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Intensity correlations between reflected and transmitted speckle patterns
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We study theoretically the spatial correlations between the intensities measured at the input and output planes
of a disordered scattering medium. We show that at large optical thicknesses, a long-range spatial correlation
persists and takes negative values. For small optical thicknesses, short-range and long-range correlations coexist,
with relative weights that depend on the optical thickness. These results may have direct implications for the
control of wave transmission through complex media by wave-front shaping, thus finding applications in sensing,

imaging, and information transfer.
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I. INTRODUCTION

The study of wave scattering in disordered media is an
active field of research, stimulated both by innovative applica-
tions in imaging and sensing [1] and by fundamental questions
in mesoscopic physics [2]. In the last few years, the possibility
to control the propagation of optical waves in complex media
in the multiple-scattering regime has been demonstrated using
wave-front shaping techniques [3,4]. This breakthrough offers
perspectives for imaging and communication through complex
media [5-7]. The initial schemes make use of optimization
techniques requiring intensity measurements in the transmitted
speckle, which in terms of practical applications is a serious
drawback. Finding a way to control the transmission and
focusing of light through a strongly scattering medium from
measurements of the reflected speckle only is an issue of
tremendous importance. Progress has been made recently by
taking advantage of the memory effect [§—10], with imaging
capabilities limited to relatively small optical thicknesses.
Nevertheless, the connection between the reflected and the
transmitted speckle patterns generated by a disordered medium
in the multiple-scattering regime has not been addressed
theoretically so far.

In this paper, we make a step in this direction by study-
ing theoretically and numerically the statistical correlation
between the intensities measured in the transmitted and the
reflected speckle patterns. The spatial intensity correlation
function C(r,r’) is defined as

J
Clery = BIOBIE) 0
(1) {1(x"))

where the notation (...) denotes a statistical average over
disorder and 81 (r) = I(r) — (I(r)) is the intensity fluctuation.
This correlation function has been extensively studied in the
context of wave scattering and mesoscopic physics [11-14].
Theoretical approaches often make use of the canonical
slab or waveguide geometries (for a review see [11,12,15]
and references therein), where either transmitted or reflected
intensity is considered, or consider point sources in an infinite
or open medium and compute intensity correlations for two
points inside or outside the medium [16-20]. It seems that
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the intensity correlation function for two points lying on
different sides of a slab medium has not been studied and
that the existence of a correlation has only been mentioned
through passing [21,22]. In this work, we study the correlation
between the intensities in the input and output planes of a
strongly scattering slab, as sketched in Fig. 1. Using numerical
simulations and analytical calculations, we show that for
optically thick slabs a correlation persists and takes negative
values. Moreover, at smaller optical thicknesses, short- and
long-range correlations coexist, with relative weights that
depend on the optical thickness. We believe these results to be
a step forward for the control of transmission through strongly
scattering media, thus finding applications in sensing, imaging,
and information transfer.

The spatial intensity correlation in a speckle pattern can be
split into three contributions, historically denoted by C;, Cs,
and C3 [11,23], as follows:

C,x)=C(x,x)+ Cyr,¥') + C3(r,1). )

The first term C; corresponds to the Gaussian statistics
approximation for the field amplitude, and is a short-range
contribution, whose width determines the average size of a
speckle spot [16]. C, and C; are non-Gaussian long-range
correlations that decay on much larger scales [23,24]. In the
diffusive regime, and for two observation points lying on the
same side of the scattering medium, these three contributions
have different weights such that C; > Cp, > C5. In the
reflection-transmission configuration considered here, and at
large optical thickness, we show that an intensity correlation
persists and is dominated by C, because of the short-range
behavior of C;. In this case, the long-range character of C; is
conferred by its algebraic decay with respect to the distance
between the two observation points. Moreover, this correlation
is negative, a result that may have implications in the context
of wave control by wave-front shaping. For smaller optical
thicknesses, we also show that a crossover can be found
between regimes dominated by C; and C,, respectively.

