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Magneto-optical control of Förster energy transfer
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We introduce a general framework to study dipole-dipole energy transfer between an emitter and an absorber in
a nanostructured environment. The theory allows us to address Förster resonant energy transfer (FRET) between
a donor and an acceptor in the presence of a nanoparticle with an anisotropic electromagnetic response. In the
particular case of a magneto-optical anisotropy, we compute the generalized FRET rate and discuss the orders of
magnitude. The distance dependence, the FRET efficiency, and the sensitivity to the orientation of the transition
dipoles orientation differ from standard FRET and can be controlled using the static magnetic field as an external
parameter.
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I. INTRODUCTION

Energy transfer between a molecule in an excited state
(donor) and a molecule in the ground state (acceptor) underlies
many significant photophysical and photochemical processes
from photosynthesis to fluorescence probing of biological
systems. It is also of interest in nanophotonics where efficient
transfer of optical excitations on subwavelength scales is a key
issue. Depending on the separation between the donor (D) and
the acceptor (A), the process can be described accurately by
various theories accounting for the electromagnetic interaction
between the two species. For a D-A distance range on the order
of 2–10 nm, which is relevant for photochemical studies and
nanophotonics, the well established Förster theory1 based on
quasistatic dipole-dipole interaction has been very successful.
It shows that while FRET is a very useful process which can be
used, for example, as a ruler for spectroscopic measurements,2

it is a rather weak process which goes down as the inverse sixth
power R−6 of the D-A separation. In fact, one can introduce a
length scale known as the Förster distance R0 at which FRET
is 50% efficient and it is found that R0 is on the order of a
few nanometers in most practical situations. For even smaller
distances, Dexter3 recognized that electronic exchange and
multipolar interactions become important and a full quantum
mechanical treatment must be implemented. On the other hand,
in the large distance regime (nonnegligible compared to the
wavelength) full electrodynamics is needed to account for
retardation effects. In this work we will focus on the so-called
Förster resonance energy transfer (FRET) when D and A are
located in the vicinity of a nanoparticle. In this three-body
configuration we will extend the FRET formalism and show
that the presence of the external nanostructure introduces
interesting degrees of freedom. In the case of a nanoparticle
with an anisotropic dielectric response (e.g., a nanoparticle
made of a ferromagnetic material exhibiting a magneto-
optical response), the distance dependence, the orientation
dependence, and the strength of the FRET efficiency can
be changed substantially. In the case of a magneto-optical
anisotropy, it can in principle be controlled using the static
magnetic field as an external control parameter.

II. GENERALIZED FRET THEORY

In this section we introduce a generalized formalism to
compute the FRET rate that allows us to deal with a D-A

system in interaction with a nanostructured environment. This
formalism includes as a particular case the standard Förster
theory. Let us consider a donor (emitter) and an acceptor (ab-
sorber) with arbitrary locations and orientations of transition
dipoles in the vicinity of a nanostructure, as illustrated in Fig. 1
(a single nanoparticle is represented for the sake of illustration,
but the theory presented in this section is not restricted to this
geometry). We denote by (rA,μA) and by (rD,μD) the position
and the direction of the transition dipole of the acceptor
and donor, respectively. For electric-dipole transitions, the
normalized FRET rate �DA/�0 can be calculated from the
electric Green function which describes the electromagnetic
response of the environment. In this work we assume the
weak coupling regime, which means that the transfer rate from
donor to acceptor remains smaller than the spectral broadening
due to the environment.4 This excludes strong coupling and
the associated coherent FRET mechanism5 that are unlikely
when the donor and acceptor molecules are coupled to a
metallic particle at room temperature, which is the situation
considered in this study. In these conditions the normalized
FRET rate takes the form (the full derivation is given in
Appendix A)

�DA

�0
= 18πε2

0c
4
∫ ∞

0

σA(ω)fD(ω)M(ω)

ω4
dω. (1)

In this expression �DA is the energy transfer rate from donor
to acceptor, �0 is the decay rate of the donor in free space, and
ω is the emission frequency. fD(ω) is the normalized emission
spectrum of the donor and the function M is defined by

M(ω) = |μA · G(rA,rD,ω)μD|2, (2)

where G is the electric dyadic Green function that describes
the environment of the donor and acceptor. It is defined as
follows: For a point electric dipole p located at position r′ and
oscillating at frequency ω, the electric field radiated at position
r reads E(r) = μ0ω

2G(r,r′,ω)p. The expression of the FRET
rate given in Eqs. (1) and (2) is very general, and establishes
the basis for a generalized FRET theory. In particular, as
previously discussed in Ref. 6, the Green dyadic formalism
allows us to handle an arbitrary geometry, including near-field
interactions. Equations (1) and (2) also show that the FRET
signal, as any fluorescence signal, is strongly dependent on the
environment.4
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FIG. 1. (Color online) Left panel: Schematic configuration of the
D-A system in the presence of a nanoparticle. The different channels
for energy transfer (direct or indirect) are indicated by dotted arrows.
When the transition dipoles are orthogonal, the direct Förster transfer
is disabled. Right panel: Energy-level diagram of the donor and
acceptor molecules.

