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The propagation of monochromatic light through a scattering medium produces speckle patterns in
reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through
thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process,
information is not lost but distributed among many degrees of freedom that can be resolved and
manipulated. Here, we demonstrate experimentally that the reflected and transmitted speckle patterns are
robustly correlated, and we unravel all the complex and unexpected features of this fundamentally non-
Gaussian and long-range correlation. In particular, we show that it is preserved even for opaque media with
thickness much larger than the scattering mean free path, proving that information survives the multiple
scattering process and can be recovered. The existence of correlations between the two sides of a scattering
medium opens up new possibilities for the control of transmitted light without any feedback from the target
side, but using only information gathered from the reflected speckle.
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I. INTRODUCTION

In multiply scattering materials, the random inhomoge-
neities in the refractive index scramble the incident wave-
front, mixing colors and spatial degrees of freedom, resulting
in a white and opaque appearance [1]. Under illumination
with coherent light and for elastic scattering, interference
produces large intensity fluctuations that are not averaged
out by a single realization of the disorder, resulting in a
seemingly random speckle pattern [2]. In principle, the
speckle pattern encodes all the information on the sample
and the incident light [3], and complete knowledge of the
scattering matrix allows one to reverse the multiple scattering
process and to recover the initial wavefront, thus permitting
imaging through turbid materials [4,5].
Speckle patterns are not as random as they appear at

first sight. Interference between the possible scattering
paths in the medium is known to produce spatial correla-
tions between the intensity measured at different positions

[6–8], and correlations of different ranges have been
identified [9]. Short-range correlations determine the size
of a speckle spot, while long-range correlations emerge as a
consequence of constraints such as energy conservation or
reciprocity [10–12]. The idea of using spatial correlations
for imaging has recently emerged [13,14], but it has been so
far limited to the optical memory effect [15], a correlation
of purely geometrical origin.
At first glance, as transmitted and reflected waves are

expected to undergo very different multiple scattering
sequences, correlations between transmitted and reflected
wavefronts are expected to quickly average to zero. Very
little attention has been given to the cross-correlation
between the intensities measured at two points on opposite
sides of the scattering medium (i.e., in the reflected and
transmitted speckles patterns), and their existence has only
been mentioned in passing [16,17]. However, a recent
theoretical study suggested that a long-range correlation
should survive even for thick (opaque) scattering media
[18]. The existence of this reflection-transmission (R-T)
correlation suggests that one could noninvasively extract
information on the transmitted speckle from a measurement
restricted to the reflection half-space. As the discovery of
new speckle correlations, like the recently described shift
memory effect [19], has been systematically translated into
novel imaging techniques in the past [20], we suggest that
the reflection-transmission correlation we describe here
will be of fundamental importance for future developments
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of applications based on reflection measurements, such as
in vivo biological imaging [21].
In this work, we identify the nontrivial conditions required

to detect the correlation between transmitted and reflected
speckle patterns and report the first experimental proof of its
existence. Furthermore, we show that this correlation is
robust and we provide a complete understanding of all its
complex features, for scattering materials with thickness L
and scattering mean free path l covering the entire range
from single scattering (L≲ l) to diffusive transport
(L ≫ l). The data are supported by 3D numerical simu-
lations and by a theoretical analysis of the line shape of
the correlation function, as well as its dependence on the
experimental parameters. The experiments and the theory
embrace the complexity and the richness of the phenome-
non, thus opening the way to its use as a basic ingredient in
the design of new approaches for sensing, imaging, or
communicating through opaque scattering media.
Although major properties of speckle patterns are well

captured by modeling wave propagation with Gaussian
random processes [22], we will show that the cross-sample
correlation emerges from a non-Gaussian correction to
the speckle properties. As a consequence, the correlation
function is always small in amplitude but long range. In
particular, it does not contain any feature oscillating at the
wavelength scale. In addition, we will demonstrate that the
correlation function is independent of the disorder strength
in the regime of large optical thickness in which the
medium is opaque. This means that changing the scattering
mean free path l, for example, by changing the density of
scatterers, does not affect the correlation function. Hence,
the dimensionless conductance (proportional to l) is not
the crucial parameter governing the cross-sample correla-
tion measured here, contrary to the behavior of long-range
correlations measured in transmission, which have been
extensively studied [7,8]. Furthermore, we will show that
the information content of the correlation function between
reflection and transmission crucially depends on the dis-
tance to the sample. This is also in sharp contrast with
long-range transmission correlations for which far-field
and surface correlations are essentially related by Fourier
transforms so that they carry the same information. Finally,
we will identify a regime of moderate optical thickness,
where the correlation function becomes anisotropic and
keeps a memory of the illumination angle. This memory
effect, due to long-range correlations, has never been
detected before and is fundamentally different from the
well-known memory effect observed in transmission or
reflection and resulting from Gaussian statistics [15].

II. MEASUREMENT OF THE TRANSMISSION-
REFLECTION CORRELATION

The experimental apparatus is shown in Fig. 1(a). A
monochromatic wave (2-mW He-Ne laser) is incident at
an angle of approximately 45° on a suspension of TiO2

particles in glycerol, held between two microscope slides to
form a scattering slab. The slab thickness L is controlled
using calibrated spacers, and the mean free path l is
controlled by varying the TiO2 concentration (see
Appendix A). Typical samples with different optical thick-
ness b ¼ L=l, from semitransparent to fully opaque, are
shown in Fig. 1(b). For a set of given L and l, we record
the intensity patterns RðrÞ and TðrÞ on the surface of
the sample in reflection and transmission, respectively,
with two identical imaging systems, each composed of a
10× microscope objective, a planoconvex 150-mm lens,
and a CCD camera (Allied Vision Manta G-146). As the
samples are liquid, the resulting speckle patterns change in
time due to the Brownian motion of the scatterers, with a
decorrelation time τ that depends strongly on the sample
thickness. Choosing an integration time <τ, and a time
interval between successive measurements >τ, allows us to
measure speckle images RðrÞ and TðrÞ for a large ensemble
of configurations of the disordered medium. For all our
experiments, the integration time was set to 1 ms. An
example pair of images measured for a given realization of
disorder is shown in Figs. 2(a) and 2(b). For each pair of R
and T, we calculate the correlation function CRT , defined as

CRTðΔrÞ ¼ hδRðrÞδTðrþ ΔrÞi
hRðrÞihTðrþ ΔrÞi ; ð1Þ

FIG. 1. (a) Experimental setup. A scattering slab, formed by a
suspension of TiO2 particles in glycerol, is illuminated by a laser
beam incident at an angle of approximately 45°. The speckle
patterns on the two surfaces, Tðx; yÞ and Rðx; yÞ are recorded
with two identical imaging systems. (b) Examples of samples
with thickness L ¼ 20 μm but different TiO2 concentrations:
from left to right, 5 g=dm3, 10 g=dm3, and 40 g=dm3, which
correspond to a mean free path of (60, 20.4, and 9.8) �2.5 μm,
respectively.
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where Δr ¼ ðΔx;ΔyÞ is a transverse shift between the
images, and δf ¼ f − hfi denotes the statistical fluctuation
of a random variable f, with h·i the ensemble average. In
the experiment, the averaging process is performed in two
steps (see Appendix B). First, a cross-correlation product
between δR and δT, i.e., the integral

