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Subwavelength focusing inside an open disordered medium by time reversal at a single point antenna
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We study theoretically light focusing at subwavelength scale inside a disordered strongly scattering open
medium. We show that broadband time reversal at a single point antenna, in conjunction with near-field
interactions and multiple scattering, produces spatial focusing with a quality comparable to that obtained in
an ideal closed cavity. This provides different perspectives for super-resolved optical imaging and coherent
control of single nanosources or absorbers in complex media.
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The ability to focus light in a small region of space underlies
many optical imaging techniques, including the most recent
improvements in optical microscopy [1]. Focusing beyond the
diffraction limit is a major objective for the improvement
of spatial resolution. One possible approach is offered by
scanning near-field optical microscopy, in which a sharp tip
produces a subwavelength spot that can be scanned in the
near field of the medium under investigation [2]. Recently,
the combination of wave-front shaping and scattering by a
structured environment has been recognized as an alternative
way to produce subwavelength focal spots in optics [3–6].
An efficient control of wave propagation in complex media,
including focusing, can be achieved by time reversal. The tech-
nique is well established in acoustics [7] and has been extended
to seismology [8], microwaves [9], and optics [10,11]. The
field of subwavelength light focusing encompasses a number
of fields beyond imaging, such as coherent control of single
emitters or absorbers in complex media [12] or addressing in
integrated optics [6,13–15].

A typical time-reversal focusing experiment consists of
two steps. In the forward problem, the field radiated by a
(point) source in an arbitrary medium is recorded on an array
of detectors (often called a time-reversal mirror or TRM).
For the time-reversed process, the detectors become sources
sending back the time-reversed sequence of the recorded field.
The result is a time-reversed field that focuses towards the
source location. Time reversal below the diffraction limit has
been demonstrated in acoustics, using an acoustic sink (i.e.,
an active time-reversed source) placed at the focal point [16].
In a structured environment, subwavelength focusing can be
achieved even without creating a sink due to the presence
of scatterers near the focal spot [17]. Since recent technical
progress has made possible the use of time-reversal concepts
for spatial (and temporal) focusing of light in complex media
[18–20], it seems that some fundamental questions need to
be examined. In particular, the feasibility of subwavelength
focusing by time reversal in an open disordered medium with
a single antenna has never been demonstrated, neither on
the theoretical nor experimental side. The goal of this Rapid
Communication is to clarify this issue by analyzing precisely
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the key role of the subwavelength disorder (multiple scattering,
near-field interactions).

In this Rapid Communication, we address these questions
theoretically based on numerical experiments. We show that
subwavelength focusing in a strongly scattering disordered
open system is feasible by time reversal at a single point
antenna. We put forward the crucial role of the spectral band-
width, in conjunction with near-field interactions and multiple
scattering, to reach focusing performances comparable to that
produced in an ideal closed cavity, and that could not be
achieved by monochromatic phase conjugation [21].

We consider a two-dimensional cluster of cylindrical scat-
terers randomly distributed inside a cylindrical region of radius
R = 1.91 μm. One specific configuration of the cluster is used
throughout the paper [Fig. 1(a)]. A minimum distance dmin =
10 nm is forced between scatterers to avoid overlapping.
The scatterers are described by their electric polarizabil-
ity α (ω) = −4�c2

0/[ω0(ω2 − ω2
0 + i�ω2/ω0)], where ω0 =

3.14 × 1015 s−1 is the resonance frequency, � = 1014 s−1 is
the linewidth, and c0 is the speed of light in vacuum. This
corresponds to the transverse electric (TE) polarizability of a
resonant nonabsorbing two-dimensional (2D)-point scatterer,
with a quality factor Q = ω0/� = 31.4. This very general
form [22] of polarizability can also be applied to a cylinder of
given permittivity ε and radius a. In that case � depends on ε

