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We introduce a method to experimentally measure the monochromatic transmission matrix of a

complex medium in optics. This method is based on a spatial phase modulator together with a full-field

interferometric measurement on a camera. We determine the transmission matrix of a thick random

scattering sample. We show that this matrix exhibits statistical properties in good agreement with random

matrix theory and allows light focusing and imaging through the random medium. This method might give

important insight into the mesoscopic properties of a complex medium.
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The propagation of waves in heterogeneous media, es-
pecially in the multiple-scattering regime, is a very funda-
mental problem of physics with numerous applications
ranging from solid-state physics and optics, to acoustics
and electromagnetism [1]. The behavior of such media is
usually described by their average macroscopic properties
which can be obtained through intensity measurements
using, for example, speckle pattern correlations [2] or
coherent back scattering experiments [3,4].

A deeper approach for the study of complex media
lies in the transmission matrix (TM) retrieval. This ma-
trix is a subpart of the usual scattering matrix as defined
in [5] for instance. Within this framework, the Green’s
function between an array of sources and an array of
sensors is recorded in transmission. The knowledge of
the TM brings more fundamental insight into the me-
dium. One can for instance extract from the TM the
single and the multiple-scattering component [6], the
backscattering cone, and the field-field correlations [7,8].
The distribution of the singular values of the TM
should also be related to the diffusion properties and
might exhibit a coherence effect beyond the diffusive
transport regime such as weak and strong localization
effects.

Furthermore, from an operative point of view, the
knowledge of the TM of a complex medium offers new
and exciting possibilities. For instance, using Time
Reversal (TR), it has been shown that multiple scattering,
far from limiting wave manipulation through a random
medium, can in fact greatly enhance it. Such approaches,
which are based on the reciprocity and the reversibility of
the wave equations [9], have proved very useful in various
areas ranging from focusing to imaging or telecommuni-
cation, in acoustic [10–12], electromagnetic [13,14] or
even seismology [15].

For acoustic (electromagnetic) waves, transducers (an-
tennas) are natural local receivers and emitters in phase and
amplitude, and oscillation frequencies are compatible with
electronic detection. Therefore, the TM can be straightfor-
wardly measured. In contrast, reconstructing the transmis-

sion matrix of a complex medium is still an elusive
problem in the optical domain.
Nonetheless some recent experiments have demon-

strated that it is possible to manipulate light at a meso-
scopic level in a complex medium in order to focus light
through [16] or in [17] a scattering medium, as well as
couple efficiently to the open channels of a disordered
sample [18]. These experiments were made possible by
the emergence of spatial light modulators (SLM).
In the present Letter, using a SLM alongside a full-field

interferometric method, we demonstrate that we are able to
measure the monochromatic transmission matrix of a ran-
dom multiple-scattering medium. We first detail the ex-
perimental setup of the TM evaluation method. In a second
part, we show that the knowledge of the TM allows one to
reproduce the results of [16], make the link with TR
experiments [11,14], and allows detection of an unknown
object after propagation through the scattering media.
Finally, we study the statistical properties of the singular
values of the TM, and show that it follows a quarter-circle
law typical of a random wave field.
We define the mesoscopic TM of an optical system for a

given wavelength as the matrix K of the complex coeffi-
cients kmn connecting the optical field (in amplitude and
phase) in the mth output free mode to the one in the nth
input free mode. Thus, the projection Eout

m of the outgoing
optic field on the mth free mode is given by Eout

m ¼P
nkmnE

in
n , where Ein

n is the complex amplitude of the
optical field in the nth incoming free mode.
The sample under study is an opaque 80� 25 �m thick

