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Light scattering by a magneto-optical nanoparticle in front of a flat surface: Perturbative approach
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We develop a perturbative formalism for the interaction of a magneto-optical nanoparticle with a flat surface
made of a dielectric or metallic material. The formalism leads to a simple interpretation of the interplay between the
purely dielectric and the magneto-optical responses, in terms of excitation of (and radiation by) two orthogonal
electric dipoles. We analyze two different routes for the enhancement of the magneto-optical response with
respect to the purely dielectric contribution, both based on the nanoparticle-surface interaction. The enhancement
is discussed in terms of relevant magneto-optical signals, such as changes in reflectivity, polarization (Kerr)
rotation, and ellipticity.
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I. INTRODUCTION

The interaction between nanoscale objects (nanoparticles
or nano-antennas) and dielectric or metallic surfaces is at
the core of nano-optics and plasmonics.1–5 In the design of
effective nanophotonic devices, the development of active
components is a key issue. One aspect of active nanophotonics
is the control of the optical response using an external
parameter.6 Among various possible approaches, the use of
a magneto-optical response, with the external static magnetic
field as a control parameter, is receiving increasing attention.
Recent studies have paved the way toward applications, such
as nonreciprocal optical isolators7 and sensors,8 or have
opened new perspectives, such as plasmonic interferometry,9

unidirectional plasmonic wave guiding,10 controlled molecular
energy transfer,11 or random lasers.12 Magneto-optics is robust
and offers several degrees of freedom since different type of
signals can be exploited (e.g., changes in reflectivity or in
polarization). But the weak magneto-optical response of usual
materials (including ferromagnetics) needs to be compensated
by an enhancement of light-matter interaction, usually from
an enhancement of local electric fields. This can be done
through a periodic molding of the magneto-optical material
to create a photonic crystal.13 Another approach is to combine
ferromagnetics and noble metals to take advantage of the
large local electric field produced by the excitation of surface
plasmons.14 This magnetoplasmonic enhancement has been
demonstrated in multilayer structures15 and nanodisks or
nanoholes arrays,16 and seems to be a promising approach.

In this paper we examine theoretically the mechanisms of
enhancement of the magneto-optical response of a nanopar-
ticle interacting with a flat substrate. As a complementary
alternative to numerical simulations, in Sec. II we introduce a
perturbative approach that allows us to get a simple formalism
offering a clear picture of the interaction. The perturbative
treatment of the interaction between a particle made of an
isotropic material and a flat surface has been used in pioneer
studies of near-field optics.17 Here we develop a perturbative
formalism that fully accounts for the anisotropic response of
the nanoparticle, inherent to the magneto-optical response. In
particular, we establish that under the assumption of a weak
magneto-optical response (compared to the standard dielectric

response), the induced electric dipole inside the nanoparticle
can be written as the superposition of an isotropic dipole
that describes the standard dielectric response and a magneto-
optical dipole that describes the magneto-optical contribution.
In the presence of a flat surface, it is known that the dressed
polarizability of a nanoparticle can be enhanced by near-field
interactions and surface-plasmon resonances.18,19 In the case
of a magneto-optical nanoparticle, in Sec. III we show that
the magneto-optical contribution in the dressed polarizability
(driving the magneto-optical dipole) can be enhanced through
the interaction with a flat surface, with respect to the purely
dielectric contribution (driving the isotropic dipole). In the
case of metallic surfaces, we identify the role of surface-
plasmon polaritons in the enhancement process. In Sec. IV
we show that another way to enhance the magneto-optical
signal is to optimize the radiation of the magneto-optical
dipole, by choosing appropriate directions and polarizations
of incidence and detection. We analyze the enhancement in
terms of standard magneto-optical signals, such as changes in
reflectivity, Kerr rotation, and ellipticity.

II. PERTURBATIVE EXPRESSION OF THE ELECTRIC
POLARIZABILITY

In this section, we introduce the first-order perturbative
formalism for the calculation of the polarizability of a small
particle made of a magneto-optical (MO) material. We begin
with the calculation of the quasistatic polarizability, and
then derive the general expression of the dynamic effective
polarizability.