and a.
The time-reversal process is assumed broadband, in a

spectral interval [� − �,� + �], with � the central or
reference frequency and 2� the bandwidth. For the numerical
simulations, we have chosen � = ω0 − 4� and � = 2�. This
corresponds to a reference wavelength λ (�) = 688 nm. The
number of scatterers is N = 11683 such that the average
distance between scatterers is 〈d〉 = 31 nm. At the reference
frequency �, the Boltzmann mean-free path is 	B (�) =
[ρσs (�)]−1 = 219 nm with σs (ω) = (�/c0)3/4 |α (�)|2 the
scattering cross section and ρ the density of scatterers. The
optical thickness is b = 2R/	B (�) = 17.4, large enough for
multiple scattering to take place and 〈d〉 /λ = 0.045, small
enough for near-field interactions to occur. The scattering
strength is (�/c0)	B (�) = 2.

In the forward problem, the 2D system is illuminated using
a point source [dipole moment p0 (ω) = const.] polarized
along the scatterers (TE modes), such that the electromagnetic
problem is scalar. The source lies at the center of the cluster
denoted by r0 and is surrounded by an exclusion domain
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FIG. 1. (Color online) System composed of a 2D cluster of
cylindrical scatterers randomly placed inside a cylinder or radius
R centered at position r0 where the source is lying in the forward
problem (surrounded by an exclusion surface of radius R0). Detection
with a single point sensor lying at position rd in the far field (a) or
a closed cavity (TRM) (b). Real scatterers positions are displayed
in (a) and (b).

with radius R0 = 10 nm, small enough to preserve near-field
interactions between the source and the surrounding scatterers.
A single point antenna lies in the far field, outside of the system,
at position rd = (4,4) μm. To solve Maxwell’s equations and
to compute the electric field at the position of the antenna,
we use Green’s function G that connects the electric dipole at
position r0 to the radiated electric field at position rd through
the relation E(rd ,ω) = μ0ω

2G(rd ,r0,ω)p0. To proceed, we
perform a coupled-dipole numerical computation. The field
exciting scatterer number j is given by the contribution of the
dipole source and of all other scatterers, leading to a set of N

self-consistent equations [23,24]:

Ej =μ0ω
2G0(rj ,r0,ω)p0+α (ω) k2

N∑
k = 1
k �= j

G0
(
rj ,rk,ω

)
Ek,

where rj is the position of scatterer number j . G0(r,r′,ω) =
i/4 H(1)

0 (k|r − r′|) is the free space Green’s function with H(1)
0

the Hankel function of first kind and order zero. This linear
system is solved numerically for the configuration of Fig. 1(a).
Once the exciting electric field on each scatterer is known, it
is possible to compute the scattered field at any position and
in particular at the position of the antenna. In this numerical
approach, near-field and far-field dipole-dipole interactions
and multiple scattering are taken into account rigorously.

In the time-reversed process, the point source at position
r0 is removed and the antenna becomes an active dipole
source with an amplitude pd (ω) proportional to the complex
conjugate of the recorded field. The same procedure as for the
forward problem is used to compute the time-reversed field
ETR (r,ω) in the vicinity of r0.

Figure 2(a) displays the time-reversed intensity integrated
over the frequency range [� − �,� + �], defined as

ITR(r) =
∣∣∣∣
∫ �+�

�−�

ETR(r,ω)dω

∣∣∣∣
2

. (1)

−2 0 2
0

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

(b) (c)
2R

λ/10

x/λ

I T
R
/
I T

R
,m

a
x

FIG. 2. (Color online) Normalized broadband time-reversed in-
tensity (�/� = 2) as a function of space for (a) a single point antenna
(the left figure is a section view of the right 3D plot) and for (b) a
closed cavity. (c) Normalized monochromatic time-reversed intensity
(�/� = 0) as a function of space for a single point antenna.