The paper is organized as follows. In Sec. II, we study
the reflection-transmission correlation function at large optical
thicknesses. First, we use numerical simulations to compute
the correlation function without approximation and to describe
its main features. Second, we present the analytical calculation
of the C, contribution to the reflection-transmission correlation
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FIG. 1. (Color online) Schematic representation of the scattering
medium. The slab of thickness L and transverse size D is illuminated
from the left by a monochromatic plane wave at normal incidence.
The correlation between the reflected and transmitted speckle patterns
is characterized by the correlation function between the intensities at
points rg (reflection) and ry (transmission).

function in the multiple-scattering regime, for both two-
dimensional (2D) and three-dimensional (3D) geometries,
and show that C; is the leading contribution at large optical
thicknesses. In Sec. III, we study the correlation function
at small optical thicknesses, a regime in which the C,
contribution dominates. In Sec. IV, as a consequence of
the negative value of the correlation that is found in the
multiple-scattering regime, we describe some peculiarities of
the statistical distribution of the product of the reflected and
transmitted intensities. Finally, in Sec. V we summarize the
main results and discuss some implications for the control of
wave transmission through disordered media.

II. REFLECTION-TRANSMISSION CORRELATION
AT LARGE OPTICAL THICKNESS

A. Numerical analysis

In this section we present exact numerical simulations
of wave scattering in the multiple-scattering regime. We
restrict ourselves to a 2D geometry for the sake of computer
memory and time. We consider a slab of scattering material,
characterized by its thickness L and its transverse size D (we
keep D > 6L in order to avoid finite size effects), as depicted
in Fig. 1. Our purpose is the calculation of the correlation
function C(rg,r7), where ry is a point located on the input
surface (reflection) and ry is a point located on the output
surface (transmission).

1. Method

To proceed, we use the coupled dipoles method [25] to
calculate numerically the intensity in the transmitted and
reflected speckle patterns. Repeating the calculations for a
large number of configurations of disorder (positions of
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scatterers) allows us to compute statistics. The system contains
N randomly distributed nonoverlapping point scatterers and
is illuminated by a plane wave from the left at normal
incidence. We deal with TE-polarized waves with an electric
field oriented along the invariance axis of the system (scalar
waves). The resonant point scatterers are described by their
electric polarizability

2r
ki(w — o +iT/2)

a(w) = 3)
where wy is the resonance frequency and I' the linewidth.
This specific form of the polarizability fulfils the optical
theorem (i.e., energy conservation). From the polarizability the
scattering cross section o (w) = kS |o(w)|? /4 and the scattering
mean free path £(w) = [po(w)]~! can be deduced, where
p = N/(LD) is the number density of scatterers. In the
following, we consider scatterers at resonance (@ = wp) in
order to reach large optical thicknesses with a reasonable
number of scatterers (typically a few hundreds). In the coupled
dipoles formalism, the exciting field E; on scatterer number j
is written as [25]

N
Ej = Eo(r) + a(hkj Y _ Go(r; — 1) Ey, (4)

k=1
K

where Gy is the 2D free-space Green function given by Go(r —
r') = (i /4)H." (ko|r — r’|), H" being the Hankel function of
first kind and order zero. Equation (4) defines a set of N
linear equations that are solved by a standard matrix inversion
procedure. Once the exciting field is known on each scatterer,
the field E(r) and the intensity 7(r) = |E(r)|* at any position
r inside or outside the scattering medium can be calculated by
a direct summation using

N

E(r) = Eo(r) + a(@)k§ Y Go(r — r))E;. (5)
j=1

2. Numerical experiment

We have carried out numerical simulations in the multiple-
scattering regime with an optical thickness b= L/l =17.
This choice of optical thickness is limited by the number of
configurations that can be calculated in a reasonable computer
time in order to get a sufficiently accurate statistics to compute
averaged values (requiring typically 10° configurations). The
correlation function Cp,,, obtained from numerical calculation
is plotted in Fig. 2 (red solid line) versus the lateral shift Ar
between the observation points in the reflected and transmitted
speckles (see the geometry in Fig. 1).