A. Magneto-optical response of a bulk material

In the presence of a static external magnetic field, the
dielectric function of an otherwise isotropic material becomes
a tensor of the form20

ε = ε I + �ε with �ε = iQεA, (1)

where Q is the MO coefficient, ε the isotropic dielectric
function in the absence of external magnetic field, and I the
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unit tensor. A is the following antisymmetric tensor:

A =
⎛
⎝ 0 −mz my

mz 0 −mx

−my mx 0

⎞
⎠ (2)

written in a direct orthonormal reference frame, with m the
unit vector in the direction of magnetization. In most cases, it
is reasonable to assume that |Q| � 1, even for ferromagnetic
materials (such as Fe, Ni, or Co) that have relatively large
MO responses. This means that in many situations MO effects
can be treated in a perturbative approach, with Q as a small
parameter.

B. Free-space quasistatic polarizability

In the quasistatic regime, the free-space electric polariz-
ability of a small (subwavelength) spherical particle made of
an anisotropic material with dielectric tensor ε is given by21

(see also the Appendix)

α0 = 3V (ε − I)(ε + 2I)−1 (3)

with V the volume of the particle. To first order in |Qε|/|ε +
2|, this becomes

α0 = 3V

ε + 2
(ε − I)

(
I − iQεA

ε + 2

)

= 3V
ε − 1

ε + 2

[
I + 3iQεA

(ε + 2)(ε − 1)

]
. (4)

The polarizability is the sum of two terms, and can be written

α0 = α0I
+ α0MO , (5)

where α0I
= α0I

I is the quasistatic polarizability of a sphere
with isotropic dielectric function ε, where α0I

= 3V (ε −
1)/(ε + 2). The polarizability tensor α0MO describes the MO
response in the quasistatic limit. It can be written in the
form α0MO = δ A, where A is the dimensionless antisymmetric
tensor introduced previously and δ = 9iV Qε/(ε + 2)2 (the
parameter δ will be used later for convenience). Even for
ferromagnetic materials, the modulus of this term remains
below one percent of |α0I

| at any frequencies.

C. Effective dynamic polarizability

In the quasistatic regime, the interaction between the
particle and the external field is fully described by the
depolarization factor (ε + 2I)−1 appearing in Eq. (3). In the
dynamic regime, one has to account for the field radiated by
the particle itself, which also influences the particle response
(radiation reaction). The dipole moment at a frequency ω is
then written as the product of the exciting field E0 and an
effective polarizability αeff

p = ε0 αeffE0. (6)

In the most general situation, the background medium can be
inhomogeneous. We describe the electrodynamic response of
the background (i.e., the environment of the polarizable parti-
cle) by the Green dyadic G(r,r′,ω) = G0(r,r′,ω) + S(r,r′,ω),
where G0(r,r′,ω) is the free-space Green dyadic and S(r,r′,ω)
describes the heterogeneities. In Eq. (6), the external field E0

has to be understood as the field in the background medium

in the absence of the particle. In these conditions, the particle
polarizability αeff is given by (see the Appendix for the full
derivation)

αeff = (I − k2α0Gp)−1α0, (7)

where k = ω/c = 2π/λ, with c the speed of light in vacuum,
ω the frequency of the exciting field, and λ the wavelength.
For the sake of clarity, we have introduced the interaction
dyadic Gp(ω) = iIm[G0(rp,rp,ω)] + S(rp,rp,ω), where rp is
the position of the particle. The first term in Gp describes the
free-space radiation reaction and the second term described
the interaction with the structured environment. This form of
the effective polarizability has been established previously in
Ref. 22.

In order to derive a first-order expression of the effective
polarizability, we first rewrite αeff in the form

α−1
eff = α−1

0 − k2Gp. (8)

Using Eq. (5), we obtain to first order in |Qε|/|ε + 2|
α−1

eff = α−1
0I

I − k2Gp − �MO, (9)

where �MO = α−2
0I

α0MO . Assuming that α−1
0I

I − k2Gp � �MO

(this inequality has to be understood in terms of the modulus
of each component of the tensors), meaning that the magneto-
optical contribution to the polarizability remains a weak
correction, we obtain

αeff = (α−1
0I

I − k2Gp)−1
[
I + (

α−1
0I

I − k2Gp

)−1
�MO

]
. (10)

This expression can be simplified by introducing the dyadic
Dp = (I − α0I

k2Gp)−1, which does not depend on the
anisotropic response of the particle (this dyadic is not a
perturbative quantity). We finally obtain a compact pertur-
bative expression of the effective dynamic polarizability in an
arbitrary environment

αeff = α0I
Dp + Dp α0MO Dp. (11)

Note that in this expression the dyadic Dp accounts for the
interaction between the isotropic response of the particle and
the environment up to infinite order.