R
δRðrÞδTðrþ ΔrÞdr,

is taken for each realization of disorder. Plotted as a 2D
map, the correlation product appears random, with a
granularity similar to that of a speckle image [Fig. 2(c)].
Second, an ensemble averaging over the realizations of the
disorder is taken, resulting in the appearance of a clear
pattern in CRTðΔx;ΔyÞ [Fig. 2(d)], and demonstrating
that the transmitted and reflected speckle patterns are
indeed correlated.
Speckle correlations are commonly divided into three

categories: short-range correlations (C1) that decay with the
separation between the observation points on the scale of the
wavelength, long-range correlations (C2) that have a poly-
nomial decay, and infinite-range correlations (C3) [8,9]. The
short-range correlation C1 corresponds to the approximation
of a field obeying Gaussian statistics [2], while C2 and C3

are non-Gaussian corrections. An additional infinite-range
correlation (C0) appears under illumination by a point source
located inside the medium [23]. One can see in Fig. 2(d) that
the line shape ofCRTðΔrÞ is much wider than a speckle spot,
indicating that the dominant contribution to this correlation
is long range in nature.
In order to characterize the line shape of the correlation

function, and to probe its dependence on the sample

parameters, we measured CRTðΔrÞ for different values of
l and L, covering the full range from the single scattering
(L≲ l) to the multiple scattering (L ≫ l) regime. The
results are summarized in Fig. 3 (center and right columns),
where both 2D maps CRTðΔx;ΔyÞ and cross sections along
the line Δy ¼ 0 (indicated as a dotted line in the 2D maps)
are displayed. It is interesting to note that both the shape and
the sign of the reflection-transmission correlation substan-
tially depend on L and l. In the single scattering regime
(optical thickness b ≲ 1), CRT is dominated by a narrow
peak (still much larger than a single speckle spot) with a
negative side lobe. In themultiple scattering regime (b ≫ 1),
CRT is dominated by a wide negative dip.
The short-range contributions to CRT (C1) decay on the

scale of the wavelength [2] and are negligible in all
measurements since, in the reflection-transmission geom-
etry, the observation points are separated by a distanceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ jΔrj2

p
, which is much larger than λ for even the

thinnest sample (see Appendix C for a detailed discussion).
Hence,CRT is necessarily a long-range correlation of theC2

type. It is interesting to note that the reflection-transmission
geometry naturally favors the observation of long-range
correlations, without requiring any postprocessing to
remove the C1 contribution that dominates in the pure
transmission geometry [10,11,24,25]. Another feature of
the experiment is the illumination/detection geometry that
excludes any contribution from specularly reflected and
transmitted fields. Indeed, in the geometry in Fig. 1(a), the
detectors do not collect the specularly reflected and trans-
mitted averaged fields, but only the scattered light, i.e., the
intensities of the fluctuating fields TðrÞ ¼ jδETðrÞj2 and
RðrÞ ¼ jδERðrÞj2. This permits us to track various long-
range correlations all the way from b≲ 1 to b ≫ 1 by
avoiding spurious interference terms in the intensity corre-
lation function that would not be negligible in the single
scattering regime. The contribution of the averaged fields
to the full field correlation function is discussed in
Appendix D.

III. NUMERICAL SIMULATIONS

To support the experimental data, we have performed
full numerical simulations of wave propagation in three-
dimensional disordered media. In the simulations, the
samples consist of slabs of dipole scatterers with random
positions. The scalar wave equation is solved numerically
using the coupled-dipole method [26]. Since the measure-
ments are not resolved in polarization, and since the input
light is expected to depolarize on a length scale on the order
of l [27], we neglect polarization and numerically solve
the scalar wave equation. To limit the number of scatterers
and save computational time, the polarizability α of each
scatterer has been chosen to maximize the scattering cross
section σs ¼ k4jαj2=4π, leading to α ¼ 4iπ=k3, where k is
the wave number. Adjusting the number density of

FIG. 2. Typical measured speckle patterns in transmission (a)
and reflection (b), for a sample with L ¼ 20 μm and l ≃ 20 μm.
(c) Cross-correlation product between the speckle patterns in (a)
and (b). (d) Correlation function CRTðΔx;ΔyÞ obtained after
additional ensemble averaging from 104 realizations of the
disorder. The long-range character of the correlation function,
which extends far beyond the size of a speckle spot, is clearly
visible.
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scatterers ρ, we can vary the scattering mean free path
l ¼ 1=ρσs and simulate different kinds of samples. Solving
numerically the coupled-dipole equations, we compute the
scattered field at any point on the input and exit surfaces of
the slab and deduce the correlation function CRTðΔrÞ. The
ensemble averaging is performed by computing the field
for N realizations of the positions of the scatterers. N
should be sufficiently large to satisfy CRT ≫ σ=

ffiffiffiffi
N

p
, where

σ is the standard deviation of the unaveraged correlation
function. In the multiple scattering regime, where CRT ∼
1=ðkLÞ2 (see below) and σ ∼ 1, we get N ≫ ðkLÞ4. As an
example, for kl ¼ 10 and b ¼ 1.5, we have used 2685
dipoles and N ¼ 2.6 × 107 configurations. The results of
the simulations are displayed in Fig. 3 (left column) and are
in very good agreement with the experimental data. The
general shape of the correlation in the regimes b < 1, b ≃ 1,
and b > 1 is well reproduced in the simulations. It is also
worth noting that, in the experiment, N must be replaced by
the effective number of realizations Neff ¼ NAL−2 ≫ N
that takes into account the spatial averaging, with A the

integration area in the speckle images. Taking advantage of
the small decorrelation time of the medium and the large
field of view of the camera, this effective number can be
made large at will, allowing us to probe the reflection-
transmission correlation for sample thicknesses inacces-
sible in the simulations.

IV. THEORETICAL ANALYSIS

In order to refine the analysis, and to get more physical
insight, we have also used a formal perturbation theory, in
which the correlation function CRTðΔrÞ defined in Eq. (1)
is directly computed from a statistical ensemble averag-
ing, without going through the intermediate cross-
correlation product used for the experimental data.
Both averaging processes coincide provided that l ≫ λ,
a condition that is always satisfied in our experiments.
Formal perturbation theory uses 1=kl as a small parameter
and relies on a diagrammatic formalism that allows
one to derive explicit expressions of intensity correlation
functions [6–8]. In the reflection-transmission geometry,

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Average reflection-transmission correlation function CRT for different values of L and l and the optical thickness b ¼ L=l.
Left column: 3D numerical simulations of 2D maps of CRTðΔx;ΔyÞ. Center and right columns: Experimental results. For clarity, both
2D maps of CRTðΔx;ΔyÞ and cross sections along the line Δy ¼ 0 (indicated as a dotted line in the 2D maps) are displayed. Two
regimes are identified. For moderate optical thickness (b≲ 1), the correlation function is dominated by a narrow peak with a negative
side lobe. For large optical thicknesses (b > 1), the correlation function is dominated by a wide negative dip.

