk formalism). To prove
the correctness of this result, we plot the average length hli in
Fig. 2C as obtained by renormalizing the numerical results for
htðδÞi in Fig. 2B with the analytical expression (Eq. 5) of the
transport velocity vE. We find that the resulting curve for
hlðδÞi= htðδÞivE is, indeed, independent of the detuning δ, with
a constant value hli= 2L. This result is all the more remarkable
because the average lengths associated with either the transmit-
ted or the reflected part of the flux display a strong dependence
on the scattering properties in the same regime. This again shows
that the invariance of the average length hli results from a subtle
balance between reflection and transmission.
Whereas the above extension of the RTE allowed us to find

a new invariant quantity for the case of scattering in a disordered
medium with resonant scatterers, the ansatz of the RTE itself is
intrinsically restricted to the limit kℓs � 1. The opposite limit,
where the wavelength λ is comparable to or even larger than the
mean free path ℓs, is thus not covered by our foregoing consid-
erations. Because in this strongly scattering limit wave interfer-
ence can lead to a complete halt of wave diffusion in terms of
Anderson localization, the question arises whether localization
will lead to a deviation from the above invariance property or
not. One could expect such a deviation, for instance on the
grounds that localization prevents scattering states to explore

the entire scattering volume V of the system. Correspondingly,
the volume V and the surface Σ appearing in the invariance re-
lation htðδÞi= 4V=½Σ vEðδÞ� might then have to be rescaled with
the localization length ξ.
To explore this question in detail we will now work with the

full wave equation in two dimensions which, for stationary light
scattering, is given in terms of the Helmholtz equation:

�

Δ+ nðx; yÞ2k2
�

ψðx; yÞ= 0: [6]

The linear dispersion k=ω=c will allow us to use k and ω in-
terchangeably. In the situations we study here, the disorder scat-
tering is induced by the spatial variations of the static refractive
index nðx; yÞ. To evaluate the dwell time of a stationary scattering
eigenstate of this equation (with well-defined wave number k)
inside a given spatial region one can conveniently use the so-
called Wigner–Smith time-delay operator†:

QðωÞ=−i  S−1
dS

dω
; [7]

originally introduced by Wigner in nuclear scattering theory (21)
and extended by Smith to multichannel scattering problems (22).
Here the ω-dependent scattering matrix S, evaluated at the ex-
ternal boundary C of the considered region, contains all of the
complex transmission and reflection amplitudes that connect in-
and outgoing waves in a suitable mode basis. To obtain also here
the average time associated with wave scattering we take the
trace of Q and divide by the number NðωÞ of incoming scattering
channels, htðωÞi=Tr½QðωÞ�=NðωÞ.
To evaluate the average time htðωÞi from above, we performed

numerical simulations on a 2D scattering region of rectangular
shape, attached to perfect semi-infinite waveguides on the left
and right (see illustrations in Fig. 3, Lower). Accordingly, the
correct number of scattering channels NðωÞ is given by the total
number of flux-carrying modes in both waveguides. Impenetrable
and nonoverlapping circular scatterers are randomly placed in-
side the scattering region and in between them the refractive
index is kept constant, nðx; yÞ= 1. The scattering matrix and the

A B C

Fig. 2. Ensemble-averaged length hlðδÞi of light trajectories as obtained numerically using the RTE for (A) nonresonant and (B and C) resonant scatterers in
a 3D slab of width L= 10 and optical thickness at resonance b0 = 10. Black/blue/red lines depict the values for all/transmitted/reflected trajectories, corre-
sponding to the fluxes ϕout=ϕout,T=ϕout,R in Fig. 1. The values for hlðδÞi were determined through the average time hti multiplied by the speed of light c in
A and B and by the energy velocity vE in C. The renormalization with the energy velocity vE in the resonant case (C) yields the same universal value htivE = 2L
as obtained by Blanco and Fournier (4) for the nonresonant case htic= 2L (A). For δ= 0 and for δ= 2Γ, the optical thickness is b= 10 and b= 0:59, respectively,
such that the above results range from the diffusive to the single-scattering regime.