Surprisingly, an intensity correlation subsists even for large
optical thicknesses (multiple-scattering regime). Moreover,
the reflection-transmission correlation function at large optical
thickness takes a negative value around Ar = 0. This means
that (§1(rg)81(xrr)) < 0, showing that the probability to have a
dark spot in the transmitted speckle in lateral coincidence with
a bright spot in the reflection speckle (and vice versa) should
be substantial. This property, that might have implications for
the control of wave transmission by wave-front shaping, is
investigated more precisely in Sec. IV.
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FIG. 2. (Color online) Reflection—transmission intensity correla-
tion Cyyy given by the numerical simulations (red solid line) and
analytical correlation C, given by Eq. (29) (blue dashed line).
Multiple-scattering regime with b = 7 and kof = 10.

B. Analytical derivation of the C, reflection-transmission
correlation function

To get more insight on the numerical result presented
above, we present the calculation of the C; contribution to the
intensity correlation function for scalar waves in both 2D and
3D geometries. Intuitively, we expected C; to be the leading
contribution at large optical thicknesses, since C3 is always
negligible compared to C,, and C| vanishes exponentially with
the optical thickness in this particular reflection-transmission
configuration.

For a dilute system such that ko€ > 1, where k = w/c =
27 /X with c the speed of light and A the wavelength in vacuum,
the intensity correlation functions can be calculated analyti-
cally using a perturbative approach. Since the calculation for
reflection-reflection or transmission-transmission correlations
is detailed in textbooks or review articles [2,11,14], we do not
give all the details here but rather focus on the specificity
of the reflection-transmission geometry. For the analytical
derivation, we consider that the transverse size D of the slab
is infinite.

1. Average intensity

To compute the correlation function C;, we first need to
compute the average intensity. The starting point is the Bethe-
Salpeter equation that reads [2,14]

(E(r,0)E*(r,0))
= (E(r,0))(E*(r',»)) +/(G(l‘,rl,w))(G*(r',l‘z,w))

x T'(r1,r2,13,r4,w){E(r3,w0) E*(rs,w))dridrydrsdr,.
(6)

In this equation, (G(r,r’,w)) is the average Green function that
links the average field (E(r,w)) to a source dipole p located at
position ¥ via (E(r,w)) = puow?(G(r,r’,w))p. The operator
I'(ry,ry,r3,r4,) is the irreducible vertex that contains all
multiple-scattering sequences connecting (r3, rg) to (ry, rp).
The exact calculation of this complex object is out of reach, but
an approximate expression to first order in the small parameter
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1/(kof) and for independent scattering, known as the ladder
approximation, can be derived [14]. Omitting the frequency
dependence for simplicity in the following, it reads

[(ry,ro,r3,ry) = yo(r; —r)d(rs —ry)d(ry —r3), (7)
where

_ 4ko/¢ for 2D TE waves (2D),
"~ 4n /¢  for 3D scalar waves (3D). ®
Plugging Eq. (7) into Eq. (6) yields
(I(r)) = (EM) > +y f (G, ) PUE))dr . (9)
——

Ip(r)

Ip(r)

Physically, this closed equation means that only contributions
for which E and E* follow the same scattering path have
a significant weight in the average intensity (all cross terms
vanish). The first term /5 in Eq. (9) is the ballistic (or coherent)
component of the average intensity and the second term Ip
is the diffuse part. In order to get explicit expressions for
these two quantities, we need to compute the average Green
function, or equivalently, the average field. As a consequence
of the Dyson equation [14], in the independent scattering limit,
the average Green function obeys a propagation equation in an
effective homogeneous medium, defined by an effective wave
vector kerr. We have

LHY (kewlt))  (2D),

(G(r)) = expzfmlrl) (D). (10)
and
(E(r)) = Eqexp(ikefiz), (11

where ke = ko + i/(2¢€) to first order in 1/(ko€) and z is the
coordinate along the direction normal to the slab. The ballistic
intensity is readily deduced:

I3(z) = Ipexpl—z/¢].