D. Summary: Induced electric dipole

Based on Eq. (11), we can write the induce dipole moment
inside a MO particle as a sum of two terms

p = ε0 αeffE0 = ε0(αI + αMO)E0 = pI + pMO. (12)

In this expression, we have introduced the polarizability αI =
α0I

Dp that describes the isotropic response (i.e., the response
in absence of external magnetic field), and the polarizability
αMO = Dp α0MO Dp that describes the MO response. The
induced electric dipole pI = ε0αI E0, corresponding to the
isotropic response, will be denoted by isotropic dipole in
the following. The induced electric dipole pMO = ε0αMOE0

describes the perturbation induced by the magnetic field,
and will be denoted by magneto-optical (MO) dipole. The
perturbative approach developed above allows us to give a
simple interpretation of the MO dipole: the electric field
DpE0 due to the real exciting field E0 and the radiation
of the isotropic dipole excites an anisotropic particle with
polarizability αMO, which by self-radiation induces the MO
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dipole pMO = ε0 Dpα0MO Dp. An important consequence is that
the environment, whose influence is described by the tensor
Gp (and consequently Dp), modifies differently the isotropic
and the anisotropic responses of the particle. This opens the
possibility to relatively enhance the MO response by maxi-
mizing the ratio between the nondiagonal and the diagonal
components of the effective polarizability taking advantage of
favorable external configurations. In the following, we study
the interaction between a single nanoparticle and a flat surface,
in the framework of the perturbative analysis described above.
We study the possibility of enhancing the MO response of
the nanoparticle following two different strategies: enhancing
the MO contribution in the dressed polarizability, or selecting
preferentially the radiation of the induced MO dipole. Both
strategies can be combined in practice.

III. DRESSED POLARIZABILITY IN FRONT
OF A FLAT SURFACE

In this section, we analyze the dressed polarizability of a
MO nanoparticle with radius R located at a subwavelength
distance d � λ from a flat surface. Using the Green dyadic
formalism automatically includes all interaction channels with
the surface, including surface plasmons in the case of metallic
surfaces.19 The surface separates free-space (medium z > 0)
from a semi-infinite metal (medium z < 0) with dielectric
function εm(ω). We apply the first-order perturbative approach
in order to estimate the influence of the surface on the dressed
polarizability, and to identify a potential enhancement of the
MO response with respect to the dielectric response. We
assume that the dielectric properties of the metal substrate
are not significantly affected by the presence of an external
magnetic field, which is the case for noble metals.15 In contrast
with MO garnets or ferromagnetic particles, the MO response
of noble metals (typically three orders of magnitude weaker)
is only relevant at very high magnetic fields. MO effects at
relatively low static magnetic fields (1 Tesla) are relevant for
some metal nanoparticles near the surface-plasmon resonance
condition due to the large plasmon field enhancement.23

In the framework of the electric-dipole response (valid for
d > 2R), we use the image dipole method to compute the
Green dyadic,24 as sketched in Fig. 1. The dyadic Gp that
drives the effective polarizability reads

Gpp = iIm[G0(rp,rp,ω)]p + S(rp,rp,ω)p

= iIm[G0(rp,rp,ω)]p + G0(rp,rpim ,ω)pim. (13)

d

d

R

p
im

p

1

z

FIG. 1. Dipole-plane system. p is the induced dipole in the
nanoparticle and pim is the image dipole.