A. FRET rate in free space

To recover the standard FRET formalism corresponding to
a D-A couple in free space, one can rewrite Eq. (1) as follows:

�DA

�0
= 9c4

8πR6

∫ ∞

0

σA(ω)fD(ω)T (ω,R)

ω4
dω (3)

with

T (ω,R) = 16π2ε2
0R

6|μA · G(rA,rD,ω)μD|2, (4)

and simply replace G by the dyadic Green function G0 of free
space. In the quasistatic limit G0(r,r ′,ω) = 1/(4πε0)(3vv −
I)/|r − r ′|3, with v = (r − r ′)/|r − r ′| the unit vector in the
direction of (r − r ′). This leads to the well-known expression
of the standard FRET rate �0

DA:1,4,7,8

�0
DA

�0
=

(
R0

R

)6

, (5)

where R = |rA − rD| is the distance between the acceptor and
the donor, and where the Förster radius R0 is readily identified
as follows:

R6
0 = 9c4κ2

8π

∫ ∞

0

σA(ω)fD(ω)

ω4
dω. (6)

In this expression κ = 3(u · μD)(u · μA) − μA · μD is the
orientational factor, with u = (rD − rA)/|rD − rA| the unit
vector along the axis of the D-A couple. The orientational
factor can take values from 0 (perpendicular transition dipoles)
to 2 (parallel transition dipoles).

B. FRET rate in the presence of a nanoparticle
with an anisotropic dielectric response

In principle, the presence of a nanostructure close to a
D-A couple will modify the emission and absorption by the
transition dipoles. The modifications are accounted for by the
dyadic Green function that describes the electrodynamic re-
sponse of the environment through the function M(ω) entering
Eq. (1). This formalism leads to a very general treatment of the
FRET transfer mediated by an external nanostructure, such as

a nanoparticle with an anisotropic response. It permits a study
of the influence of many parameters of practical relevance,
such as the orientation of the transition dipoles or the shape
and material properties of the nanoparticle.

In the presence of the nanoparticle, described itself in the
electric-dipole approximation, the full dyadic Green function
reads

G(r,r ′,ω) = G0(r,r ′,ω)

+ G0(r,rp,ω)α(ω)ε0G0(rp,r ′,ω), (7)

where rp is the center of the nanoparticle and α(ω) its
polarizability tensor. In the following we assume that the
nanoparticle is located at the origin and set rp = 0. Equation
(1) can be rewritten as follows:

�DA

�0
= 18πε2

0c
4
∫ ∞

0

σA(ω)fD(ω)M(ω)

ω4
dω, (8)

where the function M is given by

M(ω) = |μA · G(rA,rD,ω)μD|2 = |JDA|2 . (9)

The notation JDA for the matrix element is introduced, as in
Ref. 6, to simplify the forthcoming expressions. Using again
the quasistatic limit for the free-space dyadic Green function
G0, we obtain

M(ω) = ∣∣J 0
DA + J NP

DA

∣∣2 = ∣∣J 0
DA

∣∣2 + ∣∣J NP
DA

∣∣2

+ 2Re
[ (

J 0
DA

)∗
J NP

DA

]
, (10)

with

J 0
DA = −3(u · μD)(u · μA) − μA · μD

4πε0R3
(11)

and

J NP
DA = −μA · 3uAuA − I

4πε0R
3
A

α(ω)ε0
3uDuD − I

4πε0R
3
D

μD, (12)

where RA = |rA| is the distance between the acceptor and
the nanoparticle, RD = |rD| is the distance between the donor
and the nanoparticle, and uA = rA/|rA|, uD = rD/|rD|. This
expression clearly shows the contribution of the different
nonradiative energy transfer channels: The direct (standard)
Förster transfer �0

DA, the energy transfer mediated by the
nanoparticle �NP

DA, and an interference term accounting for the
phase shift between the two channels. In the following we will
focus on the role of the nanoparticle and compute the FRET
rate �NP

