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Subwavelength spatial correlations in near-field speckle patterns
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At subwavelength distance from the exit surface of a disordered medium, speckle patterns generated by multiple
scattering of waves exhibit nonuniversal near-field correlations. A calculation of the field spatial correlation
function shows that the correlation length is driven by the microscopic structure of the medium. The averaged
speckle spot size can be smaller than the wavelength, even for nonresonant dielectric media.
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I. INTRODUCTION

Wave scattering in disordered media leads to a complicated
spatial distribution of intensity known as a speckle pattern
[1,2]. Short-range intensity correlations characterize the aver-
aged size of a speckle spot [3]. Multiple scattering generates
long-range intensity correlations, which are responsible for
enhanced mesoscopic fluctuations [4]. Although the far-field
properties of speckle patterns have been widely studied [5–9],
little is known about the near-field properties measured at
subwavelength distance from the exit surface of a disordered
medium. In this region, nonpropagating (evanescent) fields
dominate and are expected to substantially influence the
statistical properties.

The study of near-field speckle patterns is motivated by the
existence of imaging techniques based on spatial field correla-
tions of acoustic or seismic waves [10], and by the possibility
of focusing waves through disordered media by time reversal
in acoustics [11] and electromagnetism [12], or by wavefront
control in the optical regime [13]. Since the spatial resolution is
influenced by the speckle spot size, it is interesting to study the
lower limit of the speckle spot size in the near field, which is
a priori not given by the diffraction limit when evanescent
fields contribute [14].

Near-field speckle properties have been studied experimen-
tally in optics, using scanning near-field optical microscopy
on volume-disordered dielectric samples [15–17] and on semi-
continuous metal films [18]. In the case of volume-disordered
samples, which we will address here, evidence of short-range
correlations that deviate from the far-field behavior have been
reported [16], as well as measurements of subwavelength
correlation lengths. Spatial correlations in near-field speckle
patterns measured on disordered photonic crystals have also
been shown to provide information about the incomplete band
gap of such structures [19]. In this paper, we study theoretically
the field spatial correlation function in a near-field speckle
pattern produced by wave transmission through a volume-
disordered sample. We consider electromagnetic waves, since
to date most of the relevant experiments have been carried out
in this context [13,15–18]. We derive analytical formulas that
describe the near-field regime and that coincide with known
results in the infinite medium and far-field limits. We show that
the correlation length depends on the observation distance and
is connected to the microstructure of the sample in the extreme
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near field. This enables the existence of subwavelength speckle
spots.

II. GENERAL EXPRESSION OF SPATIAL FIELD
CORRELATION

We consider a disordered medium described by a real
dielectric function (no absorption) of the form ε(r) = 1 +
δε(r), where δε(r) is the fluctuating part with the following
statistical properties:

〈δε(r)〉 = 0, 〈δε(r) δε(r′)〉 = U

π3/2 �3
ε

exp

(
−|r − r′|2

�2
ε

)
.

(1)

The brackets 〈· · ·〉 denote averaging over an ensemble of
realizations of the random medium. The correlation length �ε

reflects the microscopic structure of the medium [20]. The limit
�ε → 0 corresponds to the white-noise model 〈δε(r) δε(r′)〉 =
U δ(r − r′) that has been used in early calculations of speckle
correlations [3,5]. In this paper, we consider the mesoscopic
regime �ε � λ � � � L, where λ is the wavelength, � is
the scattering mean free path, and L is the system size.
The constant U is determined by calculating the imaginary
part of the effective dielectric function εeff(k) = I + k−2

0 �(k),
where k0 = ω/c = 2π/λ is the wave number in vacuum (more
generally in the averaged medium), with ω the wave frequency
and c the speed of light, and I is the unit tensor. �(k) is
the self-energy containing the sum of all multiply-connected
scattering events [1,2]. On scales larger that the correlation
length �ε , the effective dielectric function is isotropic and local,
so that εeff(k) = εeffI. A perturbative calculation in terms of
the small parameter (k0 �)−1 and for vector electromagnetic
waves leads to Im εeff = (k0�)−1 and U = 6π/(k4