†One can show that the quantity measured by the Wigner–Smith time-delay operator is
equal to the dwell time (Eq. 3) if the frequency dependence of the coupling between the
scattering region and its surrounding becomes negligible (20). This is the case in the
systems considered here.
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corresponding scattering states for this system are calculated by
solving the Helmholtz Eq. 6 on a finite-difference grid, using the
advanced modular recursive Green’s function method (23, 24).
In Fig. 3 we display our numerical results for different degrees of
disorder. In Fig. 3A we show the results obtained for an empty
scattering region, corresponding to the ballistic transport regime.
In Fig. 3B, the case with altogether 13 scatterers is shown, for
which already a strong reduction of transmission is observed. The
distribution of the transmission eigenvalues PðτÞ follows here
very well the predictions of random matrix theory for the regime
of chaotic scattering (Supporting Information). Finally, in Fig. 3C
we increased the degree of disorder even more (placing altogether
211 scatterers) so as to enter the regime of Anderson localiza-
tion. Here the distribution of transmission eigenvalues agrees
very well with the predictions for the case when Anderson
localization suppresses all but a single transmission eigenchannel
(Supporting Information) (25, 26). To make all three cases easily
comparable with each other, the different geometries all have
the same scattering area A, which for ballistic scattering is the
entire rectangular region between the leads, whereas for the
other two cases the area occupied by the impenetrable scatterers
is not part of A.
Based on the above identification of the different transport

regimes that our model system can be in, we investigate now the
corresponding results for the average time htðωÞi that we get for
each of these limits (Fig. 3). In the ballistic limit (Fig. 3A) we see
that the average time, plotted as a function of the incoming
wavenumber k, shows pronounced periodic enhancements
around the random walk prediction by Blanco and Fournier (4),
hti= πA=ðCvÞ. The peaks of these fluctuations can be identified
with those positions in k= kn = n  π=d, where a new transverse

mode opens up in the waveguide of width d. To understand
why these mode openings cause an increase in the scattering
dwell time we resort to a fundamental connection between the
average dwell time hti and the DOS ρðkÞ. This relation,
ρðkÞ=NðkÞchtðkÞi=ð2πÞ= cTrðQÞ=ð2πÞ, was first put forward by
Birman, Krein, Lyuboshitz, and Schwinger in the context of
quantum electrodynamics and nuclear scattering theory and has
meanwhile been used in a variety of different contexts (27–37).
Because, in the ballistic regime, each individual incoming mode
corresponds to a one-dimensional scattering channel with, cor-
respondingly, an associated square root singularity in the DOS,
ρnðkÞ= ½L=ð2πÞ�k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 − k2n
p

for k> kn, we can successfully explain
the observed oscillations as coming from the successive openings
of new waveguide modes. Evaluating the total DOS based on
a sum of individual mode contributions, ρðkÞ=

PN
n ρnðkÞ, and

using the above connection to the average time yields results
identical to those shown in Fig. 3A. This demonstration also
allows us to show that the time, averaged over an interval of k
that is larger than the distance between successive mode open-
ings, converges exactly to the prediction by Blanco and Fournier
(4). Quite remarkably, we find in this sense that the estimate from
the mean-chord-length theorem and, correspondingly, the random
walk prediction also holds, on average, for ballistic wave scattering in
a system without any disorder.
Moving next to the disordered system in Fig. 3B we see that

the presence of the disorder strongly reduces the above mode-
induced fluctuations, leaving the frequency-average value of
time unchanged. To explain this result, the DOS clearly needs
to be estimated differently here than in the ballistic case of
uncoupled waveguide modes. Also, because the disorder leads to
system- and frequency-specific fluctuations of the DOS, we are