I. STARSHYNOV et al. PHYS. REV. X 8, 021041 (2018)

021041-4



care must be taken to properly account for leading
contributions [16,28].
Let us first discuss the regime of large optical thickness

L ≫ l corresponding to Figs. 3(f)–3(i). Strikingly, we
observe in this regime that CRTðΔrÞ is negative, in agree-
ment with the prediction in Ref. [18]. This means that, for
every bright spot in reflection (transmission), the corre-
sponding area in transmission (reflection) is more likely
to be darker, and vice versa. This feature is consistent
with flux conservation arguments. Indeed, defining T ∝R
TðrÞdr and R ∝

R
RðrÞdr, energy conservation imposes

T þ R ¼ 1 for a nonabsorbing medium, from which
it follows that

R
CRTðΔrÞdΔr ∝ hδTδRi ¼ −hδT2i < 0.

Note that the existence of negative long-range C2 corre-
lations has been previously pointed out in Refs. [17,29].
We stress that the previous simple flux conservation

argument imposes a global constraint on the correlation,
but does not determine its sign for each position Δr. Only a
full theoretical calculation accounting for the interferences
between crossing paths can give the full line shape of
CRTðΔrÞ. Nonetheless, an intuitive understanding of the
local sign of the reflection-transmission speckle correlation
can be built in the following way. In a thick scattering slab,
interferences create large fluctuations of the wave intensity
at the scale of the wavelength (bulk speckle pattern). These
intensity fluctuations create local fluctuations of the energy
flux that act as a source term for the diffusive transport of the
intensity towards the medium boundaries. This mechanism
is formally analogous to that of particle diffusion driven by
Langevin forces in a molecular fluid [30,31]. Because of
local flux conservation, a positive flux fluctuation pointing
towards the transmission interface has to be compensated on
average by a negative fluctuation pointing towards the
reflection interface, giving rise to a local negative correla-
tion. This analysis shows that the existence of R-T corre-
lations does not rely on global energy conservation, so that
we expect the correlation to be robust against absorption.
In Appendix E, we have refined the theoretical analysis

performed in Ref. [18] in the regime L≳ l ≫ λ. We find
that both the amplitude and the width of the correlation
function depend on L and l, as in the experimental data in
Figs. 3(f)–3(i). For L ≫ l, the dominant diagrams belong
to the class represented in Fig. 4(a), which are typical of
long-range C2 correlations. They predict a correlation
function that is isotropic, independent of the angle
of incidence, and scales as CRTðΔrÞ ¼ CRT

2 ðΔrÞ ¼
−fðjΔrjÞ=ðkLÞ2, where f is a dimensionless function that
decays on a range jΔrj ≃ L [18,32]. This long-range
character of the correlation function originates from the
crossing of two diffusive paths that probe a transverse
distance L before escaping, as represented in Fig. 4(a).
Note that this path crossing is the analog of the source term
in the Langevin picture mentioned above. Moreover, the
correlation function in this regime is independent of the
disorder strength kl, which makes it strikingly different

from that observed in a pure transmission geometry, for
which CTT

2 ∼ 1=½ðklÞðkLÞ� ∝ 1=g, where g is the dimen-
sionless conductance of the sample [9]. Another important
difference between CRT

2 and CTT
2 is the evolution of their

information content with respect to the detection scheme.
Although CTT

2 contains the same information whether it is
measured on the sample surface or in the far field, this is not
the case for CRT

2 . Indeed, in the far field, we have
CRTðkb;kb0 Þ ∼

R
CRTðΔrÞdΔr ¼ const for any pair of

observation directions kb, kb0 , as the information content
is spread uniformly over all degrees of freedom. We give
a more detailed explanation of this phenomenon in
Appendix E. For this reason, we focus our discussion on
the correlations measured on the sample surface.
In the regime of moderate optical thickness l ∼ L ≫ λ,

where single scattering is expected to dominate, an inten-
sity correlation extending far beyond the size of a single
speckle spot is still observed [see Figs. 3(c)–3(e)], but with
a positive peak appearing in the vicinity of the negative
contribution. The apparent relative position and amplitude
between the peak and the dip depends on the angle of
incidence of the illumination (see Appendix F). Contrary to
the negative dip in the correlation function observed at
large optical thickness, the line shape is anisotropic, with
negative side lobes (hardly visible in the experimental
data in Figs. 3(c)–3(e), but visible in the calculations
presented in Appendix F) that are more pronounced along
the direction of the projection of the incident beam onto the
sample surface. Moreover, the amplitudes of both the
positive peak and the side lobes substantially depend on
the incidence angle. These two features of the correlation
function (long-range extent and dependence on the angle
of incidence) suggest a qualitative description based on
diagrams of the class represented in Fig. 4(b). Such
diagrams satisfy both properties simultaneously. The field
exchange, which creates the correlation, occurs in the first
scattering event and encodes a phase difference in the

FIG. 4. Diagrams contributing to the CRTðΔrÞ correlation. An
intensity correlation depends on two intensities (four fields) that
propagate through the sample, therefore involving four inputs and
four outputs. Shaded tubes represent diffusive paths and open
circles stand for scatterers; single solid lines stand for averaged
fields and single dashed lines for their complex conjugates. The
diagram in panel (a) is representative of the class of C2 diagrams
describing the negative contribution of the correlation function at
large optical thickness (L ≫ l). Panel (b) represents the class of
C0-type diagrams that contribute to the positive peak dominant in
the regime l ∼ L ≫ λ.
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subsequent diffusive paths (shaded tubes) that depends on
the angle of incidence. Moreover, the diffusive propagation
provides the long-range behavior. The theoretical evaluation
of these diagrams is detailed in Appendix G. They lead to a
contribution to the correlation function scaling as 1=ðkLÞ4
for b ≫ 1. This is consistent with the fact that, according to
the measurements and the numerical simulations, this
contribution has to be negligible at large optical thickness,
where the CRT

2 correlation function discussed previously
scaling as 1=ðkLÞ2 dominates. The observed anisotropy in
the correlation function is also well reproduced, supporting
the relevance of the analysis based on the diagrams in
Fig. 4(b). Interestingly, these diagrams are formally similar to
those leading to the infinite-range correlations C0 observed
when the sample is excited by a point source [23,33]. In a
nonabsorbing medium, as a consequence of energy con-
servation, theC0 contribution is related to the fluctuations of
the local density of states at the source position [34,35]. In the
present context, where a plane wave excitation is used, the
C0-type contribution to the reflection-transmission correla-
tion function is long range and satisfies

R hCRT
0 ðΔrÞidΔr ¼

0. This property also leads to the conclusion that theC0-type
contribution is specific to speckle patterns measured on the
surface of the sample and vanishes in the case of far-field
angular measurements (see Appendix G).
Finally, in the quasiballistic regime l ≫ L ≫ λ, which is

not the focus of our experiment, we expect the correlation
CRT to contain additional contributions to C2 and C0 (see
the discussion in Appendix G), which still result in an
overall positive peak. Note that this positive correlation
does not contradict the flux conservation argument men-
tioned earlier. Indeed, this argument rigorously applies for
intensity correlations built from the total fields (including
the averaged reflected and transmitted fields), which
coincides with the measured correlation Eq. (1) at large
optical thickness only (see Appendix D).