0 �).
Assuming that the sources of the incident field are located

outside the medium, the electric field in the medium obeys the
vector propagation equation ∇ × ∇ × E(r) − ε(r) k2

0 E(r) =
0. The averaged field obeys ∇ × ∇ × 〈E(r)〉 − εeff k2

0 〈E(r)〉 =
0 as a consequence of Dyson’s equation [1]. The fluctuating
field δE(r) = E(r) − 〈E(r)〉 satisfies

∇ × ∇ × δE(r) − εeff k2
0 δE(r) = i µ0 ω j(r), (2)

where the source term is j(r) = −iωε0 (1 − εeff) E(r) −
iωε0 δε(r) E(r). Under the condition of weak scattering
〈δε2〉k2

0�
2
ε � 1, or equivalently k2

0��ε � 1, which we assume
in the following, one has |1 − εeff| � |δε(r)| [21], and the
source term reduces to j(r) = −iωε0 δε(r) E(r).

1050-2947/2010/81(5)/053804(5) 053804-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.053804


R. CARMINATI PHYSICAL REVIEW A 81, 053804 (2010)

The formal solution of Eq. (2) can be written as

δE(r) = k2
0

∫
V

〈G(r,r′)〉 δε(r′) E(r′) d3r ′, (3)

where 〈G〉 is the averaged (dyadic) Green’s function, solution
of the Dyson equation [1], obeying ∇ × ∇ × 〈G(r,r′)〉 −
εeff k2

0 〈G(r,r′)〉 = δ(r − r′) I with appropriate boundary con-
ditions that depend on the geometry and an outgoing (retarded)
wave condition at infinity. The integral is extended to the
volume V of the disordered medium.

The spatial correlation function between two components
of the electric field reads

〈δEk(r) δE∗
l (r′)〉 = k4

0

∫
V

〈Gkm(r,r1)〉 〈G∗
ln(r′,r′

1)〉

×〈δε(r1)Em(r1) δε(r′
1)E∗

n(r′
1)〉 d3r1d3r ′

1,

(4)

where repeated indices mean implicit summation. As a
measure of the overall spatial correlation of the vector field,
we define

γE(r,r′) ≡
∑

k

〈δEk(r) δE∗
k (r′)〉. (5)

This quantity will be referred to as field correlation function.
In coherence theory, the normalized field correlation function
is called the degree of spatial coherence, and its width defines
the spatial coherence length. In a speckle pattern, we take this
spatial coherence length as a measure of the averaged spot
size [22].

For an explicit calculation of the field correlation function,
we need to specify the correlator 〈δε(r1)Em(r1) δε(r′

1)E∗
n(r′

1)〉
in Eq. (4). It can be expressed using the four-points irreducible
vertex �mn,pq in the form

〈δε(r1) Em(r1) δε(r′
1) E∗

n(r′
1)〉

=
∫

�mn,pq(r1,r′
1,r2,r′

2)〈Ep(r2) E∗
q (r′

2)〉 d3r2 d3r′
2. (6)

Inserting this relation into (4) gives the Bethe-Salpeter equa-
tion [1,2]. To lowest order in (k0 �)−1, the ladder approximation
leads to [1,2]

�mn,pq(r1,r′
1,r2,r′

2)


 〈δε(r1)δε(r′
1)〉 δ(r1 − r2) δ(r′

1 − r′
2) δmpδnq . (7)

We end up with

〈δEk(r) δE∗
l (r′)〉 = k4

0

∫
V

〈Gkm(r,r1)〉 〈G∗
ln(r′,r′

1)〉

× 〈δε(r1)δε(r′
1)〉〈Em(r1)E∗

n(r′
1)〉 d3r1d3r ′

1.