A B C

Fig. 3. Total average dwell time htðkÞi (black line), transmission delay time (blue line), and reflection delay time (red line) for (A) ballistic scattering through
a clean waveguide as well as for (B) chaotic scattering through a disordered waveguide with 13 circular obstacles of radius r = 0:06  d and (C) Anderson
localized transport through a disordered waveguide with 211 obstacles of r = 0:015  d (see Supporting Information for a definition of transmission and re-
flection delay times). The geometrical parameters were chosen such that all three waveguides have the same width d and the same effective scattering area
A= 2:35  d2. The wavenumber was scanned between k= 10:1  π=d and k= 14:9  π=d in all three cases. For the clean waveguide in A the transmission is perfect,
and thus the reflection times are strictly zero. The average for the total dwell time (black line) is taken here over the entire wavenumber interval shown and
coincides with the estimate of Blanco and Fournier (4), htðkÞi= πA=ðCcÞ (green dashed line). For the disordered systems in B and C the averages were taken
over (B) 250 and (C) 2,500 different random configurations, respectively. Whereas for the chaotic scattering case (B) the results for the average dwell time
agree well with the random walk prediction (dashed green line), a systematic deviation is observed for the case of strong disorder (C). Here, very good
agreement is found with the estimate for the average dwell time according to the corrected Weyl estimate, Eq. 8 (purple dashed line). (Lower) The intensity
of wave functions injected in the lowest-order mode is shown for a specific configuration of scatterers (see gray spheres) embedded in the scattering area
(light gray domain in the middle). The flux is incoming from the left and can be transmitted (to the right) or reflected (to the left) through the perfect
waveguides attached on both sides (see dark gray areas).
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looking here for an estimate for the ensemble and frequency-
averaged DOS. To obtain this quantity, we invoke a result first
put forward by Weyl in 1911 (38), who estimated that the average
DOS in the asymptotic limit of ω→∞ satisfies the universal law
ρðωÞ=Aω=ð2πc2Þ, now called the Weyl law (39). Putting this
estimate into the formula relating the average time with the av-
erage DOS, we obtain htðωÞi= 2πρðωÞ=NðωÞ=Aω=½c2NðωÞ�. The
ω-dependent number of incoming channels is given as an integer-
valued step-function NðωÞ= b2ωd=ðcπÞc. When smoothing over
the steps in this function, that is, NðωÞ≈ 2ωd=ðcπÞ− 0:5, we arrive
at the result htðωÞi= 2πρðωÞ=NðωÞ≈ πA=ð2dcÞ= πA=ðCcÞ. This
relation, which is very accurately satisfied by our numerical results,
thus confirms the validity of the diffusive random walk prediction
by Blanco and Fournier (4) also for disordered wave scattering.
Because the above relation for the average dwell time is notably
independent of ℓp, transmission and reflection times for waves, which
do strongly depend on ℓ

p, need to fully counterbalance each other.
Does this invariance of the average scattering time also persist

in the strongly scattering limit, when Anderson localization sets
in? Our numerical results shown for this case in Fig. 3C display
a small but apparently systematic frequency dependence of the
average time htðωÞi, which increasingly deviates from the result
by Blanco and Fournier (4) for decreasing frequencies ω.
Because the numerical calculations are very challenging and the
frequency derivative appearing in Eq. 7 can reach very large
values for highly localized scattering states, we first tested the
accuracy of our simulations by evaluating htðωÞi also through
explicit dwell-time calculations. In analogy to Eq. 3, the ex-
pression for the dwell time in the case of the Helmholtz Eq. 6 is
given by tm =

R

A
ψ⋆

mn
2ψm   d

2r=ϕm;in, where ψm is the wave function
of the m-th scattering channel and ϕm;in is the corresponding
total (stationary) incoming flux. The average dwell time is then
given by htðωÞi=

PN
mtmðωÞ=NðωÞ. The results obtained in this

way are practically indistinguishable from Fig. 3C. To explain
this robust deviation from the result by Blanco and Fournier (4)
we thus have a more careful look on the Weyl estimate which,
in addition to the leading-order term that we used above, also
features a next-order correction proposed by Weyl (39, 40),
ρðωÞ= ½Aω=c2 + ðC−BÞ=ð2cÞ�=ð2πÞ. This correction involves not
only the scattering area A but also the internal boundary of the
scattering region B, which is notably different from the external
boundary C through which waves can scatter in and out. The
internal boundary B in the case of our waveguide system under
study is given by B= 2L+Bo, where Bo is given by the total cir-
cumference of the scatterers. The open boundary conditions
along the external boundary C were approximated with Neu-
mann boundary conditions, which contribute with the oppo-
site sign as the Dirichlet boundary conditions on the surface of
the waveguide and of the scatterers. In systems with a small
boundary-to-area ratio this next-order correction of the Weyl law
is negligible. Because, however, the number of scatterers that we
have placed inside the system (from 0 in the ballistic case, to 13
in the chaotic case, to 211 in the localized case) increases this
ratio, the additional boundary term in the Weyl law may become
important here. To check this explicity, we reevaluate the ex-
pression for the average dwell time htðωÞi from above when
adding this correction, leading us to

htðωÞi=
1

c2NðωÞ

�

A  ω+
ðC−BÞ

2
c

�

: [8]

A comparison of this analytical formula with the numerical
results (Fig. 3C) yields excellent agreement and indicates that
the observed deviation from the prediction by Blanco and Four-
nier (4) stems from the comparatively large boundary of the
many small scatterers that we placed inside the scattering region.
We emphasize at this point that this correction to the Blanco and