deposit of ZnO (Sigma-Aldrich 96479) on a microscope
slide. The experimental setup consists of a single longitu-
dinal mode laser source at 532 nm (Laser Quantum Torus),
a modulation part to illuminate the sample with a con-
trolled wave front and a detection part to measure the
optical intensity transmitted by the scattering medium.
The laser beam is first expanded then spatially modulated
by the SLM. This modulator is a twisted nematic liquid
cristal on silicon device (Holoeye LC-R 2500). Choosing a
suitable combination of incident and analyzed polariza-
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tions, we achieve an almost phase-only modulation [19]
with a 2� modulation in phase and a maximum residual
intensity modulation below 10%. The surface of the SLM
is imaged on the pupil of a 20x objective with a numerical
aperture (NA) of 0.5, thus a pixel of the SLM matches a
wave vector at the entrance of the scattering medium. The
beam is focused at one side of the sample and the output
intensity speckle is imaged 0.3 mm from the surface of the
sample by a 40x objective (NA ¼ 0:85) onto a CCD cam-
era (AVT Dolphin F-145B). The speckle is stationary well
over the measurement time (several minutes).

We choose the size of the input and output independent
pixels to have a perfect matching in size between a pixel
and a mode, in particular, a CCD pixel has the size of a
speckle grain. Thus, in our setup, the input and output
modes are the SLM and the CCD pixels, respectively,
and the TM corresponds to the system comprised of both
the scattering sample and the optical system between the
SLM and the CCD camera. From now on, we fixed both the
number of controlled segments on the SLM and the num-
ber of subdivisions measured on the observation window of
the CCD to N ¼ 256.

To access the complex optical field, we used interfer-
ences with a known wave front and a full field ‘‘four phases
method’’ [20]. For any input vector, if the relative phase is
shifted by a value �, the intensity in themth output mode is
given by

I�m¼jEout
m j2¼

��������smþ
X
n

ei�kmnE
in
n

��������
2

¼jsmj2þ
��������
X
n

ei�kmnE
in
n

��������
2þ2<

�
ei� �sm

X
n

kmnE
in
n

�
; (1)

where sm is the complex amplitude of the optical field used
as reference in the mth output mode.

Thus, if we inject the nth input mode and we measure

I0m,I
�=2
m ,I�m and I3�=2m , respectively, the intensities in themth

outgoing mode for � ¼ 0, �=2, � and 3�=2, and we

compute ðI0m � I�mÞ=4þ iðI3�=2m � I�=2m Þ=4 ¼ �smkmn.
For practical reasons, we choose the Hadamard basis as

input basis over the canonical one, whose elements are
either þ1 or �1 in amplitude. It perfectly fits with the use
of a phase-only SLM and it also maximizes the measured
intensity and consequently improves the experimental sig-
nal to noise ratio (SNR) [21]. For all Hadamard basis
vectors, the intensity is measured on the canonical basis
of the pixels on the CCD camera and an observed trans-
mission matrix Kobs is acquired, which is related to the real
one K by Kobs ¼ K � Sref , where Sref is a diagonal matrix
representing the static reference. Ideally, the reference
wave front should be a plane wave to directly have access
to K. In this case, all sm are constant and Kobs is directly
proportional to K. However this requires the addition of a
reference arm to the setup, as well as interferometric
stability. To have the simplest experimental setup and a
higher stability, we modulate only 65% of the wave front

going into the scattering sample (this corresponds to the
square inside the pupil of the microscope objective as seen
in Fig. 1), the speckle coming from the 35% static part
being our reference. Sref is now unknown and no longer
constant along its diagonal. Nevertheless, since Sref is
stationnary over time, we can measure the response of all
input vectors on the mth output pixel as long as the
reference speckle is bright enough on the considered
modes. We will quantify the effect of the reference speckle
and show that neither does it impair our ability to focus or
image using the TM, nor does it affects the statistical
properties of the TM.
A good way to confirm the physical relevance of the TM

is to use it to focus light on any desired outgoing mode. In
[11,14], it was demonstrated that using time reversal, one
can take advantage of multiple scattering to focus on tight
spots. TR being a matched filter [11], the energy is maxi-
mized both temporally and spatially at the intended loca-
tion. The monochromatic equivalent of TR is phase
conjugation, which can be straightforwardly done using
our acquired TM. We expect similar focusing results as in
[16], which were obtained through a procedure that ensures
an optimum phase-modulated wave front maximizing the
energy of a given mode. Denoting Etarget the output target
vector, the input vector that approximates the desired
pattern at the output for a perfect phase conjugated focus-
ing is given by Ein ¼ KyEtarget, where y stands for the
conjugate transpose. Thus, the theoretical effective output
vector is Eeff ¼ OfocEtarget where Ofoc ¼ KKy is the so-
called time reversal operator [22]. Since our setup is lim-
ited to phase modulation only, and given the fact that we do
not acquire K but Kobs, the input vector for a given output
target reads

