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Absorption of scalar waves in correlated disordered media and its maximization
using stealth hyperuniformity
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We develop a multiple-scattering theory for the absorption of waves in disordered media. Based on a general
expression of the average absorbed power, we discuss the possibility of maximizing absorption by using
structural correlations of disorder as a degree of freedom. In a model system made of absorbing scatterers in
a transparent background, we show that a stealth hyperuniform distribution of the scatterers allows the average
absorbed power to reach its maximum value. This study provides a theoretical framework for the design of
efficient nonresonant absorbers made of dilute disordered materials, for broadband and omnidirectional light,
and other kinds of waves.
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I. INTRODUCTION

Multiple scattering of light and other kinds of waves in
disordered media has been extensively studied in the last
decades. The field has been initially driven by fundamental
questions in mesoscopic physics [1,2] and by applications in
sensing and imaging [3,4]. It has been recognized that spatial
correlations in the disorder strongly influence the properties
of a scattering medium [5–10], and the concept of correlated
materials—a class of materials being neither fully random
nor perfectly crystalline—has emerged [11–14]. Engineering
disorder may become a novel approach in the design of
photonic materials with specific functionalities [15–19].

An interesting feature of correlated disorder is the possibil-
ity to tune the level of absorption. Enhancing absorption with
disordered materials, while keeping other properties (e.g.,
electrical conduction or mechanical response) unaffected, is a
key issue for light harvesting in photovoltaic devices [20–24].
The possibility of using spatial correlations to enhance sub-
stantially the level of absorption in disordered materials
has been highlighted recently [12,25–29]. Upper bounds for
absorbance enhancement have been derived, which provide
constraints that can guide optimization processes [30–32]. It
is also interesting to recall that enhanced absorption motivated
early studies of Anderson localization of light [33]. Note that
absorption enhancement is also possible through the concept
of coherent perfect absorption, which requires an action on a
coherent incident wave front [34–38].

In a recent contribution, some of us have shown that in
a model material made of discrete absorbing scatterers in a
transparent matrix, the average absorbed power can be maxi-
mized by distributing the scatterers on a disordered stealth hy-
peruniform point pattern [32]. This absorption enhancement
in noncrystalline (partially ordered) distributions of scatterers
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was shown to be broadband with a wide angular acceptance
(contrary to coherent resonant absorption that is usually lim-
ited to narrow frequency and angular ranges). The main goal
of the present paper is to develop a theoretical framework
to analyze absorption in correlated disordered media, and to
prove the relevance of stealth hyperuniform patterns in max-
imizing the average absorbed power. The paper is organized
as follows. In Sec. II we derive an exact (nonperturbative)
expression for the average power absorbed in a disordered
medium using multiple-scattering theory. In Sec. III, we show
that in the weak-extinction regime, the expression of the
absorbed power is consistent with radiative-transfer theory
in the appropriate large-scale limit. In this framework, we
prove in Sec. IV that in a medium made of discrete absorbing
scatterers in a transparent background, the average absorbed
power can be maximized when the scatterers are distributed
on a stealth hyperuniform pattern. Interestingly, we also prove
that although spatial correlations substantially influence the
scattering mean-free path, they actually leave the absorption
mean-free path unaffected in the weak-extinction regime.
Finally we briefly summarize the main results in Sec. V.

II. AVERAGE ABSORBED POWER

We consider a disordered medium described by a po-
sition and frequency dependent dielectric function of the
form ε(r, ω) = 1 + δε(r, ω), where δε is a random variable
assumed to be complex valued. The imaginary part of δε

accounts for absorption in the medium. We further assume that
δε has a correlation function

〈δε(r, ω)δε∗(r′, ω)〉 = 〈δε(r, ω)〉〈δε∗(r′, ω)〉 + C(r − r′),
(1)

where 〈. . .〉 denotes statistical averaging over realizations of
disorder, and ∗ stands for complex conjugate. Here we assume
that the medium is statistically homogeneous and isotropic,
with C(r − r′) depending only on |r − r′|. The correlation
function above implies that the real and imaginary parts of
the dielectric function are perfectly correlated. This general
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permittivity model includes the particular case of absorbing
particles distributed in a transparent matrix, which will be
considered in Sec. IV B. Also note that we do not require δε to
have zero mean, since its imaginary part is non-negative in a
passive absorbing medium. Upon illumination by an external
optical field, and in the scalar wave model that we use in
this study, the local average absorbed power per unit volume
is [39]

〈Pa(r, ω)〉 = 1
2 Re〈 j(r, ω)E∗(r, ω)〉, (2)

where E (r, ω) is the electric field and j(r, ω) the current den-
sity. Since j(r, ω) = −iωε0 δε(r, ω)E (r, ω), we immediately
find that

〈Pa(r, ω)〉 = ε0ω

2
Im〈δε(r, ω)E (r, ω)E∗(r, ω)〉, (3)

where ε0 is the vacuum permittivity. We shall now derive
a general expression for 〈Pa(r, ω)〉 in the framework of the
standard perturbative theory of multiple scattering.