Fournier estimate only contains the boundary values B and C as
additional input and remains entirely independent of any quan-
tities that characterize the scattering process itself, such as ℓp or
the localization length ξ. This insight is of considerable impor-
tance, because it means that Eq. 8 defines a new invariant quan-
tity that is independent of the scattering regime we are in and
thus accurately matches our numerical results for the average
time in the ballistic, chaotic, and localized limit. This invariant
quantity for waves deviates from the prediction by Blanco and
Fournier (4) only through an additional term originating in the
fact that waves feel the boundary of a scattering region already
when being close to it on a scale comparable with the wavelength.
We speculate that additional wave corrections to the result by
Blanco and Fournier may arise when waves have access to
a larger scattering area A than classical particles through the
process of tunneling.
In summary, we have derived a universal invariance property

for wave transport through disordered media. The invariance of
the averaged path length or averaged time spent by a wave in an
open finite medium has been established based on scattering
theory. In the appropriate limit of diffusive and nonresonant
media, the random walk picture is recovered, and the result
coincides with the expression of the averaged path length initially
established by Blanco and Fournier (4). Our work confers to this
invariance property a degree of universality that extends its
implications far beyond applications of random walk theory. This
extension to waves opens up new possible applications in optics,
acoustics, seismology, or radiofrequency technologies, where
propagation in complex media is the subject of intense research
(41). Indeed, in the context of wave transport through disordered
media most spatial or temporal observables scale with ℓ

p, and the
invariance property derived in this work is particularly counter-
intuitive and rich in implications. It should find applications in
imaging, communications, or light delivery, for instance to gen-
erate enhanced light-matter interaction within a certain volume
by controlled light deposition, or to design specific structures to
enhance light harvesting for solar cells (42, 43). Consider here,
for example, that the above invariance property allows us to
estimate the time that waves need to transit through a given
medium based on a measurement of only the reflected portion of
incoming waves and an a priori knowledge of the sample ge-
ometry. Particularly intriguing in our eyes is the possibility to get
access, through Eq. 8, to the internal surface B of scatterers
embedded in a scattering medium through a time-resolved
transport experiment. Such an approach could go as far as to
measure the fractal dimension of the scatterer surface by linking
our results with the Berry–Weyl conjecture (44, 45).
An extension of our findings to media with gain and loss (46,

47) should also be of interest, both from a theoretical and an
applied standpoint. Our study should also be very relevant to the
field of wave control, which has recently emerged as a powerful
paradigm for light manipulation and delivery in complex media
(48), showing for instance that suitably shaped wavefronts can
deliver light at a specific time and position (49–51). Finally, let us
point out that although we only studied here 3D slab and 2D
waveguide geometries with uncorrelated disorder, the invariance
property, thanks to its connection to the DOS, is very general and
should apply to a wide range of geometries and excitation strate-
gies, as well as to nonuniform scattering properties, biological
tissues, and correlated disorder, from partially ordered to entirely
ordered systems such as Levy glasses or photonic crystals (52, 53).
An experimental demonstration of the discussed invariance property
should be within reach, in particular in optics, where time-resolved
techniques and sensitive detectors are available.
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Full Derivation of the Average Time for Resonant Scattering
Systems

Transport Equation and Energy Velocity.We recall that the transport
equation for a resonant scattering system is given by (see ref. 1):

�

−
iΩ

c
+u ·∇r + μeðω;ΩÞ

�

Iðu; r;ω;ΩÞ=
1

4π
μsðω;ΩÞ

×

Z

I
�

u′; r;ω;Ω
�

du′;

[S1]

where I is the specific intensity, proportional to the radiative flux
at position r, in direction u, at frequency ω and at time τ (Ω in
frequency domain). c is the speed of light in vacuum. μeðω;ΩÞ
and μsðω;ΩÞ are coefficients given by

μeðω;ΩÞ=
−iN k

2

�

α

�

ω+
Ω

2

�

− αp
�

ω−
Ω

2

�

	

[S2]

and μsðω;ΩÞ=
N k4

4π
α

�

ω+
Ω

2

�

αp
�

ω−
Ω

2

�

; [S3]

where α is the polarizability of a point scatterer (dipole) and N
the density. To deal with resonant scatterers, we have chosen to
write α in the form