V. CONCLUSIONS

In summary, we have demonstrated experimentally the
existence of a cross-correlation between the speckle pat-
terns measured in reflection and transmission on the surface
of a disordered medium. The correlation persists in the
regime of large optical thickness L ≫ l, in which the
sample is opaque due to multiple scattering. The measure-
ments are supported by 3D numerical simulations and have
been analyzed using a perturbative theory (valid when
l ≫ λ). We have found that the reflection-transmission
correlation has two contributions: a positive peak dominant
at moderate optical thicknesses L≲ l and a negative dip
dominant in the multiple scattering regime L ≫ l, which
we interpret as (respectively) C0- and C2-type scattering
sequences. In the regime L ≫ l, the amplitude of CRT

scales as 1=ðkLÞ2 in 3D, but, at the same time, the range over
which the correlation has an effect grows as L2,

compensating the decrease in amplitude with the increase
of the number of speckle spots contributing to the cross
information [32]. The possibility to extract information on
the transmitted speckle from a measurement limited to the
reflection half-space offers new possibilities for the detec-
tion of objects hidden behind opaque scattering media,
including ghost imaging schemes, and for the control of
wave propagation bywavefront shaping techniques [36,37].

The research data supporting this publication are openly
available from the University of Exeter’s institutional
repository [38].
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APPENDIX A: MEAN FREE PATH
CHARACTERIZATION

In order to determine the mean free path of the three
samples with different concentrations of the TiO2, we used
the well-known Lambert-Beer law I ¼ I0e−L=le, where I
and I0 are the transmitted and initial intensities, respec-
tively; L is the thickness of the sample; and le the
extinction length. This law measures the attenuation of

FIG. 5. Experimental data to determine the mean free path of
the three different sample concentrations we used. In red are the
data corresponding to the concentration of 50 mg of TiO2 in
10 mL of glycerol, in blue the concentration of 150 mg of TiO2 in
10 mL of glycerol, and in yellow the data corresponding to the
concentration of 400 mg of TiO2 in 10 ml of glycerol. The black
dashed lines represent the Lambert-Beer law fitting to the
corresponding experimental data.
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the ballistic light when going through the sample.
Since absorption in the sample of TiO2 and glycerol is
negligible (albeit nonzero) compared to scattering, we can
consider le ≈ l. We measured the attenuation of the
ballistic beam for different thicknesses of the sample and
obtained the scattering mean free path of the three different
samples by fitting the Lambert-Beer law, as shown
in Fig. 5.
The scattering mean free paths for the samples with

concentrations of 50 mg of TiO2, 150 mg of TiO2, and
400 mg of TiO2 in 10 ml of glycerol were found to be,
respectively, 58.5�1.3μm, 18.0�0.5μm, and 6.9�0.7μm.

APPENDIX B: EXPERIMENTAL
DETERMINATION OF THE
CORRELATION FUNCTION

Experimentally, the determination of the intensity
correlation function CRTðΔrÞ defined by Eq. (1) is per-
formed in two steps. First, a spatially averaged function
CRTðΔrÞ ∝ R

δRðrÞδTðrþ ΔrÞdr is calculated for each
pair of reflected and transmitted speckle images. Then,
an ensemble averaging is performed, leading to the
correlation function hCRTðΔrÞi. In this appendix, we
comment on the definition of CRTðΔrÞ that allows us to
remove some experimental artifacts, and we detail the
necessary conditions for the correlation function
hCRTðΔrÞi to coincide with the usual correlation function
CRTðΔrÞ that only involves ensemble averaging.
Measuring images (including speckle patterns) with

coherent light inevitably leads to artifacts due to interfer-
ence of the signal with scattered light. Figures 6(a) and 6(b)
show an example of a raw measurement for the speckle
patterns in transmission and reflection. From a single
measurement, it is almost impossible to notice, but all
the raw measurements sit on an irregular fringe pattern
background due to the reflections in the protective glass
window in front of the CCD detector. In fact, if we average
the raw measurements over disorder, the speckle patterns
average out, and the inhomogeneous background becomes
apparent [see Figs. 6(c) and 6(d)].
If one were to use the raw measurements to find the

cross-correlation function, the correlation between the
inhomogeneous background patterns would dominate
and obscure any real speckle correlation [see Fig. 6(e)].
These artifacts can be eliminated using the following
procedure. Let us denote by Sm the measured speckle
pattern in reflection or transmission, and by F the unwanted
fringes. We have Sm ¼ Sþ F, where S is the desired
speckle pattern, and F is unknown but is also the same
for each realization of disorder. Thus, we can calculate
Sm − hSmi ¼ Sþ F − ðhSi þ FÞ ¼ S − hSi ¼ δS. This
procedure eliminates F and directly leads to a measurement
of δS. For this reason, we have defined a spatially averaged
function

CRTðΔrÞ ¼ N −1
1 δRðrÞδTðrþ ΔrÞ; ðB1Þ

with the normalization factor

N 1¼ ½δRðrÞ−δRðrÞ�21=2× ½δTðrþΔrÞ−δTðrþΔrÞ�21=2:
ðB2Þ

Here, the overline represents the spatial average over the
coordinate r. This quantity is directly accessible from the
experimental data and is free of artifacts, as shown in
Fig. 6(f).
In the experiment, the spatially averaged function

CRTðΔrÞ is averaged over an ensemble of realizations of

disorder, leading to a correlation function hCRTðΔrÞi.
Assuming that spatial and ensemble averaging are equiv-

alent, we can write hCRTðΔrÞi ≃N −1
2 hδRðrÞδTðrþ ΔrÞi,

with

N 2 ¼ h½δRðrÞ − hδRðrÞi�2i1=2
× h½δTðrþ ΔrÞ − hδTðrþ ΔrÞi�2i1=2: ðB3Þ

This correlation differs from Eq. (1), since the normaliza-
tion factor N 2 involves intensity fluctuations in reflection
and transmission, and not averaged values. Since the
experiments are carried out in the weak scattering regime

FIG. 6. Typical raw average intensity measurement in reflection
(a) and transmission (b), with the averaged intensity distribution
over 2000 realizations of disorder in reflection (c) and trans-
mission (d). The inhomogeneous background is clearly visible in
both hRi and hTi. (e) Direct cross-correlation of R and T (without
subtracting the background). (f) Cross-correlation between δR
and δT as described in the main text.
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kl ≫ 1, we can assume that the intensity in each speckle
pattern follows a Rayleigh statistics to a very good
approximation. This amounts to neglecting non-Gaussian
contributions to the field in each speckle pattern. In this
case, we have hδR2i ¼ hRi2 and hδT2i ¼ hTi2, and

hCRTðΔrÞi ≃ CRTðΔrÞ ¼ hδRðrÞδTðrþ ΔrÞi
hRðrÞihTðrþ ΔrÞi : ðB4Þ

We illustrate the good agreement between hCRTðΔrÞi and
CRTðΔrÞ in Fig. 7, where both correlations have been
calculated numerically for a 3D scattering medium with
optical thickness b ¼ 1.5 and scattering strength kl ¼ 10.