A. Electric field and multiple scattering

We start by introducing a diagrammatic expansion of the
electric field. For the sake of simplicity, we omit the depen-
dence on ω, keeping in mind that all fields are monochromatic.
The electric field obeys the Helmholtz equation

�E (r) + k2
0ε(r)E (r) = S(r), (4)

where k0 = ω/c = 2π/λ is the vacuum wave number, c being
the speed of light and λ the wavelength in free space, and S(r)
is an external source. Likewise, the incident field E0 is the
solution to

�E0(r) + k2
0E0(r) = S(r). (5)

From Eqs. (4) and (5), it is easy to see that the scattered field
Es = E − E0 obeys

�Es(r) + k2
0Es(r) = −k2

0δε(r)E (r). (6)

The free-space Green’s function G0 is the solution to

�G0(r, r0) + k2
0G0(r, r0) = −δ(r − r0) (7)

with an outgoing wave condition when |r − r0| → ∞, and is
given by

G0(r, r0) = exp(ik0|r − r0|)
4π |r − r0| . (8)

Using Eqs. (6) and Eq. (7), the scattered field can be written
as

Es(r) =
∫

G0(r, r′)V (r′)E (r′)d3r′, (9)

where V (r′) = k2
0δε(r′) is the scattering potential. The total

field obeys the integral equation

E (r) = E0(r) +
∫

G0(r, r′)V (r′)E (r′)d3r′, (10)

which is known as the Lippmann-Schwinger equation. It can
be rewritten formally using operator notation, in the form

E = E0 + G0V E . (11)
Upon iterating this equation, we obtain the Born series

E = E0 + G0V E0 + G0V G0V E0 + G0V G0V G0V E0 + · · · ,

(12)
which can be understood as a multiple-scattering expansion.
For practical calculations, it is useful to write the above
expansion using diagrams [40], with the following rules: A
circle denotes a scattering event by the potential V , a solid line
represents a free-space Green’s function G0, and a dotted line
stands for the incident field E0. Following these rules, Eq. (12)
becomes

E = + + + . . .

(13)

The same expansion can be written for the complex conjugate
E∗.

B. Diagrammatic calculation of average absorbed power

We now turn to the diagrammatic expansion of V EE∗,
which is at the root of the computation of the average absorbed
power, as can be seen from Eq. (3). Using the upper line for
V E and the bottom line for E∗, we can write

V EE∗ = + + + +

+ + + + + . . .

(14)

where the expansion has been limited to third-order scattering.
Note that the two lines only differ by the presence of a
scattering event V on the left of each diagram in the upper line.
Next, we proceed with the calculation of the ensemble average
of Eq. (14) over all possible configurations of disorder. We
start by considering two consecutive scattering events, i.e.,
V G0V . We can write

〈V G0V 〉 = 〈V 〉G0〈V 〉 + 〈V G0V 〉c, (15)

where the second term accounts for structural correlations in
the disorder, and is often referred to as the connected part (i.e.,
the part that cannot be factorized). In terms of diagrams, the
above equation is

V G0V = + . (16)
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Here the dotted link in the second diagram means that the
two scattering events are spatially correlated. The presence
of correlations affects the higher-order terms in a similar way.
For example, for three scattering events, we have

V G0V G0V = +

+ + + .

(17)

We now make use of this averaging method to calculate
〈V EE∗〉, and consider separately two situations.

In the first situation, we assume that the first scattering
event in Eq. (14), i.e., the upper left circle in each diagram in
the upper line, is not correlated to any other scattering event,
or is connected to a scattering event in the upper line only.
The expansion below shows typical diagrams contributing to
〈V EE∗〉 in this situation:

V EE∗
1 =

+ + + . . .

.