αðωÞ=
−4π

k3
1

i+ 2ðω−ω0Þ=Γ
; [S4]

where k=ω=c. This expression fulfills the optical theorem (energy
conservation), and no losses by absorption are present. Defining the
detuning by δ=ω−ω0, the scattering length is thus given by

ℓðδÞ= ℓ0

�

1+
4δ2

Γ
2

�

; [S5]

where ℓ0 = ½4πN=k20�
−1 is the scattering length at the resonant

frequency ω0.
Integrating Eq. S1 over the directions (first moment), it is pos-

sible to derive a conservation equation linking the energy density u
and the radiative flux vector ϕ defined as follows:

uðr;ω;ΩÞ=
1

vE

Z

Iðu; r;ω;ΩÞdu; [S6]

ϕðr;ω;ΩÞ=

Z

Iðu; r;ω;ΩÞudu: [S7]

We obtain

�

−
iΩ

c
+fμeðω;ΩÞ− μsðω;ΩÞg

�

vEuðr;ω;ΩÞ+∇r ·ϕðr;ω;ΩÞ= 0:

[S8]

To identify with a conservation equation of the form

−iΩuðr;ω;ΩÞ+∇r ·ϕðr;ω;ΩÞ= 0; [S9]

the energy velocity should read

1

vEðω;ΩÞ
=
1

c
+

i

Ω
fμeðω;ΩÞ− μsðω;ΩÞg: [S10]

Taking the limit Ω→ 0, we finally obtain

1

vEðδÞ
=
1

c
+

1

ΓℓðδÞ
: [S11]

Average Time. The average time is defined by

htðδÞi= htoutðδÞi− htinðδÞi; [S12]

where the incoming and outgoing average times are given by

htinðδÞi=
R

τϕinðδ; τÞdτ
R

ϕinðδ; τÞdτ
[S13]

htoutðδÞi=
R

τϕoutðδ; τÞdτ
R

ϕoutðδ; τÞdτ
[S14]

and ϕin;outðδ; τÞ are the input/output fluxes at time τ and for a
detuning δ. In frequency domain, this reads




tin;outðδÞ
�

=
−i

ϕin;outðδ;Ω= 0Þ

∂ϕin;outðδ;ΩÞ

∂Ω

�

�

�

�

Ω=0

: [S15]

By integrating Eq. S9 over the volume of the system we get

iΩ

Z

V

uðr; δ;ΩÞd3r=

Z

V

∇r ·ϕðr; δ;ΩÞd
3
r [S16]

and using the divergence theorem we find

iΩ

Z

V

uðr; δ;ΩÞd3r=

Z

Σ

ϕðr; δ;ΩÞ ·nd2r=ϕðδ;ΩÞ

=ϕinðδ;ΩÞ+ϕoutðδ;ΩÞ:

[S17]

Because the system is not absorbing, the stationary outgoing flux
is given by ϕoutðδ;Ω= 0Þ=−ϕinðδ;Ω= 0Þ and the Taylor expan-
sion of the fluxes writes

ϕin;outðδ;ΩÞ∼ϕin;outðδÞ+Ω
∂ϕin;outðδ;ΩÞ

∂Ω

�

�

�

�

Ω=0

: [S18]

Thus, the total stationary energy inside the system writes

Z

V

uðr; δ;Ω= 0Þd3r=−i
∂ϕinðδ;ΩÞ
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�

�
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[S19]

and the average time becomes

htðδÞi=
Uðδ;Ω= 0Þ

ϕoutðδ;Ω= 0Þ
; [S20]
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where U is the total energy stored within the system. Using the
definition of the energy density, we find that the average time
renormalized by the energy velocity is given by

htðδÞivE =

"

Z

Σ

Z

2π

Iðu; r;ω;Ω= 0Þu ·ndud2r

#−1

×

Z

V

Z

4π

Iðu; r;ω;Ω= 0Þdud3r:

[S21]

This quantity can be seen as the average length of the random
walk process inside the system and because it depends only on
the specific intensity for a given frequency this is the right quantity
that should be conserved whatever the detuning. Indeed, if we
illuminate the system with an isotropic specific intensity I0 at
each point of the boundary the only solution is I = I0 inside the
system and the average length reads

htðδÞivE =
4πVI0
πΣI0

=
4V

Σ
; [S22]

where Σ and V are the surface and the volume of the system,
respectively.