In this expression, G0 is the free-space Green dyadic, and pim is
the image dipole, located at position rpim . In the short-distance
regime d � λ, we can use the quasistatic approximation. The
image dipole is given by

pim = εm(ω) − 1

εm(ω) + 1

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ p. (14)

The free-space Green dyadic G0 is real in this approximation,
so that the term iIm[G0(rp,rp,ω)] vanishes in the expression
of Gp. The surface contribution is given by

G0(rp,rpim ,ω) = 1

4π (2d)3

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ . (15)

Finally, the perturbative expression of the effective polariz-
ability in the quasistatic limit reads

αeff = α0I

×

⎛
⎜⎜⎝

1
1−α0I

β
− mzδ

(1−α0I
β)2

myδ

(1−α0I
β)(1−α0I

2β)
mzδ

(1−α0I
β)2

1
1−α0I

β
− mxδ

(1−α0I
β)(1−α0I

2β)

− myδ

(1−α0I
β)(1−α0I

2β)
mxδ

(1−α0I
β)(1−α0I

2β)
1

1−α0I
2β

⎞
⎟⎟⎠

(16)

with β(ω,d) = [εm(ω) − 1]/[32πd3(εm(ω) + 1)].
Expression (16) shows that an exaltation of the MO effects

can be obtained by minimizing the value of 1 − α0I
β or

1 − 2α0I
β. In this case, the nondiagonal components of the

polarizability can be increased, not only compared to their free-
space values, but also compared to the diagonal components
(one can increase the ratio |αji

eff|/αii
eff|). Since α0I

β = [R3(ε −
1)(εm − 1)/[d3(ε + 2)(εm + 1)] with R < d/2, a significant
enhancement can be expected for frequencies in the vicinity
of plasmon resonances of either the particle or the surface. For
the nanoparticle, the plasmon resonance occurs for Re[ε(ω)] ≈
−2, and is weak with magnetic materials due to substantial
absorption. The plasmon resonance of the surface occurs for
Re[εm(ω)] ≈ −1, and can play a role for a metal surface with
low absorption. We show in Fig. 2 the polarizability of a Co
sphere in the vicinity of an Ag or Au substrate.25 To maximize
the dressed polarizability effect, we consider a distance d =
2R in the limit of validity of the dipole approximation. For the
Ag surface, peaks around λ = 350 nm related to the plasmon
resonance modify significantly the components involving gzz

(=2gxx = 2gyy). No such resonances appear with the Au
surface due to its higher absorption.

Finally let us comment on the use of the quasistatic
approximation to compute the surface contribution to the
effective polarizability. Since in this limit radiation by the
particle is disregarded, energy conservation (or equivalently
the optical theorem) is not satisfied.22,26 Nevertheless, it is
important to point out that in the framework of the perturbation
theory developed here, a first-order expansion of the effective
polarizability in terms of the magneto-optical response |Qε|
excludes energy conservation in the first place. Indeed, the
optical theorem necessarily combines first-order and second-
order terms (proportional to αeff and |αeff|2). Therefore, a
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FIG. 2. Diagonal and nondiagonal components of the effective polarizability tensor of a 10-nm radius cobalt sphere standing 20 nm above
a metal surface (normalized by the volume of the nanoparticle). For the calculation of αxy(αzy), we assume a static external magnetic field
oriented along the z (x) direction. The dielectric function of Au, Ag, and Co is taken from.25

correct treatment of energy conservation would require not
only a computation of the surface contribution including
retardation, but a treatment beyond first-order perturbation. In
practical terms, this means that the approach developed here
leads to accurate computations of fields, which permits the
computation of several magneto-optical signals of practical
interest (such as polarization rotation or ellipticity). But it
might be inappropriate for the computations of intensities or
radiative fluxes.

IV. DIFFRACTION OF A PLANE WAVE
BY A MAGNETO-OPTICAL

NANOPARTICLE-SUBSTRATE SYSTEM

In this section we examine another strategy to enhance the
MO contribution in the field scattered by a MO nanoparticle,
compared to the standard dielectric response. The idea is to
select preferentially the emission of the MO induced dipole,
taking advantage of the fact that it is perpendicular to the
dielectric (isotropic) induced dipole. We will see that this
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FIG. 3. MO nanoparticle in the vicinity of a flat interface between
vacuum and a semi-infinite medium with dielectric function εm(ω).
The incidence plane is (x̂,ẑ); θi is the incidence angle while θd

and φd correspond the observation direction. ki and kd represent
the incoming and the diffracted wave vectors (corresponding to
the observation angles θd and φd ). K = K K̂ = k sin θd K̂ and kz =√

k2 − K2ẑ = k cos θd ẑ are the components of the diffracted wave
vector parallel and normal to the metal surface.

selection can be efficient in the presence of a flat surface,
that stimulates the polarization selectivity.