Regarding the diffuse intensity /p(r), we can rewrite Eq. (9)
in the following way:

(12)

Ip(r) = )//I(G(r,l"))lz[ls(l‘/)+Io(r’)]dr/- (13)
An analytical expression of the diffuse intensity can be
obtained in the diffusive limit where |r —r’| > £. Making
use of the translational invariance of the medium, the Fourier
transform of Eq. (13) reads

Ip(q) = vy A(Q[Ip(q) + Ip(q)], (14)
where
— (2D),
A = = x VI (15)
Y arct:rz(q() (SD)

As we consider large distances, we can perform a second-order
Taylor expansion of 1/A(q) for g¢ < 1, which leads in the real
space to a diffusion-type equation

2

£
_EA[D(I') = I(r), (16)
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where d € {2,3} is the space dimension. Solving Eq. (16) in a
slab geometry, we obtain

I()d 20
Ltz—o)f14+2
L+ZZO[( + Z)< + z)

L
+(z +Zo)<1 — %0) exp <_Z)] — Ipd exp (—%)

a7

Ip(z) =

where 7 is the extrapolation length needed to account for the
boundary conditions at the input and exit surfaces of the slab
[26,27]. For a dilute index-matched slab, its expression is given
by [27,28]

7€/4  (2D),
0= {2@/3 (D). (18)

This expression of the diffuse intensity Ip is a priori valid
for distances z such that z > ¢, for which the diffusion
approximation holds, but it surprisingly gives reasonably
reliable results even for z < £. Adding the ballistic term, it
also gives reliable results for the full average intensity

(1(z)) = 1p(z) + Ip(2), 19)

even for relatively small optical thicknesses.

2. Long-range C, contribution

The intensity correlation function is a fourth-order corre-
lation in terms of field amplitude. Physically, a correlation
is created when the two pairs of fields that constitute the
intensities in the correlation function share a common history
in the scattering process. Regarding C,, the crossing occurs
during the propagation of the intensities inside the system and
is described by a complex object known as a Hikami vertex
[29], and denoted by H in the following. The propagation
of the intensity between the slab surfaces and the crossing is
described by the ladder operator, denoted by L in the following.
The expression of C is given by [11,12,14,29]

1
(I(rp))(I(rr))]
x dp1dpad p3d psl(G(rg.r2))*[(G(rr.ra))|*
X L(ry,02)L(rs,04)H(p1,02,03,04)

x L(py1,r1)L(p3.r3)[(E()) P[(E(r3))*, (20)

which can be rewritten diagrammatically in the following
form:

Co(rg,rr) = /drldrzdr3dr4

© rn

© © e

2y
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where the hatched box is the Hikami vertex and the other boxes
are the ladder operators. Thick lines represent the average
Green function, and thick dashed lines stand for the average
electric field.

The ladder operator is defined as

Larx)=y8c—1)+y / G, e )L, ¥)dy" (22)

and is represented diagrammatically as

+ I +oee, (23)

where circles and thick horizontal solid lines represent scat-
tering events and average Green functions, respectively, the
top line standing for the field amplitude E and the bottom line
for its complex conjugate E*. Thin vertical solid lines link
scattering events involving identical scatterers.

An analytical expression of the ladder operator can be
obtained in the diffusive limit previously used for the compu-
tation of the average intensity. Making use of the translational
invariance along the direction of the slab interface, the Fourier
transform of the ladder operator with respect to transverse
variables can be obtained from Eq. (22) and reads

L(r,v)= | +

LKooy = 4 SinhK @e + 2] sinhl K (L +20—2.)]
2.2) = 5p sinh[K (L + 220)] ’
24

where z. = min(z,7’), z- = max(z,z).
The Hikami box can also be calculated in the limit ko€ > 1,
and its expression reduces to [11,12,14]

4
H(p1.02.p3.p4) = h/HS(p = PVp, - Vpdp, (25
i=1

where

65 /(16k3 2D),
h= /(1) D) (26)
¢/(247k2)  (3D).