APPENDIX C: GAUSSIAN AND NON-GAUSSIAN
CONTRIBUTIONS TO THE CORRELATION

FUNCTION

The calculation of the correlation function given in
Eq. (1) requires us to evaluate

hRðrÞTðr0Þi ¼ hδERðrÞδERðrÞ�δETðr0ÞδETðr0Þ�i; ðC1Þ

where r0 ¼ rþ Δr. The Gaussian contribution, usually
denoted C1, is obtained by pairing fields to form averages
of complex conjugate pairs. On the other hand, non-
Gaussian contributions necessarily involve scattering paths
that connect four fields, since hδERðrÞi ¼ hδETðrÞi ¼ 0.
By noting h…ic as the non-Gaussian contributions, we
obtain

CRTðΔrÞ ¼ jhδERðrÞδETðr0Þ�ij2
hRðrÞihTðr0Þi

þ hδERðrÞδERðrÞ�δETðr0ÞδETðr0Þ�ic
hRðrÞihTðr0Þi : ðC2Þ

The first term of Eq. (C2) is the C1 contribution. This
contribution can be large, of the order of unity, if the
distance between observation points is smaller than the
wavelength. This is always possible in the T-T configura-
tion, where points r and r0 are measured in the same plane:
The C1 contribution dominates the correlation CTTðΔrÞ
for Δr≲ λ. On the contrary, in the R-T configuration, the
distance between observation points is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ Δr2

p
.

Therefore, the C1 contribution is always negligible for
L ≫ λ, as is the case in our experiment. We have checked
numerically that this statement remains valid at moderate
optical thickness, where the diffusion approximation breaks
down. In Fig. 8, we compare the full correlation CRTðΔrÞ
with the C1 contribution and the connected contribution
[last term of Eq. (C2)], calculated from a microscopic
wave propagation simulation in a three-dimensional slab of
optical thickness L=l ¼ 1 and scattering strength kl ¼ 15.
We observe that the full correlation [Fig. 8(a)] is well
approximated by its connected part [Fig. 8(b)], indicating
that the C1 contribution [Fig. 8(c)] is indeed negligible.
Other simulations (not shown) have revealed that the C1

contribution becomes important for kL≲ 1, as expected.
This analysis shows that the R-T configuration is particu-
larly adapted to access and study non-Gaussian quantities

−

−

−

−

−

−

−

−

−
− − − −

FIG. 7. Comparison between the two correlation functions
hCRTðΔrÞi and CRTðΔrÞ. The transverse distance Δr ¼ Δx is
varied along the direction of the illumination plane. The
parameters of the 3D numerical simulation are L=l ¼ 1.5,
kl ¼ 10, θa ≃ 45°.

FIG. 8. Correlation function CRT calculated from numerical simulation of the wave equation in a 3D slab. (a) Full correlation.
(b) Connected part of the correlation [second term of the rhs of Eq. (C2)]. (c) C1 contribution of the correlation [first term of the rhs of
Eq. (C2)]. The parameters are kl ¼ 15, L=l ¼ 1, θa ≃ 45°.
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in mesoscopic physics, such as the connected and long-
range contributions hδERðrÞδERðrÞ�δETðr0ÞδETðr0Þ�ic.
Indeed, the latter dominate the correlation in the full range
from the deep diffusive (L ≫ l) to the quasiballistic
(L≲ l) regime. This is in sharp contrast with the T-T
configuration, for which it is difficult to extract the small
non-Gaussian part of the correlation: This requires a
delicate fitting procedure or an additional field measure-
ment that can be cumbersome with optical waves; see, for
instance, Refs. [33,39].

APPENDIX D: R-T CORRELATION BUILT
FROM THE TOTAL REFLECTED AND

TRANSMITTED FIELDS

The experiment is performed with a laser illumination
oriented with a nonzero angle with respect to the sample
surface, which allows us to measure the intensity of the
fluctuating part of the fields, RðrÞ ¼ jδERðrÞj2 and
Tðr0Þ ¼ jδETðr0Þj2, only. We want to discuss here what
the R-T correlation would be if the mean fields were also
measured. Let us note X̃ðrÞ ¼ jEXðrÞj2 ¼ jhEXðrÞi þ
δEXðrÞj2, where X stands for R or T. By expressing X̃
in terms of X and using hX̃i ¼ hXi þ jhEXij2, we get

hδR̃ðrÞδT̃ðr0Þi
¼ hδRðrÞδTðr0Þi þ 2Re½hETðr0ÞihδETðr0Þ�RðrÞi
þ hERðrÞihδERðrÞ�Tðr0Þi
þ hERðrÞihETðr0Þi�hδERðrÞ�δETðr0Þi
þ hERðrÞihETðr0ÞihδERðrÞδETðr0Þi��: ðD1Þ

Hence, the R-T correlation built from the total reflected and
transmitted fields contains additional interferences between
the mean fields and the scattered fields. We illustrate their
role in Fig. 9, where we compare CRT [panel (a)] and C̃RT

[panel (b)] calculated for a 3D disordered slab (L=l ¼ 1,

kl ¼ 15, and illumination angle θa ¼ 45°). On top of the
long-range component of CRT , C̃RT also exhibits tiny
oscillating contributions and additional long-range contri-
butions due to the four terms of Eq. (D1). These contri-
butions, negligible in the deep diffusive regime L ≫ l,
become important at moderate optical thickness, L ∼ l.
This explains why the positive contribution to the long-
range correlation discussed in this work was not detected in
Ref. [18], where only C̃RT was analyzed. In Fig. 10, we
compare both correlation functions, calculated from 2D
numerical simulations such as those performed in Ref. [18],
for two different optical depths. At large optical depth, the
two correlations are equal, while it is no longer the case in
the regime L ∼ l, where interference terms dominate.

APPENDIX E: ANALYTICAL CALCULATION
OF CRT

2 ðΔrÞ
In this appendix, we refine the calculation of CRT

2 that
was previously performed by some of us in Ref. [18]. Let us
first recall the physical picture that gives rise to the long-
range C2 correlation. The correlator (B4) is the average of
four fields (measured at the two detector positions) that can
be decomposed as sums over all scattering paths. The idea

FIG. 9. Comparison of two R-T correlation functions calculated
from numerical simulation of the wave equation in a 3D slab.
(a) Correlation function CRTðΔrÞ ¼ hδRðrÞδTðrþ ΔrÞi=hRðrÞi
hTðrþ ΔrÞi built from fluctuating parts of the fields. (b) Corre-
lation function C̃RT ¼ hδR̃ðrÞδT̃ðrþ ΔrÞi=hR̃ðrÞihT̃ðrþ ΔrÞi
built from the full fields (see text for details). The parameters
are kl ¼ 15, L=l ¼ 1, θa ¼ 45°.