DA. In the spirit of the Förster radius, we introduce the
distance Rp such that

R6
p =

∫ ∞
0

σA(ω)fD(ω)
∣∣J NP

DA

∣∣2

ω4
dω

(4π )2
∫ ∞

0

σA(ω)fD(ω)

ω4
dω

. (13)

This new length scale Rp will be denoted by polarization
coupling radius. Using this quantity, the FRET rate mediated
by the nanoparticle can be rewritten as

�NP
DA

�0
=

[
R0(κ = 1)

RA

]6 (
Rp

RD

)6

. (14)

This compact expression is convenient for the analysis of the
FRET rate mediated by a nanoparticle, and its derivation
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is a key step in the present paper. An important result is
that the distance dependence differs from that of standard
(free-space) FRET. Moreover, the polarization coupling radius
Rp allows us to compare the indirect FRET rate (i.e.,
mediated by the nanoparticle) and the standard free-space
FRET rate.

For the sake of illustration, let us consider the situation
in which the three bodies are aligned [see Fig. 2(a)], with
RD = RA = 2RNP and R = 4RNP (κ = 2). In this case, we
obtain

�NP
DA

�0
DA

=
[
R0(κ = 1)

R0(κ = 2)

]6 (
Rp

RNP

)6

= 1

4

(
Rp

RNP

)6

. (15)

This simple expression shows that the ratio Rp/RNP is
the crucial parameter that describes the influence of the
nanoparticle on the FRET rate. For Rp > RNP, the nanoparticle
enhances the FRET transfer, while for Rp � RNP, the FRET
becomes exclusively driven by the direct transfer. In order to
get insight into the meaning of the polarization coupling radius,
let us assume that the polarizability of the nanoparticle α(ω)
varies smoothly on the frequency range of the spectral overlap
between σA(ω) and fD(ω). Inserting Eq. (12) into Eq. (13), we
obtain

R3
p = |αμAμD

+ αuAuD
9(uD · μD)(uA · μA) − 3[(uD · μD)αμAuD

+ (uA · μA)αuAμD
]|

4π
. (16)

In this condition the polarization coupling radius Rp depends
only on the polarizability tensor of the nanoparticle. Such
a framework allows us to put forward explicitly the relevant
length scales involved in the FRET mechanism mediated by the
nanoparticle, that is, the Förster radius R0 and the polarization
coupling radius Rp. In the following we use this formalism to
calculate explicitly the FRET rate of a D-A couple interacting
with a spherical nanoparticle exhibiting a magneto-optical
response or a purely metallic response.

C. Spherical magneto-optical nanoparticle

Ferromagnetic materials exhibit magnetic anisotropy that
can be controlled by an external static magnetic field.
At saturation their magnetization influences the dielec-
tric function that exhibits the so-called magneto-optical
response. A spherical nanoparticle made of a material with a

FIG. 2. (Color online) Two canonical configurations studied in
the present work. (a) Left panel: Aligned configuration. (b) Right
panel: Orthogonal configuration.

magneto-optical response can be described by an anisotropic
electric polarizability with radiative corrections9

α(ω) =
(

I − i
k3

6π
α0

)−1

α0, (17)

where α0(ω) is the quasistatic polarizability. For magneto-
optical materials (gyrotropic material) in the presence of a
static magnetic field, it reads

α0(ω) = 3V
ε(ω) − I
ε(ω) + 2I

, (18)

where V is the volume of the nanoparticle and ε is the dielectric
tensor given by

ε = εI I + iQA =
⎛
⎝ εI −iQmz iQmy

iQmz εI −iQmx

−iQmy iQmx εI

⎞
⎠. (19)

In this expression m = (mx,my,mz) is the direction of the
magnetization inside the particle, εI the diagonal part of the
dielectric tensor, and Q is the magneto-optical coefficient.
Let us stress that expression (17) of the polarizability is
consistent with energy conservation (or, equivalently, the
optical theorem).10,11 In the case of a pure metal, the same
expression of the polarizability holds with an isotropic di-
electric function ε(ω) = ε(ω)I . In the present paper we use
bulk dielectric functions (no finite-size effects), which is a
reasonable approach when the sizes involved remain larger
than a few nanometers.12

III. DISCUSSION

The formalism in the previous section has shown the crucial
role of the polarization coupling radius Rp on the FRET rate
mediated by a nanoparticle. In this section, using experimental
data for the dielectric function of different metallic and
magneto-optical materials,13 we compute the ratio Rp/RNP,
where RNP is the radius of the nanoparticle, and study its
dependence on different parameters of practical relevance:
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FIG. 3. (Color online) Ratio Rp/RNP for silver (blue solid line)
and gold (gold dashed line) as a function of the excitation wavelength
λ. RNP = 10 nm. The configuration is such that the dipole are collinear
and acceptor, donor, and nanoparticle are aligned.

the emission wavelength of the donor, the radius of the
nanoparticle, and the material properties.