To have an explicit expression of C,, we first compute the
integrals involving r; and r3 using

/ L(e.c) [ (EQ) Y = y (1(1)). @7

As we deal with large optical thicknesses, we can replace
the average intensity by its diffuse component. Regarding
the integrals involving r, and rs, we assume that the ladder
operators vary slowly at the scale of the scattering mean-free
path £. This amounts to replacing r; by rg and r4 by rr in the
ladder positions. We end up with an explicit expression of the
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C, contribution to the correlation function, given by

Cr(rp,rr) =

" L? sinh(gzo/L)?
(L + 2z0)? sinh[g(1 + 2z9/L)]*’

where
_16_cos(gAr/L) (2D)

A 2
F(q r)::P4_@} x g (29)

The expression of the C, contribution to the reflection-
transmission correlation function, together with its comparison
to full numerical simulations, is the main result of this paper.
The dependence of the amplitude on the system size L is
approximatively L'~?, with d the dimension of space. This
shows that even at large optical thicknesses, a correlation
subsists between the intensities measured in the transmitted
and the reflected speckles and that this correlation is dominated
by a contribution of the C; type.

It is important to keep in mind that this expression has been
derived in the framework of the diffusion approximation (in
particular, bulk average Green functions have been used). Its
validity in the geometry considered here, where both reflected
and transmitted intensities contribute, is checked by compar-
ison to full numerical simulations in Fig. 2. It is interesting
to note that the analytical and numerical calculations are in
very good quantitative agreement, showing that the diffusion
approximation, used to derive the analytical results, is very
accurate even for an optical thickness b = 7 (that is not very
large) and a geometry involving a reflected intensity (that
always involves short scattering paths).

We have seen that C; decays algebraically with the system
size L. Thus it is interesting to analyze the behavior of the full
correlation function at smaller optical thicknesses, and in the
crossover between the multiple- and single-scattering regimes.
This problem can be addressed numerically by using the
numerical method described previously in various scattering
regimes and is the subject of the following section.

III. REFLECTION-TRANSMISSION CORRELATION
AT SMALL OPTICAL THICKNESS

A. Numerical analysis

We consider a small optical thickness b = 0.5, correspond-
ing to the single-scattering regime. The reflection-transmission
intensity correlation function calculated numerically in this
regime is shown in Fig. 3 (red solid line). The large oscillations
observed on a scale on the order of the wavelength are
not described by the C, contribution and are expected to
be a signature of the short-range C; contribution. To check
the validity of this assumption, we have to compute the
C, contribution to the correlation function. At small optical
thickness, a quantitative calculation would require to go
beyond the diffusion approximation and to account properly
for the boundary conditions [30]. Since our purpose in this
section is only to support qualitatively the analysis of the
general trends observed in the numerical simulations using
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—Is 2 dg (qAP\[[ of, | 220 , 22}
(I(xR)){I(rr) /0 2w (T) H‘f (1 T ﬁ) + 1} sinh(¢) — ¢ cosh(q)}

(28)

(

a simple model, we keep using the diffusion approximation to
estimate the C; contribution.

B. C; contribution and specificity of the reflection-transmission
configuration

In the scattering sequences picture, the C; correlation
is created by interchanging the amplitudes between two
independent ladders at the last scattering event. The C,
contribution reads

1
m/drldrzdl‘3dr4
X (G*(rg,rs))(G(rr,re))(G(rg,r2)){(G*(rr,r2))
x L(ry,r)L(rs,r3) (E@)) PHE@)) >, (30)

Ci(rg,rr) =

In terms of diagrams, Eq. (30) can be rewritten as

©

Ci(rg,rr) = rr prr. (31

©

In Eq. (30), the scattering of both pairs of fields from points r;
to rp and from rj to ry, respectively, is described by a ladder
propagator. The mixing of amplitudes at the last scattering
event is represented by four different average Green functions.
The integrals in Eq. (30) can be factorized, leading to

|B(rg,rr)|?