We clearly distinguish a focal spot centered at r0, the position
of the source in the forward problem. The width of the focal
peak can be estimated at λ/10 (full width at half maximum).
This example demonstrates the feasibility of subwavelength
focusing in an open strongly scattering medium using a single
point antenna. To determine the key parameters that explain
the focusing process, we performed numerical experiments.

In a first step, we replaced the single point antenna by an
array of detectors placed in the far field forming a closed cavity
around the system as shown in Fig. 1(b), in analogy with the
concept of TRM developed for acoustics [7]. In such an ideal
situation, the time-reversed field is given by the imaginary part
of Green’s function of the scattering medium [25]:

ETR(r,ω) = −2iμ0ω
2Im[G(r,r0,ω)]p∗

0 . (2)

The corresponding time-reversed intensity, computed using
Eq. (1), is plotted in Fig. 2(b). The pattern is similar to that in
Fig. 2(a), with a width of the focal spot still on the order of
λ/10. We therefore conclude that time reversal at a single point
antenna is here as efficient as time reversal in a closed cavity
in terms of focusing performances. This is a consequence of
strong multiple scattering in the disordered medium, that even
in the case of an open system creates conditions for time
reversal that are very close to that known for closed chaotic
cavities [26].

Nevertheless, strong multiple scattering and disorder are not
enough to ensure focusing with super resolution. In a second
step, we performed similar simulations with an exclusion
domain of radius R0 = λ around the focal point r0 (not shown
in this Rapid Communication for the sake of brevity). This
exclusion domain prevents near-field interactions between
the source and the scatterers to occur. A time-reversed focal
peak is still visible in these conditions, but with a diffraction
limited width of λ/2. This shows that near-field interactions
with the surrounding scatterers is necessary to generate a
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FIG. 3. (Color online) Normalized monochromatic time-reversed intensity ITR (r,� + δ). (a)–(c) correspond to the case of a system with
a large optical thickness b = 2R/	B (�) = 17.4 [i.e., the system shown in Fig. 1(a)] for three different frequencies given by (a) δ/� = 0, (b)
δ/� = 0.5, and (c) δ/� = 1. (d)–(f) correspond to the case of a system with an optical thickness close to unity b = 2R/	B (�) = 2.1 [i.e., a
small section of the system shown in Fig. 1(a)] for the same three different frequencies [respectively, (d), (e), and (f)]. In all figures, the white
dashed-dotted circle represents the boundary of the scattering cluster. The position of the single point antenna can be guessed in the top-right
corner of the maps because of the presence of interferences fringes.

subwavelength concentration of light in the focus region. This
mechanism has already been put forward in the context of time
reversal of microwaves [17]. It is interesting to note that the
same near-field interactions are at the origin of the so-called C0

correlation in speckle patterns produced by a point source in a
disordered medium [27,28]. Since this correlation is connected
to the fluctuations of the local density of states [29,30], the
latter being given by an expression similar to Eq. (2) with
r = r0, a close connection with time-reversal focusing might
be established (which is beyond the scope of this Rapid
Communication).

A crucial feature of time reversal is the spectral bandwidth.
In a third step, we studied the quality of focusing versus the
bandwidth measured by the parameter �. In Fig. 2(c), we show
the time-reversed intensity ITR (r,�) = |ETR (r,�) |2 for time
reversal at a single point antenna and at the single frequency
� (which is equivalent to monochromatic phase conjugation).
The signal-to-background ratio is very weak and no focal spot
emerges in the intensity map. This demonstrates the crucial
role of wideband time reversal for focusing in one realization
of a disordered medium. A key question is the determination
of the optimal bandwidth. Intuitively, it should be determined
by the spectral correlation (or coherence) bandwidth δcoh of
the speckle pattern produced in the disordered medium. Let
us define the spectral field-field correlation at point r0 as
(the brackets 〈· · · 〉 denote the average over an ensemble of
configurations of the disordered medium)