(8)

Equations (5) and (8) are the basic equations for the calculation
of the field correlation function. The construction of this model
has required some approximations that have been specified.
There is a striking similarity between this model and that
used to describe thermal electromagnetic fluctuations [23]. The
fluctuating thermal currents are replaced here by an effective

source term j(r) ∝ δε(r)E(r). Therefore the calculation of
near-field speckle correlations is technically very close to the
calculation of correlations of thermal near fields [24,25].

III. INFINITE MEDIUM

Let us first examine the field correlation function in the bulk
of the random medium and neglect the effect of interfaces (in-
finite medium). The medium being statistically homogeneous
and isotropic, one can write 〈δε(r1)δε(r′

1)〉〈Em(r1) E∗
n(r′

1)〉 =
Cmn(|r1 − r′

1|)δmn. The factor δmn results from the assumption
that the field inside the medium is unpolarized. Using this form
in Eq. (8) leads to [26]

〈δEk(r)δE∗
l (r′)〉 = k3

0�

∫
Im〈Gkl(r − r′ − v)〉Cmm(|v|)d3v.

(9)

In the infinite medium, one has

〈G(r − r′)〉 =
[

I + 1

k2
eff

∇∇
]

exp (ikeff|r − r′|)
4π |r − r′| for r �= r′,

(10)

where keff = √
εeff k0 
 k0 + i/(2�). From this expression, we

get
∑

k Im 〈Gkk(ρ)〉 = (2πρ)−1 sin(k0ρ) exp[−ρ/(2�)], with
ρ = |r − r′|. Therefore the first term in the integral in
Eq. (9) has a width 
 λ/2, while the second term Cmm(|v|),
which includes the exponential term in Eq. (1), has a width
�ε � λ. This allows us to simplify the integral, leading to

γE(r,r′) = 〈|E|2〉 sinc(k0 ρ) exp
(
− ρ

2�

)
. (11)

This expression, valid in an infinite medium, is identical to
that obtained for scalar waves [3]. It is independent of the
correlation length �ε of the medium, at least in the regime
�ε � λ � � considered in this work. Under the assumption of
a statistically homogeneous and isotropic medium, general
statements show that this correlation function is universal
for electromagnetic vector waves [27]. It is found, e.g., for
blackbody radiation in a weakly absorbing homogeneous
medium [23].

IV. SPATIAL CORRELATION ABOVE AN INTERFACE

We now turn to the study of the field spatial correlation
close to the exit surface of a random medium. We consider a
thick medium, separated from a vacuum by a surface that is flat
on average and that defines the plane z = 0 (see the geometry
in the inset in Fig. 1). To proceed, we need to use the averaged
Green’s function corresponding to a flat interface separating a
homogeneous medium with dielectric function εeff (half-space
z < 0) from a vacuum (half-space z > 0). For a source at r′
inside the medium and an observation point r in vacuum, this
Green’s function reads [28]

〈G(r,r′)〉 = i

8π2

∫
1

γ0
(stss + p0tpp1) exp[iK · (R − R′)]

× exp(iγ0z − iγ1z
′) d2K, (12)

where R = (x,y) and K is the component of the wave
vector along the interface. The dyadic terms describe
the polarization behavior at the interface, with s = K̂ × ẑ,
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FIG. 1. (Color online) Normalized field spatial correlation func-
tion γE(r,r′)/γE(r,r) in a plane at a distance z vs ρ/δ = |R − R′|/δ.
δ is a reference length scale. Black markers: Far-field regime z � λ

(δ = λ/2π ). Blue solid line: near-field intermediate regime �ε � z �
λ (δ = z). Red dashed line: extreme near-field regime z ∼ �ε � λ

(δ = �ε).

pj = (Kẑ + γj K̂)/kj , the symbol ˆ denoting a unit vector
and K = |K|. The components of the wave vector along the
z direction are γj = (k2

j − K2)1/2, with k1 = √
εeff k0, and the

determination Re(γj ) > 0 and Im(γj ) > 0. ts(K) and tp(K) are
the Fresnel transmission factors for s- and p-polarized waves
[29]. For z > 0 (upper medium), the plane-wave expansion
(12) possesses both propagating waves and evanescent waves.
The latter correspond to high spatial frequencies K > k0 and
imaginary values of γ0, and dominate in the near-field zone.