Average Transmission and Reflection Delay Times

The average total delay time in scattering systems described by
a wave equation such as the Helmholtz equation can conveniently
be written as the trace of the time delay operatorQ divided by the
total number of open scattering channels N (see also main text).
Using the scattering amplitudes stored in the scattering matrix S,
we can rewrite the corresponding expression as follows:

hti=
1

N
TrðQÞ=

1

N

 

X

N

m;n

jSmnj
2dφmn

dω

!

; [S23]

where Smn = jSmnjeiφmn is the complex scattering amplitude con-
necting the n-th incoming and the m-th outgoing channel. For
the two-port systems we study, the scattering matrix can formally
be decomposed into four distinct blocks:

S=

�

r t′

t r′

�

: [S24]

The matrices r and t contain the elements associated with reflec-
tion and transmission for injection through the left waveguide,
respectively. The primed quantities contain the corresponding
elements for injection from the right. Using this division into
reflected and transmitted parts, we can define the average total
transmission hTtoti and reflection hRtoti according to

hTtoti=
1

N

 

X

N=2

m;n

jtmnj
2
+ jtmn′ j2

!

= 1−
1

N

 

X

N=2

m;n

jrmnj
2
+ jrmn′ j2

!

= 1− hRtoti:

[S25]

The effective number of transmitting channels then evaluates to
NT = hTtotiN and analogously the effective number of reflected

channels is NR = hRtotiN. Very similar to Eq. S23, we can then
finally define the average transmission time htTi and the average
reflection time htRi as

htTi=
1

NT

 

X

N=2

m;n

jtmnj
2dφ

t
mn

dω
+ jtmn′ j2

dφt′
mn

dω

!

; [S26]

and

htRi=
1

NR

 

X

N=2

m;n

jrmnj
2dφ

r
mn

dω
+ jrmn′ j2

dφr′
mn

dω

!

; [S27]

with, for example, rmn = jrmnj
2
eiφ

r
mn denoting a complex reflec-

tion amplitude from left to left. Note that the properly
weighted sum of the times in Eqs. S26 and S27 add up to the
average total time,

hti= hTtotihtTi+ hRtotihtRi: [S28]

Statistical Signature for the Chaotic and for the Localized
Regime

In the main text we discuss systems featuring ballistic, chaotic, and
localized wave scattering, respectively. The corresponding scat-
tering regime is determined by the number and size of impene-
trable obstacles we placed inside the scattering region and can be
characterized through the regime-specific transmission statistics.
For the ballistic system, transmission is perfect in our case, be-
cause without any scatterers we are dealing with a perfectly
transmitting waveguide. To verify that the scattering in the sys-
tems containing a finite number of obstacles is chaotic and lo-
calized, respectively, we check whether the transmission statistics
follow the respective predictions. For that purpose, we calculated
the eigenvalues τi of the matrix t†t, where t is the transmission
matrix. For chaotic dynamics, the τi follow the bimodal distri-
bution (2–4)

pðτÞ=
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τð1− τÞ
p : [S29]

In a sample with Anderson localization only one single transport
channel dominates the transmission (5), such that the transmis-
sion, T =

PN=2
i=1 τi ≈ τmax, follows the prediction for a one-dimen-

sional wire-geometry with disorder (5, 6):

pðTÞ=C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

arccoshðT−1=2Þ
p

T3=2ð1−TÞ1=4
exp

�

−
ξ′

2L
arccosh2

�

T−1=2
�

�

; [S30]

with C being a normalization constant. The effective localization
length ξ′=−2L=hlnTi (the brackets here mean an average over
different random realizations of the positions of the hard-wall
scatterers) can be determined from the numerical data. Fig. S1
shows the comparison of the numerically calculated histograms
of τ and T, respectively, and their analytical predictions (Eqs.
S29 and S30). We find that in both cases the numerical data fits
very well the analytical formulae, which confirms our assump-
tions about the scattering dynamics being chaotic or localized for
the two different situations considered.
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A B

Fig. S1. Transmission statistics for different transport regimes. (A) Distribution of the t†t eigenvalues τ for chaotic scattering (orange bars), compared with the

prediction, Eq. S29 (light blue line). (B) Distribution of the transmission T for localized scattering compared with the prediction based on Eq. S30. To produce

the histograms, k was scanned between k= 12:1π=d and k= 12:9π=d and 1,000 scatterer configurations were considered for each of the cases in A and B [in A

only values 0:01< τ< 0:99 were considered for the histogram since for very small and very large values of τ deviations from Eq. S29 are expected (1)].
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