A. General expression of the diffracted far field

As in the previous section, we consider a nanoparticle with
radius R � λ, located in vacuum at a distance d above a
flat substrate with dielectric function εm(ω). The geometry
is sketched in Fig. 3. In order to focus on the radiation
selection process, we do not account here for the surface
effect on the dressed polarizability and use the bare quasistatic

polarizability. In terms of the exciting field Ee, the induced
electric dipole reads

p = pI + pMO = ε0 α0I
Ee + ε0 α0MO Ee. (17)

Note that using the effective (dressed) polarizability would not
change anything at this stage. The far field radiated at position
r by the induced dipole (with |r| = r � λ) reads

Ed (r) = k2 exp(ikr)

4πε0r
R(K)p, (18)

where K is the component of the diffracted wave vector along
the plane parallel to the surface. The tensor R(K) described
both the free-space and the reflected radiations and is given by

R(K) = [(ŝrs(θd )ŝ + p̂+rp(θd )p̂−) exp(2ik cos θdd)

+ (ŝŝ + p̂+p̂+)]. (19)

In this expression, rs(θd ) and rp(θd ) are the amplitude Fresnel
reflection factors for s and p polarizations, respectively.
Following the notations in Ref. 27, we have used the unit
vectors ŝ, p̂+, and p̂− that define the directions of the electric
field in s and p polarizations (for p polarization, the electric
field has two different directions for upward and downward
plane waves, identified with the superscript + and −). They
are given by

ŝ = K̂ × ẑ

p̂+ = (K/k)ẑ − (kz/k)K̂ = sin θd ẑ − cos θd K̂ (20)

p̂− = (K/k)ẑ + (kz/k)K̂ = sin θd ẑ + cos θd K̂ ,

where the symbolˆdenotes a unit vector. Using Eqs. (17) and
(18), the scattered far field can be split into two parts

Ed = [
EI

d (K) + EMO
d (K)

]exp(ikr)

4πr
(21)
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FIG. 4. (Color online) Spherical plot of the modulus of the far-field amplitude of the diffracted electric field Ed (θd,φd ). The observation
angles θd and φd are defined in Fig. 3. Three different contributions are represented: (a) the s field radiated by the isotropic dipole,
(b) the p field radiated by the isotropic dipole, and (c) the p field radiated by the MO dipole. The far-field amplitudes are normalized
by k2α0I

Esi exp(ikr)/(4πr), which represents the amplitude of the scattered field in the plane of incidence in vacuum and in the absence of
magnetic field. We have considered a Co particle with radius R = 10 nm at a distance d = 20 nm above an Ag surface illuminated by an
s-polarized plane wave at normal incidence. λ = 630 nm. The arrows represent the emitting induced dipoles: the isotropic dipole on (a) and
(b); the MO dipole on (c).
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with

EI
d (K) = k2 R(K)α0I

Ee
(22)

EMO
d (K) = k2 R(K)α0MO Ee.

The field radiated by the MO-induced dipole (referred to as
the MO field) EMO

d only appears in the presence of the external
magnetic field. The field radiated by the isotropic dipole EI

d

does not depend on the applied magnetic field. These two
components can be calculated separately, and their relative
weight can be analyzed.

For the sake of illustration, let us consider a situation in
which the external magnetic field is applied along the x axis
(M = M x̂, longitudinal configuration), and the exciting field
is s polarized. This yields

Ee = −Esi
[1 + rs(θi) exp(2ik cos θid)]ŷ. (23)

Using Eq. (22), we can calculate the amplitude of the diffracted
fields EMO

d and EI
d . Their normalized moduli are represented in

Fig. 4 versus the observation angles θd and φd , for an exciting
field at normal incidence. The two excited dipoles being
orthogonal, their p and s radiation patterns are significantly
different. This can be used to extract selectively the MO
contribution. Indeed, in this case, an s–p conversion occurs
since the MO dipole is normal to the surface, while the
isotropic dipole remains parallel to the surface. In particular,
for an observation in the plane of incidence (φd = 0), the
scattered p waves are only produced by the MO dipole.

Therefore a p-polarized detection in this plane would extract
the MO response of the nanoparticle from the overall response.