I VI TG (32)
(I(rg)){I(rr))

Ci(rg,rr) =

0.03

0.02
0.01

— 0 REREARRY
B AR

S N v

~—

O -0.01
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FIG. 3. (Color online) Reflection—transmission intensity correla-
tion Cyym given by the numerical simulations (red solid line) and
analytical correlation including all terms C; + C| + C, (blue dashed

line). Single-scattering regime with b = 0.5 and ko¢ = 10.
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where

B(errT)z/(G(errZ»(G*(rTvU))

x L(ry,r)[(E(r))) *dr drs. (33)

Equation (32) shows that C; is the square of the scattered
field correlation function. Indeed, C; can also be seen as
the correlation that would be observed for a field with
Gaussian statistics, for which this factorization holds [31].
Starting from Eqgs. (32) and (33), the usual way to derive the
analytical expression of C; consists in replacing r, by rr
(for a speckle computed in transmission) or r, by ri (for a
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speckle computed in reflection) in the ladder positions. In the
reflection-transmission geometry, this simplification cannot be
performed because the relative distance between the points ry
and rg can be very large compared to the scattering mean free
path £. However, in order to get an explicit expression, we can
make use of Eq. (27), which leads to

B(I‘R,I‘T)=/)/(G(rR,rz»(G*(rr,rz)W(l‘z))dl‘z- (34)

The integration over r, is then performed using the residue
theorem. (The details are given in Appendix.) This leads to

|
exp[—(ik’ + k)L — iK - Ar] [d{(l + z0/OM1 + (1 — z0/€) exp(—L /) M>}
4k + k') L +2z Qm)-1

where My, M,, M3, k', and k" are given by Eqgs. (A8)—(A10), and Eq. (A4), respectively. The last integral over K is performed
numerically.

In the specific geometry considered here, another contribution has to be added in which the ballistic intensity contributes as
one of the intensities involved in the correlation function [32]. Indeed, the ladder operator involves at least one scattering event
and does not account for situations in which there is no scattering event before the field interchange. Such contributions to the
correlation function can be important for small optical thicknesses where the ballistic contribution is not negligible. This leads

B(rg.rr) = Vlof —(d - 1)M3} (35)

to a correction to the C; correlation function, that we denote by C’, and whose expression is

Ci(rg,rr) =

1
{(1(rp)){I(rr))

In terms of diagrams, the above expression can be rewritten as

-y

- oy, ~

C‘i (rR7 rT) = rr
(37)

Making use of the quantity B(rg,rr) defined in Eq. (33), we
obtain

Q *
Cl(rr,rr) = 2R[(E (rR)><E(rT))B(rR7rT)]. (38)
(I(rg)){I(rr))

It is important to note that the C| contribution introduced
here, and that involves the average field, is not negligible
compared to the usual C; contribution. This correction should
be added to the C; contribution when the product of the
ballistic fields (E*(rg))(E(rr)) cannot be neglected, as in the
reflection-transmission geometry at low optical thickness, or in
the reflection-reflection geometry at any optical thickness. We
can show from Eq. (35) that the C; and C| contributions to the
correlation function decrease exponentially with the optical
thickness b = L/£. This behavior explains why C, dominates
at large optical thickness. But in the single-scattering regime,
an important contribution of the Cy + C| term is observed.
This is clearly seen in Fig. 3 (blue dashed line), in which
the sum of the three contributions C; + C; + C, calculated
analytically in the same two-dimensional geometry used for
the numerical simulation is plotted. Qualitatively, the behavior

(E(rp)(E*(rr)) /(G*(I‘R,l‘z))(G(rr,l‘z))L(rz,rl)l(E(l‘l))lzdl‘ldl‘z +c.c. (36)

(

observed in the numerical simulation is fairly reproduced by
the analytical approach.