FIG. 10. Comparison of two R-T correlation functions calcu-
lated from numerical simulation of the wave equation in a 2D
slab. (a) Moderate optical thickness L ¼ l and shifted incidence
θa ≃ −35°. (b) Large optical thickness L=l ¼ 7 at normal
incidence θa ¼ 0. The other parameter is kl ¼ 10.
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is to select paths that give a nonvanishing contribution to
the average. The CRT

2 contribution is obtained by consid-
ering pairs of fields that propagate diffusively in the
disordered medium until their paths cross at an arbitrary
position inside the medium. When this crossing occurs,
pairs of fields exchange their partners to form new pairs that
travel again diffusively through the system until they reach
the output boundaries. There are two different ways to do
so, as represented in Fig. 11. For the same reason that made
CRT
1 negligible (see Appendix C), the diagram represented

in Fig. 11(b) is negligible for all positions r and r0 in the
regime kL ≫ 1.
Let us stress here the difference between CRT

2 and CTT
2 .

CTT
2 is made of the same diagrams as in Fig. 11, but with

the point r0 in the transmission plane. As a result, the
diagram of Fig. 11(b) is not negligible for observation
points in the same transmission plane. In particular, this
diagram with observation points in the far field is the
Fourier transform of the one represented in Fig. 11(a), with
points at the sample surface. Conversely, for CRT

2 , since the
diagram of Fig. 11(b) is negligible, we measure in the far
field the contribution of Fig. 11 (a) only,

CRTðkb;k0
bÞ ¼

Z
dΔr
A

CRTðΔrÞ; ðE1Þ

for any couple of observation directions kb, k0
b. Here, A is

the transverse area covered by the input illumination.
Although CTT

2 contains the same information whether it
is measured at the sample surface or angularly in the far
field, this is not the case for CRT

2 .
Mathematically, the contribution of Fig. 11(a) to the

correlator (C1) reads

hδERðrÞδERðrÞ�δETðr0ÞδETðr0Þ�iC2

¼
Z

jhEðr1Þij2jhEðr2Þij2Lðr2; ρ2ÞLðr1; ρ1Þ

×Hðρ1; ρ2; ρ3; ρ4ÞLðr3; ρ3ÞLðr4; ρ4Þ
× jhGðr0 − r3Þij2jhGðr − r4Þij2dr1…dr4dρ1…dρ4;

ðE2Þ

where hGðrÞi is the mean Green’s function of the wave
equation; Lðr; r0Þ represents a diffusive pair of fields that
propagate from r to r0; and the operator Hðρ1; ρ2; ρ3; ρ4Þ
stands for the diffusion partner exchange. The latter is
called a Hikami vertex and reads

Hðρ1;ρ2;ρ3;ρ4Þ ¼
h
4
δðρ1;ρ2;ρ3;ρ4Þ

× ðΔρ1þ� � �þΔρ4

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{1

þ 2∇ρ1:∇ρ2
zfflfflfflfflfflffl}|fflfflfflfflfflffl{2

þ 2∇ρ3:∇ρ4
zfflfflfflfflfflffl}|fflfflfflfflfflffl{3

Þ; ðE3Þ

where δðρ1; ρ2; ρ3; ρ4Þ means
R
δðρ1−ρÞδðρ2−ρÞδðρ3−ρÞ

δðρ4−ρÞdρ and h is the weight of the vertex defined in
Ref. [6], for example. We have labeled three terms in
Eq. (E3). In the literature dedicated to mesoscopic physics,
it is often argued that the term 1 is negligible (since it forces
the crossing to occur at the sample surface; see Ref. [7]),
while the two others give rise to equal contributions; see
Ref. [8]. This was the approach adopted in Ref. [18], where
the Hikami vertex was replaced by twice the term 3. We call
Cout
2 the analytical form of the correlation calculated in this

way. Similarly, we call Cin
2 the form obtained by keeping

twice the term 2. In fact, in the R-T configuration, there is
no good reason to neglect the term 1 nor to assume that
terms 2 and 3 are of the same amplitude. For this reason, we
compute here all contributions explicitly. We write the
complete correlator as

CRT
2 ðr; r0Þ ¼ CΔ

2 ðr; r0Þ þ
Cin
2 ðr; r0Þ þ Cout

2 ðr; r0Þ
2

; ðE4Þ

where the three contributions come from the three terms
labeled in the vertex (E3). Following the same approach as
in Ref. [18], we find in three-dimensional space

CΔ
2 ¼ −3

4k2l2

Z
J0ðqΔr=LÞshðqz0=LÞ2
qsh½qð1þ 2z0=LÞ�2

×

�
27L
10l

sh

�
q

�
1þ z0

L

��
sh

�
q
z0
L

�

þ
�
27

20
þ 5l2

3L2

�
qsh

�
q

�
1þ 2

z0
L

���
dq; ðE5Þ

FIG. 11. Typical diagrams contributing to the connected four-
field correlations in R-T. Panel (a) corresponds to the case where
the fields exchange at the entrance, propagate, and exchange
inside the medium. After this exchange, they can travel diffu-
sively through long distances to eventually be measured at the
desired points. Panel (b) corresponds to the case where the two
pairs of fields propagate first together, then exchange inside the
medium, and, at the end, have to exchange again to eventually be
measured at two different points. The output vertex of this
diagram is identical to the output vertex of the C1 correlation.
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Cin
2 ¼ −45

8k2l2

Z
J0ðqΔr=LÞshðqz0=LÞ2
q2sh½qð1þ 2 z0=LÞ�2

×
�
−qch

�
q
�
1þ z0

L

��
þ shðqÞ

�
dq; ðE6Þ

Cout
2 ¼ −45

8k2l2

Z
J0ðqΔr=LÞshðqz0=LÞ2
q2sh½qð1þ 2z0=LÞ�2

×

�
−qchðqÞþ

�
1þq2

�
1þ 2z0

L
þ 2z20

L2

��
shðqÞ

�
dq;

ðE7Þ

and in two-dimensional space

CΔ
2 ¼

−L
πkl2

Z
cosðqΔr=LÞshðqz0=LÞ2
q2sh½qð1þ2z0=LÞ�2

×

�
16ð1þπ=2ÞL
π2ð1þπ=4Þl sh

�
q
z0
L

�
sh

�
q

�
1þz0

L

��

þ
�
4ð1þπ=2Þ2
π2ð1þπ=4Þþ

ð1þπ=4Þl2

L2

�
qsh

�
q

�
1þ2

z0
L

���
dq;

ðE8Þ

Cin
2 ¼ −32L

πkl2

ð1þ π=4Þ
π2

Z
cosðqΔr=LÞshðqz0=LÞ2
q3sh½qð1þ 2 z0=LÞ�2

×

�
−qch

�
q

�
1þ z0

L

��
þ shðqÞ

�
dq; ðE9Þ

Cout
2 ¼−32L

πkl2

ð1þ π=4Þ
π2

Z
cosðqΔr=LÞshðqz0=LÞ2
q3sh½qð1þ 2z0=LÞ�2

×
�
−qchðqÞþ

�
1þq2

�
1þ 2z0

L
þ 2z20

L2

��
shðqÞ

�
dq;