A. FRET mediated by a metallic nanoparticle

Noble metals are known to hold plasmon resonances that
enhance, for example, the polarizability of a nanoparticle.
Since the polarization coupling radius Rp directly depends
on the polarizability, one can expect a substantial influence
of the plasmon resonance on the FRET rate mediated by the
nanoparticle. This is indeed what we observe in Fig. 3, in which
we have plotted the ratio Rp/RNP (with RNP = 10 nm) versus
the emission wavelength of the donor for gold and silver that
are common materials in studies of fluorescence enhancement
or quenching. We have considered the aligned configuration
with uD = μD , uA = μA, and μA.μD = 1 [see Fig. 2(a) for
a sketch of the aligned geometry]. The plasmon resonance is
visible in both cases, leading to an enhancement of Rp/RNP.
For instance in the case of silver, one reaches Rp/RNP � 3;
for gold one has Rp/RNP � 1.9. In the particular conditions
RD = RA = 2RNP and R = 4RNP, corresponding to the limit
of validity of Eq. (13), we obtain an enhancement factor
�NP

DA/�0
DA of the FRET rate on the order of 180 for silver and

10 for gold. For a D-A couple working at plasmon resonance
with these materials, we conclude that FRET is mainly driven
by the nanoparticle. Incidentally, any change of the dielectric
property of the nanoparticle will be reflected in a modulation
of the FRET rate. Modulation of the dielectric response can
be achieved, for example, through the magneto-optical effect
that we consider in the following.

B. Controlling FRET through the magneto-optical interaction

A magneto-optical nanoparticle can be described using the
polarizability in Eqs. (17)– (19), together with experimental
data for the dielectric function of well known magneto-optical
materials.13 In this section we compute the ratio Rp/RNP

and study the influence of different parameters such as donor
emission wavelength, nanoparticle material, and size.

We show in Fig. 4 the ratio Rp/RNP (with RNP = 10 nm)
versus the emission wavelength of the donor for different
materials that are known to exhibit a magneto-optical response

FIG. 4. (Color online) Ratio Rp/RNP for iron (blue solid line),
nickel (gold dash-dotted line), and cobalt (red dashed line) as a
function of the emission wavelength λ of the donor. RNP = 10 nm.
The configuration is illustrated in the inset, showing that the dipole are
collinear and the couple donor-acceptor and nanoparticle are aligned.

(nickel, iron, and cobalt), and in the same aligned configuration
as in Fig. 3. We observe a smoother behavior than in the case
of noble metals (Fig. 3) since plasmon resonances are strongly
damped by absorption in these magneto-optical materials. For
these materials the enhancement factor �NP

DA/�0
DA of the FRET

rate is on the order of 5, showing that in this case the FRET
rate is also driven by the nanoparticle.

Figure 5 shows a computation of the ratio Rp/RNP with the
same materials as in Fig. 4, but in the case of an orthogonal
configuration with uD = μD , uA = μA, and μA · μD = 0
[see Fig. 2(b) for a sketch of the orthogonal geometry].
The magnetization is orthogonal to the plane containing
the D-A couple and the nanoparticle. Let us stress that in
this configuration the FRET rate vanishes in absence of an
external static magnetic field due to the orthogonality of the
donor and acceptor transition dipoles (κ = 0). Although one
observes that Rp/RNP remains smaller than one, the possibility
of inducing a FRET rate driven only by the polarization
anisotropy of the nanoparticle is an interesting result, showing
the potential of magneto-optical nanoparticles for FRET.

FIG. 5. (Color online) Ratio Rp/RNP for iron (blue solid line),
nickel (gold dash-dotted line), and cobalt (red dashed line) as a
function of the emission wavelength λ of the donor in the presence of
an external magnetic field inducing a magnetization in the direction
orthogonal of the plane containing the tree body D-A-NP. RNP =
10 nm. The configuration is illustrated in the inset [(uD = μD),
(uA = μA), and μA · μD = 0].
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On the one hand, the anisotropic response allows us to
couple molecules for which standard FRET gives a vanishing
signal due to orientational mismatch. On the other hand, the
possibility of controlling the magneto-optical response with a
static magnetic field as an external parameter could allow us to
tune or modulate the FRET rate, which can be an advantage,
for example, to increase the sensitivity of the detection
process.