Ein ¼ Ky
obsE

target=jKy
obsE

targetj: (2)

We use the setup shown in Fig. 1 to record the trans-
mission matrix of our system, which is done in approxi-
mately 3 min (and requires 4N measurements), comparable
to the time needed to perform an iterative focusing as

FIG. 1 (color online). Schematic of the apparatus. The laser is
expanded and reflected off a SLM. The phase-modulated beam is
focused on the multiple-scattering sample and the output inten-
sity speckle pattern is imaged by a CCD camera: lens (L),
polarizer (P), diaphragm (D).
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described in [16]. A speckle spot is chosen as the intended
target, and we use formula (2) to perform phase conjuga-
tion. The results obtained are shown in Fig. 2. We esti-
mated the experimental SNR defined by the ratio of the
intensity at the focus to the mean intensity of the speckle
outside. In Fig. 2(b), the result of the focusing on this single
spot shows a SNRexp ¼ 54 which in par the results of the

focusing technique used in [16].
It is important to quantify the effect of both the phase-

only modulation and the reference speckle used to acquire
the TM of our complex medium. Indeed, rather then Ofoc,
the effective focusing operator includes a normalization to
take into account the phase-only modulation. For a single

spot focusing, Ofoc
norm ¼ KobsK

y
norm where knormij ¼ kij=jkijj.

In the representation of the focusing operator Ofoc
norm

[Fig. 2(c)], each line corresponds to the expected output
intensity image while focusing on any point of the CCD’s
observation window. The strong diagonal proves our abil-
ity to focus light on any of these spots. As an example
Fig. 2(d) shows focusing on 3 spots. It is worth noting that
Ofoc

norm presents weaker subdiagonals which are due to
correlations between neighboring pixels. Finally, we would
like to emphasize that the strong advantage of this focusing
technique, compared to a sequential algorithm, is that it is
not necessary to acquire anymore information to focus on
different or multiple spots in one step.

From a theoretical point of view, monochromatic phase
conjugation focusing through a multiple-scattering me-
dium has been studied in Derode et al. [23]. The general
formulation for the efficiency of this focusing is SNR �
Ngrains the total number of ‘‘information grains’’, or de-

grees of freedom. In our case, this number is the number of
independent pixels (or channels) which is the number N of
pixels controlled. In our experiment, the use of a reference
speckle limits the number of degrees of freedom. Denoting
� the fraction of the SLM used to acquire the TM, and
using the theoretical formalism developed in [23] the
effective SNR including the effect of the reference writes
SNRref ¼ �=4ð�N þ ð1 � �Þ=�Þ � 0:8�N 8 N � 1.
Here ð1� �Þ=� is the effect of the reference speckle which
contributes as noise at the focal spot, and the prefactor is
due to the phase-only modulation [16,24]. The experimen-
tal SNR of the focusing shown in Fig. 2(b) is 41% of
SNRref , with � ¼ 65%.
We have shown that the TM of the medium is a powerful

tool that can be used to focus through a medium, but we
want to emphasize here that it extends well beyond focus-
ing. An example is the detection of an amplitude or phase
object placed at the entrance of the scattering sample.
Because of the spatial reciprocity of wave propagation
inside the scattering medium, the detection issue is recip-
rocal to the focusing one. Once the matrix is measured, one
can retrieve the initial input Eobj signal from the output

speckle Eout. Indeed, the reconstructed image reads Eimg �
Ky

obsEout ¼ OfocyEobj ¼ OfocEobj, which is almost equiva-

lent to the result obtained in a focusing scheme since Ofoc

has the same statistical properties than Ofoc
norm but without

the phase-only effects. In order to demonstrate the validity
of this approach we performed the following detection
experiment: instead of placing an object between the
SLM and the medium, the object is generated by the