ðE10Þ

where z0 is the extrapolation length (see Ref. [18] for
details). We have represented these different contributions
in Fig. 12 in the case of wave propagation through a 2D
disordered slab. The contributions of Cout

2 and CΔ
2 are

negative whereas Cin
2 is positive. In addition, Cin

2 and Cout
2

do not have the same amplitude. However, the sum of all
terms, given by Eq. (E4), turns out to be well approximated
by Cout

2 , as it was done in Ref. [18]. Both expressions are in
good agreement with simulations of microscopic wave
propagation. Hence, we conclude that all conclusions
of Ref. [18] remain qualitatively valid. In particular,
at large optical depth L ≫ l, we find CRT

2 ðΔrÞ ¼
−fðΔr=LÞ=ðkLÞd−1, where fðxÞ is a positive decaying
function of range unity given by

fðxÞ¼
Z

∞

0

qcosðqxÞ
shðqÞ

�ð1þπ=2Þ2þπð1þπ=2Þ
4πð1þπ=4Þ

þ1þπ=4
π

½−2qchðqÞþ shðqÞð2þq2Þ�
q2shðqÞ

�
dq ðE11Þ

in dimension 2 and by

fðxÞ¼
Z

∞

0

q2J0ðqxÞ
shðqÞ

×

�
21

20
þ5

4

½−2qchðqÞþ shðqÞð2þq2Þ�
q2shðqÞ

�
dq ðE12Þ

in dimension 3. This means, in particular, that the R-T
correlation becomes independent of the disorder strength
kl in the deep diffusive regime.

APPENDIX F: DEPENDENCE ON THE ANGLE
OF INCIDENCE IN THE REGIME L ∼ l

In this appendix, we discuss the angular dependence of
the shape of the correlation CRTðΔrÞ in the regime of
moderate optical thickness. In Fig. 13, we have represented
the result of 3D numerical simulations of the wave
propagation in a disordered slab of optical thickness L=l ¼
1 and disorder strength kl ¼ 15. The horizontal axis is
defined as the intersection of the incidence plane with the
sample surface (here, θa ≃ 75°). As discussed in the main
text, the correlation is positive for Δr≲ L and presents
negative side lobes that are more pronounced along the
illumination direction. We have analyzed the angular
dependence of this shape along the direction Δy ¼ 0.
The results are presented in Fig. 14. For θa ¼ 57°, the
correlation CRTðΔxÞ is asymmetric. When the angle of
incidence θa increases, both the positive central peak and
the negative side lobes grow. In addition, the correlation
becomes more and more symmetric. We interpret the shape

−

−

−
− − − − −

FIG. 12. Analytical predictions for the CRT
2 correlation (black

solid line), Cout
2 correlation (red dotted line), and Cin

2 correlation
(green dashed-dotted line) compared with the simulation of 2D
wave propagation in a disordered medium (blue dashed line). The
parameters of the simulations are kl ¼ 10, L=l ¼ 10, θa ¼ 0.
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of this correlation function as the result of the superposition
of two contributions, CRT

2 and CRT
0 . The contribution CRT

2 is
a negative dip with a minimum located at Δx > 0. As
discussed in the main text, this contribution is almost
independent of θa. On the other hand, the contribution CRT

0

contains both a positive peak located at Δx ≃ 0 and
symmetric negative side lobes. It is also strongly dependent
on the illumination angle (see Appendix G for details).
Hence, the latter is responsible for the anisotropic shape
observed in Fig. 13 and the evolution presented in Fig. 14.
In particular, the correlation CRTðΔxÞ shown in Fig. 14
becomes more and more symmetric for increasing θa,
because the amplitude of the negative side lobes of CRT

0

gets larger than the CRT
2 dip. A microscopic interpretation

of this phenomenon is proposed in the next appendix.

APPENDIX G: CRT
0 CORRELATION WITH

PLANE WAVE ILLUMINATION

The C0 correlation has first been introduced in
Refs. [23,34] in the case of a point source excitation.
Here, we consider the same class of scattering processes,
but generated by a plane wave excitation. As we will see,
both the formal calculation and the qualitative consequences
are different from the case of a point source excitation. The
microscopic representations of the CRT

0 diagrams are rep-
resented in Fig. 15. Each diagram involves scattering paths
that visit a common scatterer located near the front side of the
sample. The symmetric diagrams (not shown) that involve a
common scatterer at the outputs can be neglected for the
same reason as the C1 correlation (see Appendix C). Using
the same notations as in Appendix E, the four-field corre-
lator CRT0 ðΔrÞ ¼ hδERðrÞδERðrÞ�δETðr0ÞδETðr0Þ�iC0

takes,
in 3D, the form

CRT0 ðΔrÞ¼ 4π

l

Z
Vðr2;r3ÞLðr2;r4ÞLðr3;r5Þ

× jhGðr− r4Þij2jhGðr0− r5Þij2dr2dr3dr4dr5;
ðG1Þ

where Vðr2; r3Þ is the sum of the four possibilities for
connecting the input plane wave to the ladder diagrams
starting in r2 and r3, as represented in Fig. 15. For example,
the contribution of Fig. 15(a) to the vertex V is

VðaÞðr2; r3Þ ¼
Z

hEðr2Þi�hEðr3Þi�jhEðr1Þij2

× hGðr2 − r1ÞihGðr3 − r1Þidr1; ðG2Þ

−

−

−− − − −

FIG. 14. Dependence of CRTðΔrÞ on the illumination angle
θa, along the illumination direction Δy ¼ 0 (horizontal axis
of Fig. 13). The parameters of the 3D simulation are
L=l ¼ 1, kl ¼ 15.

FIG. 13. CRTðΔrÞ calculated from 3D numerical simulations of
the wave propagation in a disordered slab of moderate optical
depth. The direction Δy ¼ 0 is defined as the intersection of the
incidence plane with the sample surface. The parameters are
L=l ¼ 1, kl ¼ 15, θa ≃ 75°.

FIG. 15. Leading diagrams contributing to CRT
0 . Shaded tubes

represent diffusive paths (ladders); single solid lines stand for
averaged fields, and single dashed lines for their complex
conjugates. The extra scatterer located near the surface boundary
can connect the ladders in four different ways.
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where themean field hEðrÞi depends on the incidence angle.
By integrating over the transverse coordinates, we get

CRT0 ðΔrÞ ¼ l
16π3

Z
ð½ṼðaÞ

qa;qðz2; z3Þþ ṼðcÞ
qa;qðz2; z3Þ�eiðqa−qÞ:Δr

þ ½ṼðbÞ
qa;qðz2; z3Þþ ṼðdÞ

qa;qðz2; z3Þ�eiðq−qaÞ:ΔrÞ
×Lq−qaðz2;0ÞLq−qaðz3;LÞdqdz2dz3; ðG3Þ

where z labels longitudinal coordinates; qa is the transverse
component of the incident wave vector ka; and Lqðz; z0Þ
is the Fourier transform of Lðr; r0Þ with respect to the
transverse part of the coordinate r − r0. In addition, the
components Ṽ are given by