B. Particular case: Diffraction in the plane of incidence

It is instructive to study more carefully the diffracted field
in the plane of incidence (φd = 0). We will study separately
the s-polarized and p-polarized excitations.

1. s-polarized incident wave

(i) For M = Mx̂ ( longitudinal configuration), as already
seen in the previous subsection, the magnetic field induces a
MO dipole in the incidence plane, which radiates p waves
[see Fig. 5 (a)]. In the incidence plane, the contribution of the
MO dipole can be easily extracted since it is orthogonal to
the s-polarized isotropic field. A figure of merit is the ratio
between the amplitudes of the radiated MO field in presence
of the surface and in absence of the surface. It can be expressed
using (22) and (23)

γ =
∣∣EMO

d

∣∣∣∣EMO
d free-space

∣∣ = |1 + rs(θi) exp(2ik cos θid)|

× |1 + rp(θd ) exp(2ik cos θdd)|. (24)

The first factor is related to the reflection of the s-polarized
incident wave and involves the reflection coefficient rs while
the second corresponds to the reflection of the diffracted p

d
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FIG. 5. (Color online) (a) Schematic representation of the MO dipole radiation when the exciting field is s polarized and with M = M x̂.
(b) Figure of merit γ versus incidence and observation angles for a Co sphere with radius R = 10 nm above an Ag substrate for different
particle-plane distance d: (b) d = 20 nm; (c) d = λ/2; (d) d = λ. Illumination wavelength λ = 630 nm.
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FIG. 6. Real Kerr rotation θ and ellipticity ϕ of the scattered field versus the observation angle (s polarization). (a): M = Mx̂, (b): M = Mẑ.
d = λ/2 = 315 nm.

waves. We describe here an unusual mirror effect, which
involves reflection of both s- and p-polarized waves.

We show in Fig. 5 the ratio γ versus the incidence and
observation angles. The result demonstrates that the radiation
of the MO dipole can be enhanced by the presence of a metal
surface. Indeed, when the interferences between the reflected
and nonreflected waves are constructive, the amplitude of the
MO scattered is almost multiplied by a factor of four (both
incoming and scattered waves being almost multiplied by a
factor of two due to reflection) with respect to its value in free
space.

Another useful feature of the MO response is the complex
Kerr rotation (MOKE) � = θ + iϕ, where θ is the real Kerr
rotation and ϕ the ellipticity. For weak anisotropy (assumed in
the perturbative approach), it can be accurately approximated

by the ratio between the MO field (p polarized) and the
isotropic field (s polarized).22 In the longitudinal configuration
we then have

�
(s)
LMOKE � EMO

d .p̂+

EI
d .ŝ

= δ sin θd [1 + rp(θd ) exp(2ik cos θdd)]

α0I
[1 + rs(θd ) exp(2ik cos θdd)]

.

(25)

(ii) For M = M ŷ (transversal configuration), the collinear-
ity of the static magnetic field and the exciting electric field
prevents any MO response to be effective.
(iii) For M = Mẑ (polar configuration), an s–p conversion

also occurs. Indeed, the incoming radiation induces a MO
dipole along the x direction, lying in the incidence plane. The
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FIG. 7. (Color online) Same as Fig. 5 but with a p-polarized incident field.
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figure of merit γ reads in this case

γ =
∣∣EMO

d

∣∣∣∣EMO
d free−space

∣∣ = |1 + rs(θi) exp(2ik cos θid)|

× |1 − rp(θd ) exp(2ik cos θdd)|. (26)

The complex Kerr rotation can also be calculated

�
(s)
PMOKE � δ cos θd [1 − rp(θd ) exp(2ik cos θdd)]

α0I
[1 + rs(θd ) exp(2ik cos θdd)]

. (27)

It is worth noticing that, for s-polarized waves, the MOKE
signal from a single particle does not depend on the angle
of incidence since both isotropic and MO-induced dipoles
are not modified by this parameter. The real Kerr rotation
θ and the ellipticity ϕ are represented in Fig. 6 versus the
observation angle θd , for both magnetization directions (M =
Mx̂ and M = Mẑ). The important increase of both angles for
θd ≈ 20–25◦ is related to the weakening of the isotropic field
due to destructive interferences. The rapid change in the Kerr
rotation could be useful to detect small changes in the particle’s
environment, which could be of interest from the point of view
of single-particle, MO-based chemical sensors.