In the bulk of the medium, the field spatial correlation
[Eq. (11)] varies on the scales of λ and �, both being
much larger than �ε . This means that in Eq. (8), one
can make the approximation 〈δε(r1)δε(r′

1)〉〈Em(r1) E∗
n(r′

1)〉 

〈δε(r1)δε(r′

1)〉〈|E|2〉δmn/3 in the integral. Using this approxi-
mation and inserting (12) into Eq. (8), we obtain after a little
algebra

γE(r,r′) = 〈|E|2〉
4�

∫ ∞

0
f (K,z)

× exp
{−[K2 + (Reγ1)2]�2

ε/4
}
J0(Kρ)dK,

(13)

where ρ = |R − R′| and K = |K|. The function in the inte-
grand is

f (K,z) = K

2Im γ1

[ |ts |2
|γ1|2 + (K2 + |γ0|2)(K2 + |γ1|2)

|√εeff|2k4
0

× |tp|2
|γ1|2

]
exp (−2Imγ0z). (14)

Equation (13) is valid for any observation distance z from
the exit surface [30]. The function f (K,z) describes waves
transmission at the interface between the effective medium
and the observation medium as well as the attenuation of the

high-spatial-frequency components (evanescent waves) when
z increases,

We first address the far-field regime with z � λ. This means
that we consider a speckle pattern measured in real space in
a plane at a given distance z from the exit surface, but at a
distance large enough so that only propagating (homogeneous)
plane waves contribute to the scattered field. In practice, a
distance z ∼ λ is already in the far field [14,16]. Since z �
λ � �ε , we consider the medium as uncorrelated (white-noise
model). In this regime, the exponential filter exp(−2Im γ0 z)
reduces the range of f (K,z) in Eq. (13) to 0 � K � k0

(propagating waves). One obtains

γE(r,r′) = 〈|E|2〉
2k0

∫ k0

0

K√
k2

0 − K2
[1 − R(K)]J0(Kρ) dK,

(15)

where R(K) is the intensity Fresnel reflection factor averaged
over polarizations [29]. Since the effective medium satisfies
εeff 
 1, we can neglect the dependence of R on K . The
integral simplifies to give

γE(r,r′) = (1 − R)〈|E|2〉
2

sinc(k0ρ) for z � λ. (16)

Note that 〈|E|2〉 in this equation, and throughout the text, is
the averaged intensity in the infinite medium. In the far field,
the correlation function is independent on z. The far-field
normalized correlation function is plotted in Fig. 1 (black
markers) versus the normalized distance 2πρ/λ.

The sinc(k0ρ) behavior is similar to that obtained for black-
body radiation in the far field of a planar thermal source [24,
25]. The width of the correlation function is λ/2. Let us stress
that the correlation function does not exhibit the exp(−ρ/2�)
term obtained in an infinite medium. This exponential term
only exists for the correlation function of the field inside the
medium, the far-field correlation function observed outside
being dependent on the wavelength only. The same observation
holds for the spatial correlation function of blackbody radiation
at a given wavelength, which exhibits a sinc(2πρ/λ) behavior
in vacuum and a sinc(2πρ/λ) exp(−ρ/2δ) inside a medium at
thermal equilibrium, δ being the skin depth in the material [23].

We now examine the near-field regime. When z � λ,
inspecting the integrand in Eq. (13), we see that large
wave vectors satisfying k0 � K � 1/z dominate the integral,
since the exponential cutoff is exp(−2Im γ0 z) 
 exp(−2Kz)
for large K and becomes effective only for K 
 1/z. The
asymptotic behavior of the integral can be determined by
expanding the integrand to leading order in the limit K � k0,
known as the quasistatic limit. This leads to

γE(r,r′) = 2〈|E|2〉
k4

0�|εeff + 1|2
∫ ∞

0
K2 exp (−2Kz)

× exp
(−K2�2

ε/4
)
J0(Kρ) dK. (17)