SLM itself using two phase masks Eð1Þ
obj and Eð2Þ

obj. The

mask Eð1Þ
obj is a plane phase and Eð2Þ

obj is obtained by flipping

the phase of Nobj pixels from 0 to �. The amplitude Eð1Þ
out

and Eð2Þ
out of the output speckles are measured. The virtual

object Eð1Þ
obj � Eð2Þ

obj is an amplitude object, recovered by

calculating Eimg ¼ KobsðEð1Þ
out � Eð2Þ

outÞ. It gives the images

that would be obtained if an opaque screen drilled with
Nobj holes was placed at the pupil of the input microscope

objective. The results of this operation are shown in Fig. 3
for Nobj ¼ 1 and Nobj ¼ 2. It is clear that a simple object

placed at the input of the sample can be reconstructed after
propagation, regardless of the randomness of the medium.
Considering that this imaging method is reciprocal of the
focusing one, the detection is achieved with the same SNR.
These experimental focusing and detection experiments

through a multiple-scattering sample are clear demonstra-
tions that the measured transmission matrix is physical,
i.e., effectively links the input optical field to the output
one. Theoretically, this matrix is related to the scattering
matrix and should be an extremely powerful tool for the
study of random and complex media. As a first step in this
direction, we performed the simplest analysis of the TM: a
singular value decomposition. Indeed, provided that there
is no ballistic wave in the field at the output of the sample,

FIG. 2 (color online). Experimental results of focusing.
(a) Initial aspect of the output speckle. (b) We measure the
TM for 256 controlled segments and use it to perform phase
conjugation. (c) Norm of the focusing operator Ofoc

norm.
(d) Example of focusing on several points. (The insets show
intensity profiles along one direction.)
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random matrix theory (RMT) predicts that for those ma-

trices the statistical distribution �ð~�Þ follows the so-called
‘‘quarter-circle law’’ where ~� are the singular values (SV)
normalized by the total intensity [25].

The effect of the diagonal matrix Sref on K is to multiply
each line by a value sjj. This changes the variance of the

TM which affects the SV distribution. To remove this
effect, we estimate the absolute values of Sref matrix by
averaging Kobs along every line. We obtain the diagonal
matrix Sabs defined by sabsjj ¼ hjkobsij jii / jsjjj for hjkijji ¼
1. Sabs has no zero on the diagonal thanks to the finite pixel
size. We filter the Kobs matrix and obtain Kfil ¼
K � Sref=Sabs / K ���.

Now, �� is a unitary matrix since it is a diagonal matrix

of complex numbers of norm 1, corresponding to the
unknown phase of the reference speckle. Thus the singular
values ofKfil are the same as those ofK. We finally remove
one element out of two to suppress interelement correla-
tions between nearby pixels. Results of SV distribution of
the observed matrix after filtering and down-sampling are
shown in Fig. 4, the final matrix obtained follows correctly
the expected quarter-circle law. This distribution differs

from the bimodal one predicted by [26] since there is no
total energy conservation condition as the transmission
matrix measured is a small part of the whole scattering
matrix.
To conclude, we have demonstrated how the optical

transmission matrix of multiple-scattering media can be
measured using a spatial light modulator and a full-field
interferometric measurement. We proved the validity of the
measured TM through focusing and detection experiments.
Finally, the singular value distribution was shown to follow
a quarter-circle law, characteristic of random matrices. We
believe that this technique will have many applications
ranging from detection and imaging in random and scat-
tering media to very fundamental problems associated with
the propagation of waves in disordered systems.
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FIG. 4 (color online). Singular value distribution of the experi-
mental transmission matrices obtained by averaging over 16 real-
izations of disorder. The solid line is the quarter-circle law
predicted for random matrices. With the solid squares the matrix
filtered to remove the reference amplitude contribution and with
the circles the matrix obtained by filtering and removing neigh-
boring elements to eliminate interelement correlations.

FIG. 3 (color online). Experimental results of detection of an
object placed before the scattering sample. Image (a) [(b)] shows
the result of one spot (two spots) detection for 256 controlled
segments on the SLM.
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