2. p-polarized incident wave

For an illumination in p polarization, the incident field reads

Ee = Epi
cos θi[1 − rp(α) exp(2ik cos θid)]x̂

+Epi
sin θi[1 + rp(θi) exp(2ik cos θid)]ẑ. (28)

(i) For M = M x̂, the MO response generates a p–s

conversion. The component of the exciting field normal to
the surface induces a MO dipole that radiates s waves [see
Fig. 7(a)]. The figure of merit γ is given by

γ =
∣∣EMO

d

∣∣∣∣EMO
d free−space

∣∣ = |1 + rp(θi) exp(2ik cos θid)|

× |1 + rs(θd ) exp(2ik cos θdd)|. (29)

Therefore, as it can be checked in Fig. 7, the situation is
reciprocal to the case of the s–p conversion shown previously
in Fig. 5. A mirror effect can also be exploited to radiate a
stronger MO field.

The complex Kerr rotation reads in this case

�
(p)
LMOKE ≈ EMO

d .ŝ

EI
d .p̂+

= δ sin θi[1 + rs(θd ) exp(2ik cos θdd)]

α0I
[sin(θi − θd ) + cos(θi − θd )rp(θd ) exp(2ik cos θdd)]

.

(30)

(ii) For M = M ŷ, the MO effect induces a rotation but the
MO dipole remains in the incidence plane. Since the fields
radiated by the MO and isotropic dipoles are not orthogonal,
this situation is not appropriate for an efficient selection of the
MO contribution.
(iii) For M = M ẑ, the phenomenon is similar to that ob-

served for M = M x̂. The difference is that in the present case
the MO dipole is induced by the x component of the field. This
yields the following figure of merit:

γ =
∣∣EMO

d

∣∣∣∣EMO
d free−space

∣∣ = |1 − rp(θi) exp(2ik cos θid)|

× |1 + rs(θd ) exp(2ik cos θdd)|. (31)

Similarly, the complex Kerr rotation reads

�
(p)
PMOKE

= δ cos θi[1 + rs(θd ) exp(2ik cos θdd)]

α0I
[sin(θi − θd ) + cos(θi − θd )rp(θd ) exp(2ik cos θdd)]

.

(32)

The real Kerr rotation θ and the ellipticity ϕ are represented
in Fig. 8 versus the observation angle θd , for these two
configurations: (a) M = Mx̂ at grazing incidence and (b) M =
Mẑ at normal incidence. On the one hand, both configurations
yield to the same (maximized) MO dipole in the ŷ direction.
The increase of the Kerr effect for θd is mainly due to the
constructive interferences between the reflected and direct
scattered s waves [also seen on Fig. 7(c) for θi = 0] radiated
by the MO dipole. On the other hand, the isotropic dipole is
modified: it is normal to the surface in the first case (a) and in
the x̂ direction in the second one (b). Thus, the differences
between the two subfigures in Fig. 8 are only due to the
radiation of the isotropic dipoles.
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FIG. 8. Real Kerr rotation θ and ellipticity ϕ of the scattered field versus the observation angle θd (p polarization). (a): M = Mx̂ and
θi = 90o. (b): M = Mẑ and θi = 0. d = λ/2 = 315 nm.
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V. CONCLUSION

In conclusion, we have developed a perturbative formalism
for the interaction of a magneto-optical nanoparticle with
a flat surface made of a dielectric or metallic material.
The nanoparticle has been assumed to be electrically small,
and treated in the electric dipole approximation. We have
shown that under the assumption of a weak magneto-optical
response (compared to the standard dielectric response), the
polarizability can be written as the sum of an isotropic polar-
izability, that describes the standard dielectric response, and
a magneto-optical polarizability that describes the magneto-
optical contribution. This point of view leads to a simple
interpretation of the interplay between the purely dielectric
and the magneto-optical responses, in terms of excitation of
(and radiation by) two orthogonal electric dipoles. Such an
approach is efficient for the analysis of complex geometries
(e.g., prior to full numerical simulations) and for the quali-
tative interpretation of experimental results, since it permits
a direct computation of standard magneto-optical signals
such as changes in reflectivity (or scattering cross sections),
polarization rotations, and ellipticity. In the presence of a flat
surface, the magneto-optical contribution in the dressed polar-
izability can be enhanced with respect to the purely dielectric
contribution due to near-field interactions, the enhancement
process being reinforced by the excitation of surface-plasmon
resonances in the case of a metallic surface. The anisotropic
response of the nanoparticles-substrate system also provides
another possibility for the enhancement of the magneto-optical
contribution to the light scattered by the nanoparticle (with
respect to the purely dielectric contribution), by selecting the
directions and polarizations of incidence and detection. Future
work might focus on more refined analysis of the interaction
with surface-plasmon polaritons (e.g., the possibility of a
local excitation mediated by the magneto-optical response
of a nanoparticle) and/or on the magneto-optical response of
an ensemble of nanoparticles forming a periodic array or a
disordered medium.
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APPENDIX: EXPRESSION OF THE EFFECTIVE
POLARIZABILITY