C(δ) = 〈E(r0,� − δ)E∗(r0,� + δ)〉
〈I (r0,� − δ)〉 (3)

and the coherence bandwidth δcoh as the width of this correla-
tion function. A self-averaging process can be expected when
� � δcoh, giving a criterion for the bandwidth of the time-
reversal process ensuring focusing in one single realization of
the medium. To compute C (δ), we generated numerically n =
480 random configurations as that in Fig. 1(a), and calculated
the field at r0 for plane-wave illumination. We obtained a
coherence bandwidth δcoh � 0.04�, fifty times smaller than
the time-reversal bandwidth � = 2�. This amounts to manip-
ulating �/δcoh � 50 spectral degrees of freedom (compared
to 1 in the monochromatic case), explaining the improvement
in the averaging process and the signal-to-background ratio.

To illustrate the relevance of spectral correlations, we
show in Fig. 3 maps of the time-reversed intensity for
different frequencies around the reference frequency �, and
for a system in the multiple scattering regime (top row,
optical thickness b = 17.4) or in the single scattering regime
(bottom row, optical thickness b = 2.1). The three maps in
the multiple scattering regime [Figs. 3(a)–3(c)] are clearly
different, thus corresponding to three uncorrelated frequencies.
Indeed, the coherence width in this case is δcoh � 0.04�,
small compared to the frequency steps between each map. In
the single scattering regime [Figs. 3(d)–3(f)], the three maps
present some similarities. The coherence width is δcoh � 3�,
larger than the difference in frequencies in the maps that
remain correlated. This illustrates the positive role of multiple
scattering in the efficiency of a broadband time-reversal
process: a reduction of the coherence width means a reduction
of the bandwidth necessary to get self-averaging in a single
realization. An important conclusion of this work is that
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this behavior is preserved for focusing at subwavelength
scale in the presence of near-field interactions and strong
disorder.

In summary, broadband time reversal at a single point
antenna, in conjunction with near-field interactions and multi-
ple scattering, is an efficient technique for spatial focusing
of light at subwavelength scale in a disordered medium.
The time-reversal bandwidth necessary for self-averaging
has been connected to the spectral correlation width of the

speckle pattern in a regime that was unexplored so far. These
results should provide different perspectives for super-resolved
optical imaging in complex media and for the coherent
control of single nanosources, including quantum emitters,
or nanoscale absorbers.

This work is supported by LABEX WIFI (Laboratory of
Excellence within the French Program “Investments for the
Future”) under reference ANR-10-IDEX-0001-02 PSL*.
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and E. Clévédé, Geophys. Rev. Lett. 33, L19312 (2006).
[9] G. Lerosey, J. de Rosny, A. Tourin, G. Montaldo, and M. Fink,

Phys. Rev. Lett. 92, 193904 (2004).
[10] I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
[11] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara,

and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[12] Y. Chong, L. Ge, H. Cao, and A. Stone, Phys. Rev. Lett. 105,

053901 (2010).
[13] B. Gjonaj, J. Aulbach, P. M. Johnson, A. P. Mosk, L. Kuipers,

and A. Lagendijk, Nat. Phot. 5, 360 (2011).
[14] M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, Nano

Lett. 7, 3145 (2007).
[15] W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao,

Science 331, 889 (2011).

[16] J. de Rosny and M. Fink, Phys. Rev. Lett. 89, 124301 (2002).
[17] G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, Science 315,

1120 (2007).
[18] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Phot.

6, 283 (2012).
[19] F. Lemoult, G. Lerosey, J. de Rosny, and M. Fink, Phys. Rev.

Lett. 104, 203901 (2010).
[20] F. Lemoult, M. Fink, and G. Lerosey, Nat. Comm. 3, 889

(2012).
[21] M. J. Steel, B. Marks, and A. Rahmani, Opt. Express 18, 1487

(2010).
[22] P. de Vries, D. van Coevorden, and A. Lagendijk, Rev. Mod.

Phys. 70, 447 (1998).
[23] M. Lax, Phys. Rev. 85, 621 (1952).
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