(18)

Next we introduce the self-energy �, defined as

Σ = + + + . . .. (19)

The self-energy describes the propagation of the average field
〈E〉, and is a central quantity in multiple-scattering theory
[1,2,41]. Indeed, by averaging Eq. (13), we obtain

E = + +

+ + . . .

(20)

Using Eq. (19), it can be seen that the average field obeys

〈E〉 = E0 + G0�〈E〉, (21)

which is known as the Dyson equation. Likewise, the average
Green’s function obeys

〈G〉 = G0 + G0�〈G〉. (22)

In real space, the Dyson equation for the electric field is

〈E (r)〉 = E0(r) +
∫

G0(r, r′)�(r, r′)〈E (r′)〉d3r′. (23)

It is also useful to introduce the diagrammatic expansion of
the field correlation function 〈EE∗〉, which takes the following

form:

EE∗ = + +

+ . . .

(24)

From Eqs. (18), (19), and (24), it can be seen that

〈V EE∗〉1 = �〈EE∗〉, (25)

since all “horizontal” correlations in the upper line are in-
cluded in �, while all “vertical” correlations, as in the third
diagram in Eq. (18), are included in 〈EE∗〉. Finally, using
Eqs. (3) and (25), we obtain a first contribution to the average
absorbed power density

〈Pa(r)〉1 = ε0c2

2ω
Im

[∫
�(r, r′)

〈
E (r′)E∗(r)

〉
d3r′

]
. (26)

In the second situation, we consider that the first scattering
event in Eq. (14) is correlated to one or several scattering
events in the lower line, and in addition potentially correlated
to one or several events in the upper line (i.e., we consider all
diagrams not taken into account in the previous situation). In
this case, the expansion of 〈V EE∗〉 takes the form

V EE∗
2 = +

+ + + . . .

,

(27)

in which a few typical diagrams have been represented. In
order to simplify this expansion, we introduce the intensity
vertex 	, defined by

Γ = + + + . . .

(28)

The vertex 	 is another important quantity in multiple scatter-
ing theory, and describes the behavior of the field correlation
function 〈EE∗〉 [1,2,41]. Indeed, using Eqs. (19), (22), (24),
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and (28), it can be shown that the field correlation function
obeys

〈EE∗〉 = 〈E〉〈E∗〉 + 〈G〉〈G∗〉	〈EE∗〉, (29)

which is known as the Bethe-Salpeter equation. In real space,
this equations reads as

〈E (r)E∗(ρ)〉 = 〈E (r)〉〈E∗(ρ)〉
+

∫
〈G(r, r′)〉〈G∗(ρ,ρ′)〉	(r′,ρ′, r′′,ρ′′)

×〈E (r′′)E∗(ρ′′)〉d3r′d3r′′d3ρ ′d3ρ ′′. (30)

Using Eqs. (19), (22), (27), and (28), it can be seen that

〈V EE∗〉2 = 〈G∗〉	〈EE∗〉, (31)

which, after insertion into Eq. (3), leads to the second contri-
bution to the average absorbed power density:

〈Pa(r)〉2 = ε0c2

2ω
Im

[ ∫
〈G∗(r,ρ)〉	(r,ρ, r′,ρ′)

×〈E (r′)E∗(ρ′)〉d3r′d3ρd3ρ ′
]
. (32)

In summary, we have shown that the average absorbed
power density can be written as

〈Pa(r)〉 = 〈Pa(r)〉1 + 〈Pa(r)〉2, (33)

where the two terms on the right-hand side are given by
Eqs. (26) and (32), respectively. This result has been derived
for scalar waves without any approximation using the dia-
grammatic description of multiple scattering. In a medium
with finite size occupying a volume V , the total absorbed
power 〈Pa〉 is obtained by computing the integral 〈Pa〉 =∫
V 〈Pa(r)〉d3r.

The fact that the expression of 〈Pa〉 only involves the
self-energy � and intensity vertex 	 makes the result easy
to generalize beyond the model of continuous disorder. This
can be done by writing � and 	 in terms of the T matrix
of the medium, which itself can be written in terms of T
matrices of individual scatterers [42]. It is important to note
that Eq. (33) is not self-contained. Indeed, computing the
integrals in Eqs. (26) and (32) requires the knowledge of
〈G〉 and 〈EE∗〉, which are solutions to the Dyson and Bethe-
Salpeter equations, respectively.