Some general properties of the effective polarizability
tensor have been discussed in Ref. 22. For completeness,
we deduce here the expression of the effective polarizability
consistent with the notation followed in the present work.
We consider a homogeneous and small spherical particle

occupying a volume V around the position rp. The radius
of the sphere R is weak in front of the wavelength and its
dielectric tensor is noted ε(ω).

The total field E(r) at the position r can be expressed as
the sum of the exciting field E0(r) and the field radiated by the
particle :

E(r) = E0(r) + k2
∫

V

G(r,r′,ω)ε0(ε − I)E(r′)d3r′ (A1)

We introduce here G(r,r′,ω) is the Green tensor describing the
propagation in the external medium between one source point
at r and a target point at r′. One can separate this tensor in two
contributions G(r,r′,ω) = G0(r,r′,ω) + S(r,r′,ω). G0(r,r′,ω)
corresponds to free-space radiation and S(r,r′,ω) is due to
external scatterers.

By assuming that E(r) is uniform inside the particle, we
have:

E(r) = E0(r) + k2

(∫
V

G(r,r′,ω)d3r′
)

ε0(ε − I)E(r)

= [I − k2〈G〉V V (ε − I)]−1E0(rp) (A2)

with:

〈G〉V = 1

V

∫
V

G(r,r′,ω)d3r′ (A3)

We can express the limit of this quantities for small particle
(V → 0) :

lim
V →0

〈G〉V = − I
3k2

V + iIm [G0(rp,rp,ω)] + S(rp,rp,ω) (A4)

Then, it comes easily that, for small particles:

E(r) = 3(ε + 2I)−1{I − 3V k2[iIm {G0(rp,rp,ω)}
+ S(rp,rp,ω)](ε − I)(ε + 2I)−1}−1E0(r) (A5)

Since the dipole moment of the particle is p = ε0V (ε − I)E(r):

p = ε0α0{I − 3V k2[iIm {G0(rp,rp,ω)}
+ S(rp,rp,ω)]α0}−1E0(r) (A6)

where α0 = 3V (ε − I)(ε + 2I)−1 is the static polarizability
(ie. the polarizability when the radiation of the dipole outside in
the external medium is neglected). The effective polarizability
αeff defined in terms of exciting field as p = ε0αeffE0(r) is
given by :

αeff = α0[I − k2Gpα0]−1 = [I − k2α0Gp(ω)]−1α0 (A7)

where Gp = iIm {G0(rp,rp,ω)} + S(rp,rp,ω) = iIm{G(rp,

rp,ω)} + Re{S(rp,rp,ω)}. The last equality in (A7) can be
easily verified without any assumptions on the commutability
of the different tensors.

*remi.carminati@espci.fr
1L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge
University Press, Cambridge, 2006).

2W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424,
824 (2003).

3E. Ozbay, Science 311, 189 (2006).
4M. I. Stockman, Phys. Today 64, 39 (2011).

5L. Novotny, Phys. Today 64, 47 (2011); L. Novotny and N. F. van
Hulst, Nature Phot. 5, 83 (2011).

6A. V. Krasavin and N. I. Zheludev, Appl. Phys. Lett. 84, 1416
(2004).

7R. Espinola, T. Izuhara, M. Tsai, R. M. Osgood Jr., and H. Dötsch,
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R. Carminati, G. Armelles, J. Torrado, A. Garcı́a-Martı́n, and
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