Moreover, since the C; + C{ contribution decays exponen-
tially with the medium thickness L, a crossover is expected
towards a regime dominated by C, when the optical thickness
increases. This also shows that the reflection-transmission
geometry studied here may be relevant to put forward
experimentally the influence of the C, contribution. (In the
pure reflection or transmission geometries, the C contribution
is always the leading contribution.)

IV. STATISTICAL DISTRIBUTION OF REFLECTED
AND TRANSMITTED INTENSITIES

Analytical and numerical results at large optical thick-
ness have shown that a correlation between reflected and
transmitted intensities exists. Surprisingly, this correlation
function takes negative values at around Ar = 0. Having
(61(rg)d1(rr)) < 0 for Ar = 0 qualitatively suggests a high
probability to have a bright (dark) spot in the transmitted
speckle in coincidence with a dark (bright) spot in the reflected
speckle. In order to address this question in more quantitative
terms, we have studied the full statistical distribution of the
intensities. More precisely, from the numerical simulations,
we have extracted the statistical distributions of the product of
the fluctuating part of the intensities at Ar = 0, defined as

81(rg)di(rr) }
(Ip)(I(rr)) ]

whose average value is the intensity correlation C(rg,rr) at
Ar =0.

PIRsIr) = P[ (39)
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FIG. 4. (Color online) Statistical distribution of the product of the
normalized reflected—transmitted intensities P(81x817) at Ar = 0.
Multiple-scattering regime with b = 7 and ko€ = 10.

The statistical distribution P(871x817) obtained for b =7
and kof = 10 is shown in Fig. 4. The distribution exhibits an
asymmetric shape, with amost likely value at § 1 (rg )8 (rr)=0.
Due to this asymmetric shape, the distribution cannot be
simply characterized by its first moments. In particular, for
b =17 and kol = 10, we find that the probability to have
transmitted and reflected intensity fluctuations with opposite
signs P[8I(rg)§I(rr) < 0] = 0.47, while we could have
expected a much larger value (above 0.5) from a naive
argument based on the negative sign of the correlation
C(rg,r7). Nevertheless, it is interesting to study statistics
under some constraints. In particular, we have studied the
probability of having 6/(r7) < O (a spot in the transmitted
speckle darker than the average intensity) under the assumption
that §1(rg) > n{l(rg)), withn € {0,1,2} (i.e., for a coinciding
spot in the reflected speckle with increasing brightness). The
results are summarized in Table I. Interestingly, we find that
the probability P[§1(rr) < 0] increases substantially with the
brightness of the reflected speckle spot, information that is not
contained in the intensity correlation function. Consequently,
if the reflected intensity in a speckle spot is large compared
to the average reflected intensity, the transmitted intensity in
the coinciding spot in the transmitted speckle is smaller than
the average transmitted intensity with a large probability. This
result may have implications in the context of light focusing

TABLE I. Probability of having §1(xrg)é1(rr) < 0 (p), of having
81(rr) < 0 (q) at different optical thicknesses (b), and under some
constraints (§1(rg) > n{l(rg)) with n € {0,1,2}) for Ar =0 and
kol = 10.

q
b p g 8I(xg)>0 8I(rg) > (I(rg)) 8I(rg) > 2(I(rg))
0.5 0.48 0.57 0.57 0.62 0.67
1 050 0.61 0.64 0.69 0.74
2 047 0.64 0.64 0.67 0.69
4 047 0.65 0.65 0.67 0.67
7 0.47 0.66 0.66 0.67 0.67
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through opaque scattering media by wave-front shaping.
Indeed, maximizing the intensity in a reflected speckle spot
might, with a high probability, lead to a minimization of the
intensity in the corresponding transmitted spot. A precise study
with optimized wave fronts (beyond plane-wave illumination)
is left for future work.