In the following, it will prove useful to rewrite Eq. (33)
in Fourier space. Assuming statistical translational invariance,
the Fourier transforms of the self-energy, average Green’s
function, and intensity vertex take the form

�(k, k′) = 2πδ(k − k′)�̃(k), (34)

〈G(k, k′)〉 = 2πδ(k − k′)〈G̃(k)〉, (35)

	(k, κ, k′, κ′) = 8π3δ(k − κ − k′ + κ′)

× 	̃(k, κ, k′, κ′). (36)

Using the above expressions, Eq. (33) can be rewritten as

〈Pa(r)〉 = ε0c2

2ω
Im

[ ∫
�̃

(
k + q

2

)〈
E

(
k + q

2

)
E∗

(
k − q

2

)〉
× exp(iq · r)

d3k

8π3

d3q

8π3
+

∫ 〈
G̃∗

(
k − q

2

)〉
× 	̃

(
k + q

2
, k − q

2
, k′ + q

2
, k′ − q

2

)
×

〈
E

(
k′ + q

2

)
E∗

(
k′ − q

2

)〉
× exp(iq · r)

d3k

8π3

d3k′

8π3

d3q

8π3

]
. (37)

In absence of absorption, the right-hand side in Eq. (37) has
to vanish. It is interesting to note that this condition is in
agreement with the Ward identity, as shown in Appendix
A. Consistency with the Ward identity, or equivalently with
energy conservation, is an important feature of the multiple-
scattering theory developed in this section. Expression (37) is
the starting point of the derivation of an asymptotic form of the
average absorbed power in Sec. III, and of the discussion of
the maximization of absorption using structural correlations
as a degree of freedom in Sec. IV.

III. WEAK EXTINCTION AND
RADIATIVE-TRANSFER LIMIT

In this section, we derive an asymptotic expression of
the average absorbed power density in the weak-extinction
regime, and show that, in this limit, the usual picture of
radiative-transfer theory is recovered. The condition of weak
extinction can be written as k0�e � 1, where �e is the extinc-
tion mean-free path. Qualitatively, �e is the average distance
between successive extinction events (scattering or absorp-
tion). It will be defined precisely below [see Eq. (45)]. In
this regime, the average field 〈E〉 and average intensity 〈I〉 =
〈|E |2〉 vary on the scale of the mean-free path, which is much
larger than the wavelength. This means that a large-scale
approximation can be performed in Eq. (37); that is, we
can assume |q| 	 {|k|, |k′|}. Under this approximation, it is
known that the average intensity obeys the radiative-transfer
equation (RTE). The detailed derivation of the RTE is beyond
the scope of this paper, and can be found for example in
Refs. [41,43,44]. Here we briefly summarize the main steps.
We start by Fourier-transforming the Bethe-Salpeter equation
(30), which leads to〈

E
(

k + q
2

)
E∗

(
k − q

2

)〉
=

〈
G̃

(
k + q

2

)〉〈
G̃∗

(
k − q

2

)〉
×

∫
	̃

(
k + q

2
, k − q

2
, k′ + q

2
, k′ − q

2

)
×

〈
E

(
k′ + q

2

)
E∗

(
k′ − q

2

)〉d3k′

8π3
. (38)

In this equation we have neglected the exponentially small
contribution of the average field on the right-hand side, since
we assume that the intensity is calculated far from the external
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source S. The Dyson equation (22) can also be written as

〈G̃(k)〉 = G0(k) + G0(k)�̃(k)〈G̃(k)〉, (39)

from which we obtain

〈G̃(k)〉 = 1

G0(k)−1 − �̃(k)
= 1

k2 − k2
0 − �̃(k)

, (40)

where k = |k|. The weak-extinction limit is defined by the
condition |�̃(k)| 	 k2

0 . Since 〈G̃(k)〉 is peaked around k =
k0, we can evaluate the self-energy �(k) on-shell for k = k0.
Making use of the identity

lim
ε→0+

1

x − x0 + iε
= PV

[
1

x − x0

]
− iπδ(x − x0), (41)

and taking the large-scale limit q → 0, it can be shown that〈
G̃

(
k + q

2

)〉〈
G̃∗

(
k − q

2

)〉
∼ − iπδ[k2 − k2

0 − Re �̃(k0)]

k · q − i Im �̃(k0)
. (42)