ṼðaÞ
qa;qðz2;z3Þ¼

Z
Ḡqað0;z1Þ2Ḡ2qa−qðz1;z3Þ

× Ḡqðz1;z2ÞḠqað0;z2Þ�Ḡqa
ð0;z3Þ�dz1; ðG4Þ

ṼðcÞ
qa;qðz2; z3Þ ¼

Z
jḠqað0; z1Þj2Ḡqðz1; z3Þ�

× Ḡqðz1; z2ÞḠqa
ð0; z2Þ�Ḡqa

ð0; z3Þ; dz1;
ðG5Þ

ṼðbÞ ¼ ṼðaÞ�, and ṼðcÞ ¼ ṼðdÞ�. In these expressions,
Ḡqðz;z0Þ¼ieikzðz0−zÞe−jz0−zj=2μl=ð2kzÞ, with kz¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−q2

p ≡
kμ, is the transverse Fourier transform of the mean
Green’s function of the Helmholtz equation. We now make
the approximations Lðz2; 0; q − qaÞ ≃ Lð0; 0; q − qaÞ and
Lðz3; L; q − qaÞ ≃ Lð0; L; q − qaÞ, and we integrate
Eq. (G3) over the longitudinal coordinates z1, z2, and z3.
The correlator becomes

CRT0 ðΔrÞ ¼ l4

128π3k6

Z
cos ½ðqa − qÞ:Δr�

× Lq−qað0; 0ÞLq−qað0; LÞFðμ; μa; klÞdq;
ðG6Þ

with

Fðμ; μa; klÞ ¼
2ðμa − μÞ

μað2μa − μÞðμþ μaÞ
½9μ3 þ 18μ2μa

þ 11μμ2a þ 2μ3a þ 4μ3μ2aðμ − μaÞ2k2l2�
=ð½9μ2 þ μ2a þ 6μμa þ 4μ2μ2aðμ − μaÞ2k2l2�
× ½ðμþ μaÞ2 þ 4μ2μ2aðμ − μaÞ2k2l2�Þ;

ðG7Þ

where μa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2a=k2

p
and μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2=k2

p
.

Normalizing the correlator by the intensity product
hjδERðrÞj2ihjδETðr0Þj2i ¼ l=6k4μ2aL and the integration
momentum variable by the sample thickness L, we finally

obtain

CRT
0 ðΔrÞ ¼ 27μ2akL

4πðklÞ3
Z

cos

�ðq0
a − q0Þ:Δr

L

�

× Pðq0
a;q0ÞFðμ; μa; klÞdq0; ðG8Þ

where q0a ¼ qaL ¼ kL sin θa, and the ladder contribution
Pðq0

a;q0Þ is defined as

Pðq0
a;q0Þ ¼ sh½jq0

a − q0jz0=L�3sh½jq0
a − q0jð1þ z0=LÞ�

jq0
a − q0j2sh½jq0

a − q0jð1þ 2z0=LÞ�2
:

ðG9Þ

In order to obtain the result (G8) we used various
approximations that are justified in the diffusive regime
L > l only. Therefore, we must be cautious not to use this
result in the quasiballistic regime L≲ l. We note also that
in the deep diffusive regime L ≫ l, z0 and for small angle
of incidence (μa ≃ 1), the CRT

0 correlation with plane wave
illumination takes the compact form

CRT
0 ðΔrÞ≃ 5

16πk4L4

Z
cos

�ðq0
a − q0Þ:Δr

L

�
q02jq0

a − q0j
sh½jq0

a − q0j�dq
0;

ðG10Þ

which scales as CRT
0 ∝ 1=ðkLÞ4. In this regime, it is, there-

fore, much smaller than CRT
2 ∝ 1=ðkLÞ2 (see Appendix E).

This explains why it is not observed experimentally in the
diffusive regime.
Before analyzing the result (G8) in more detail, let us

comment on the differences with the correlation calculated
with plane wave outputs or point-source inputs. For plane-
wave outputs, we find

CRT
0 ðkb;kb0 Þ ¼

Z
dΔr
A

CRT
0 ðΔrÞ ¼ 0; ðG11Þ

for all observation directions kb, kb0 . This striking result
comes from the fact that Fðμa; μa; klÞ ¼ 0. This means
that, for plane wave outputs, the diagram of Fig. 15(a)
[Fig. 15(b)] is compensated by the one in Fig. 15(c)
[Fig. 15(d)]. This result turns out to be completely different
from the one obtained in the configuration involving
pointlike sources and detectors, where the diagrams of
Figs. 15(a) and 15(b) do not contribute to the correlation.
Let us now discuss the strong dependence of the result

(G8) on the illumination angle θa. At the origin of this
dependence is the total momentum conservation during
the interaction with the common scatterer of Fig. 15. The
information carried by the illumination plane wave is
transmitted to the ladder diagrams that conserve momen-
tum over long distances, so that the input information
finally reaches the sample boundaries. The same property
occurs in the well-known memory effect introduced in
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Ref. [15]. We illustrate the dependence of the correlation
(G8) on θa in Fig. 16. For θa ¼ 0, the rotational symmetry
is preserved so that CRT

0 ðΔrÞ depends on Δr only. It
presents a positive peak centered in Δr ¼ 0 that extends
over a distance Δr ∼ L. Beyond this distance, the corre-
lation presents small negative side lobes, which are such
that the sum rule (G11) is satisfied. When the rotational
symmetry is broken (θa ≠ 0), the correlation becomes
anisotropic. It now presents two mirror symmetries with
respect to the intersection of the incidence plane with the
sample surface. The direction of this intersection defines
the horizontal axis in Fig. 16. We observe that the negative
side lobes become more pronounced along this direction. In
addition, the amplitude of both the central peak and the side
lobes gets larger for increasing θa, in agreement with the
sum rule (G11), as well as the numerical observations
discussed in the previous appendix.
The previous analysis shows that CRT

0 reproduces the
features observed experimentally in the R-T correlation in
the regime L ∼ l. As was observed in the experiment, CRT

0

is long range, keeps a memory on the incidence angle,
becomes anisotropic for θa ≠ 0, and presents a central peak
and negative side lobes. Both the peak and the side lobes
become more pronounced when θa is increased. That said,
it should be stressed that the formula (G8) does not
reproduce quantitatively the amplitude of the positive
correlation observed in the regime L ∼ l. This is not much
of a surprise since, as we explained above, the result (G8)
was obtained in the diffusive regime L > l. In addition, it

is worth mentioning that the scattering processes described
by CRT

0 and CRT
2 are not the only ones that contribute in the

quasiballistic regime L≲ l. For example, it is clear that, in
the regime L ≪ l, the scattering sequences where the four
fields interact with a common scatterer play an important
role as well. We did not discuss such contributions to the
correlation in the main text because the regime L ≪ l is
not probed experimentally and such scattering sequences
do not possess the dependence on the illumination angle
mentioned above.
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[17] L. S. Froufe-Pérez, A. Garcia-Martin, G. Cwilich, and J. J.
Saenz, Fluctuations and Correlations in Wave Transport
through Complex Media, Physica A 386, 625 (2007).
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