C. Distance dependence of the FRET rate

The R−6 of free-space FRET (Förster’s theory) is a well-
known feature of nonradiative dipole-dipole coupling. In the
presence of an external body this distance dependence is obvi-
ously more involved, as shown by the general theory that we
introduced. In Eq. (14) we see a dependence on both the donor-
nanoparticle distance (RD) and the acceptor-nanoparticle
distance (RA). In order to get insight into the dependence of
the generalized FRET rate on the acceptor-nanoparticle dis-
tance only, we arbitrary fix the donor-nanoparticle distance
as follows: RD = 2RNP with RNP ∼ R0/2 (note that the
opposite choice can be made). In this case the dependence
of the FRET rate on the acceptor-nanoparticle distance is
given by

�NP
DA

�0
=

(
Rp/RNP

RA/RNP

)6

. (20)

From this expression we see that we recover an inverse sixth
power dependence, as in standard FRET, but with the D-A
distance replaced by the acceptor-nanoparticle distance. This
simply reflects the mechanism underlying the FRET rate
mediated by the nanoparticle channel, which can be seen
as a series of nonradiative energy transfer from the donor
to the nanoparticle followed by another transfer from the
nanoparticle to the acceptor. It is known that nonradiative
energy transfer through dipole-dipole interaction between an
emitter and a nanoparticle leads to the R−6 distance depen-
dence that is recovered here.14–16 Another important output of
Eq. (20) is that from the knowledge of the ratio Rp/RNP we
deduce directly the critical acceptor-nanoparticle distance that
separates the quenching and enhancement regimes of FRET
mediated by the nanoparticle.

IV. CONCLUSION

We have solved the Förster energy transfer problem in a
three-body configuration involving two fluorophores close to
a nanoparticle with an anisotropic dielectric response. Using
a Green function formalism we have shown that the angular
contribution, the distance behavior, and the influence of the
polarizability tensor of the nanoparticle can be identified and
separated. The distance dependence is controlled by a new
distance Rp that depends of the polarization properties of the
nanoparticle. We have illustrated the formalism in the case
of a magneto-optical nanoparticle for which the degree of
anisotropy can be controlled by an external static magnetic
field, and we have discussed potential application for FRET
tuning and modulation. Here, we have presented a proof of
concept. Further work should focus on enhancing the (weak)
magneto-optical FRET signal. We have also illustrated the

formalism for the well known metallic nanoparticle, showing
that this formalism could furnish insight in the understanding
of the good quantities controlling this process.
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APPENDIX

The expression of the normalized energy transfer can be
obtained by treating the acceptor as a classical harmonic
damped dipole oscillating at frequency ω. In this approach the
normalized fluorescence energy transfer is equivalent to the
normalized power emitted by the classical dipole. One writes
�DA/�0 = PDA/P0, where PDA is the power transmitted from
donor to acceptor in the presence of the environment and P0

is the power emitted by the donor in absence of acceptor and
in free-space. P0 can be written as

P0 = ω

2
| pD|2Im[μD · G0(rD,rD,ω)μD], (A1)

with pD , pA the donor and acceptor dipole, respectively.
The power absorbed by the acceptor can be written

PDA = −ω

2
Im[ p∗

A · G(rA,rD,ω) pD], (A2)

assuming that the acceptor is a polarizable molecule
of fix direction (μA) with αA = αA(ω)μAμA, we may
write

pA = αA ED(rA) = αAε0G(rA,rD,ω) pD (A3)

allowing us to write the normalized FRET transfer as

�DA

�0
= ε0Im[αA(ω)]|μA · G(rA,rD,ω)μD|2

Im[μD · G0(rD,rD,ω)μD]
(A4)

and using the absorption cross section expression σA(ω) =
ω
3c

Im[αA(ω)] and the imaginary part of the free space dyadic

green function Im(G0) = k3

6πε0
I it leads to

�DA

�0
= 18πε2

0c
4 σA(ω)|μA · G(rA,rD,ω)μD|2

ω4
dω. (A5)

Introducing the normalized emission spectrum of the donor
fD(ω), we finally obtain the important result

�DA

�0
= 18πε2

0c
4
∫ ∞

0

σA(ω)fD(ω)M(ω)

ω4
dω (A6)

with

M(ω) = |μA · G(rA,rD,ω)μD|2. (A7)
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