V. CONCLUSION

In summary, we have studied analytically and numerically
the spatial correlation between intensities measured in the
reflected and transmitted speckles generated by a slab of
disordered scattering medium. We have demonstrated the
existence of a reflection-transmission correlation. At large
optical thicknesses, the spatial correlation persists and is
dominated by the C; contribution, thus exhibiting a long-range
behavior. Interestingly, this correlation takes negative values.
At small optical thicknesses, the correlation is dominated by
a C-type contribution, which contains the usual C; term and
an additional term C| involving the ballistic intensity.

The statistical connection between transmitted and reflected
speckles might be of interest for wave-front shaping methods
used to focus and image through scattering media. Since for
practical implementations only the reflected speckle can be
measured and controlled, a knowledge of the probability to get
a bright (dark) spot in the transmitted speckle in coincidence
with a dark (bright) spot in the optimized reflected speckle
could be a great advantage. As a first step towards this goal,
we have studied the statistical distributions of reflected and
transmitted intensities and have identified situations in which
the probability of coincidence of bright and dark spots on
opposite sides of the medium is high.

Finally, a refinement of the analytical model would be
beneficial to deal with optical thicknesses for which the
diffusion approximation fails to give quantitative results. One
possibility could be to develop a semianalytical approach
(coupling analytical expressions and numerical calculations)
based on the radiative transfer equation [33] that accurately
described short and long scattering paths [34].
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APPENDIX: ANALYTICAL CALCULATION OF B

In the reflection-transmission configuration, the usual
approximation used to calculate C; breaks. Indeed in
transmission-transmission or in reflection-reflection one usu-
ally manages to separate in Eq. (33) integrals over r, and r,
because of the small distance between the two points where we
compute the correlation. In our configuration, because of the
large distance between these two points, we have to explicitly
calculate B(rg,rr).
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Using the symmetry of the problem, taking the Fourier
transform of the two Green functions over their transverse
coordinates, we simplify Eq. (33) in the following way:

B(ra.rr) = / Y (1) (G2 K)) (G (22 — LK)

. dK
X eXp[—lK . Ar]dZQW, (Al)

where z, is the depth at which the two fields separate. To
calculate the expression of the Green function in this mixed
domain, one can see that

dk
(G(z2.K)) = / (G0 K) explikes ]

. /‘ explikzo] dk
K2+ K2 — k2 2m
Equation (A2) can be calculated using the residue theorem
using the fact that kgff = ké + iko/¢ and noting that

1 1
K24+ K2 — k% (k— k) +ky)’

ki = \/ki +iko/t — K* = k' +ik” (A4)

is the pole with a positive imaginary part (i.e., k” > 0). Thus
Eq. (A2) can be calculated with the residue theorem by
integrating over a contour composed of the real axis and an
upper half circle, the radius of which tends to infinity. We
obtain that

(A2)

(A3)

where

(G(22.K)) = # expliky 22). (A5)
+
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Following the same steps we can show that

—i
(G*(z2 — L,K)) = —— expliki(z2 — L)], (A6)
2kz
leading to
expl2ik’z5] )
Brer = [ () gz oy OPL-KLL]
) dK
X exp[—zK . AI‘]dZQW. (A7)

Using the expression of the average intensity, we have to
perform three integrations, denoted respectively by M, M>,
and Mj5:

M,

L
/ (L + zo — 22) expl2ik’z2]dz2
0

1+ 2ik'(L + zo) — exp[2ik’ L1(1 + 2ik'z0)

= 172 , (A8
L
M, = / (20 + 22) expl2ik 221d 2>
0
_ 2ik'zo — 1 + exp[2ik’ L[1 — 2ik'(L + Zo)]7 (A9)
K2
L 22
M; = / exp (—7> exp[2ik'z2]dzo
0
1-— 2ik'L —L/e
.y exp[2ik'L] exp[—L/ ]. (A10)

1 —2ik'¢

With these expressions, we can rewrite the final expression of
B(rg,rr) as a Fourier transform given by Eq. (35).
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