This expression includes as a particular case the limit �ε = 0
of the uncorrelated medium. This is relevant if �ε � z � λ, a
regime that might be observed if �ε is very small compared to λ.
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In this case, the integral in (17) can be calculated analytically
[25]. We end up with

γE(r,r′) = 〈|E|2〉
8k4

0� z3

1 − ρ2/(8z2)

[1 + ρ2/(4z2)]5/2
for �ε � z � λ,

(18)

where we have made the approximation |εeff + 1|2 
 4 in
the denominator. The last term describes the lateral spatial
dependence in a plane at a constant height z. The normalized
correlation function in this regime is plotted in Fig. 1 (blue
solid line), versus the normalized distance ρ/z. The width of
the correlation function is on the order of z. Together with
the 1/z3 behavior of the amplitude, these are features of the
quasistatic regime in which the spatial structure of the field is
that of an electrostatic field [14]. The same behavior has been
obtained for near fields generated by thermal emission [25].

We now examine the behavior of the field spatial correlation
function in the regime z <∼ �ε � λ. Due to the exponential
cutoff exp(−K2 �2

ε/4) in Eq. (17), we expect a transition to a
regime that becomes independent of z when z ∼ �ε , and driven
by the length scale �ε . Indeed, when z < �ε , the exponential
term exp(−2Kz) plays no role, and the integral in Eq. (17)
gives a confluent hypergeometric function M(a,b,x) [25]. We
finally get

γE(r,r′) =
√

π 〈|E|2〉
k4

0 � �3
ε

M

(
3

2
, 1,

−ρ2

�2
ε

)
for z <∼ �ε � λ.

(19)

The last term describes the spatial dependence and has a
width �ε . It is plotted in Fig. 1 (dashed red curve), versus the
normalized distance ρ/�ε . For a medium with a geometric
correlation length �ε much smaller than λ, the correlation
length of the near field is on the order of �ε when z <∼ �ε .
Moreover, the correlation function does not depend on z any
more. The spatial-frequency cutoff due to �ε has removed
the 1/z3 increase of the quasistatic contribution obtained in
Eq. (18) with �ε = 0. Finally, let us remark that the dependence
on �ε gives a nonuniversal character to the correlation function
in the extreme near field, since it depends on a parameter that

describes the microscopic structure of the sample. Also note
that the exact shape of the correlation function in this regime
depends on the form of the correlator 〈δε(r) δε(r′)〉. The result
in Eq. (19) corresponds to a Gaussian correlated disorder as
given in Eq. (1).

V. SUMMARY AND CONCLUSIONS

In summary, we have characterized short-range correla-
tions in a near-field speckle pattern in the weak-scattering
approximation. We have identified three regimes for the field
correlation function γE(r,r′) in a plane at a distance z from
the averaged exit surface of the medium. For z � λ (far
field), γE(r,r′) is given by Eq. (16) and the spatial correlation
length 
 
 λ/2. In the very near field, when z <∼ �ε � λ,
γE(r,r′) is given by Eq. (19) and is independent of z. One has

 
 �ε , and the field correlation is driven by the microscopic
structure of the disordered medium. The field correlation is
nonuniversal in this regime (it strongly depends on the type of
sample under study). The same behavior has been discussed
previously in the case of speckle patterns produced by rough
surfaces [31]. Nonuniversal intensity correlations have also
been predicted in far-field speckle patterns produced by a point
source located inside a scattering medium [32], the correlation
function depending in this case on the local environment
of the source, due to the near-field interaction between the
source and the surrounding scatterers [8,33]. For �ε � z � λ,
an intermediate near-field regime may be observed in which
neither �ε nor λ play a role. γE(r,r′) is given by Eq. (18) and

 
 z, the correlation being created by the quasistatic fields
generated by the effective medium. These results suggest that
subwavelength speckle spots can be created in the vicinity of
nonresonant dielectric disordered media by quasistatic near
fields. Moreover, they permit an identification of the length
scales that define the speckle spot size.
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