The delta function fixes k = kr , with k2
r = k2

0 + Re �̃(k0).
Next we define the specific intensity I (q, u) by

16π3ω

ε0c2k3
r

δ(k − kr )I (q, u) =
〈
E

(
k + q

2

)
E∗

(
k − q

2

)〉
, (43)

where u = k/k is a unit vector. Inserting Eqs. (42) and (43)
into Eq. (38), performing the large-scale limit q → 0 in the
intensity vertex, and Fourier transforming with respect to q
leads to the RTE

u · ∇rI (r, u) + 1

�e
I (r, u) = 1

�s

∫
p(u, u′)I (r, u′) du′,

(44)

where du′ means integration over the unit sphere. Here the
extinction mean-free path �e, the scattering mean-free path �s,
and the phase function p(u, u′) are defined by

1

�e
= Im �̃(k0)

kr
, (45)

1

�s
= 1

16π2

∫
	̃(kru, kru, kru′, kru′)du′, (46)

p(u, u′) = �s

16π2
	̃(kru, kru, kru′, kru′). (47)

The specific intensity I (r, u) in Eq. (44) can be understood
as a local and directional energy flux, in agreement with the
usual picture in radiative-transfer theory [45]. The regime in
which the transport of the average intensity is described by the
RTE will be denoted hereafter by the radiative-transfer limit.

In the radiative-transfer limit, making use of the weak-
extinction and large-scale (q → 0) approximations, it is easy
to show that Eq. (37) becomes

〈Pa(r)〉 = 1

�e

∫
I (r, u)du − 1

�s

∫
I (r, u)du. (48)

Defining the average energy density U by [45]

U (r) = 1

vE

∫
I (r, u)du, (49)

where vE is the energy (or transport) velocity, and introducing
the absorption mean-free path �a such that �−1

a = �−1
e − �−1

s ,
we obtain

〈Pa(r)〉 = vE

�a
U (r), (50)

which is the usual expression of the average absorbed power
density in radiative-transfer theory [45]. We conclude that the
(exact) expressions (33) and (37) of the average absorbed
power density, derived from multiple-scattering theory, are
consistent with radiative-transfer theory in the appropriate
limit.

IV. MAXIMIZING THE AVERAGE ABSORBED POWER

In this section, we examine the possibility of maximizing
the average absorbed power in a disordered medium using
structural correlations. As a model system, we consider a
medium made of discrete absorbing scatterers, randomly dis-
tributed in a transparent background with a predefined number
density, the only degree of freedom being the positions of the
individual scatterers.

A. A useful splitting of the average absorbed power

Here we derive a splitting of the average absorbed power
previously introduced in Ref. [32], which proved to be useful
as a starting point for the maximization of absorption. We
start by recalling the energy conservation law in a scatter-
ing medium. For scalar waves, we define the extinguished,
absorbed, and scattered power densities by

Pe(r) = 1
2 Re[ j(r)E∗

0 (r)], (51)

Pa(r) = 1
2 Re[ j(r)E∗(r)], (52)

Ps(r) = ∇ · Js(r), (53)

where Js = 1/(2ωμ0) Im [Es(r)∇E∗
s (r)] is the energy current

of the scattered field, μ0 being the vacuum permeability.
Energy conservation states that the extinguished power (the
power transferred from the incident field to the medium) is
either absorbed or scattered, which reads as

Pe(r) = Pa(r) + Ps(r). (54)

This local energy conservation law is derived in Appendix B.
In a disordered medium described statistically, all fields

and induced sources are random variables. Each of them can
be written as the sum of an average value and a fluctuation, in
the form

j = 〈 j〉 + δ j,

E = 〈E〉 + δE ,

Es = 〈Es〉 + δEs,

(55)

with all fluctuating terms averaging to zero. Average quadratic
quantities, such as the extinguished, absorbed, and scattered
power densities, can be cast in the form

〈Pe,a,s(r)〉 = Pe,a,s(r) + P̃e,a,s(r), (56)

where Pe,a,s only depends on average quantities 〈 j〉, 〈E〉, and
〈Es〉, and P̃e,a,s only depends on their fluctuating counterparts
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δ j, δE , and δEs. Since the incident field E0 is deterministic,
〈E0〉 = E0 and δE0 = 0, which leads to 〈Pe(r)〉 = Pe(r).
Averaging Eq. (54), and making use of the above splitting,
leads to

Pe(r) = Pa(r) + P̃a(r) + P s(r) + P̃s(r). (57)

The average field 〈E〉 obeys the Dyson equation (23),
which shows that it propagates in an effective medium with
properties defined by the self-energy �. More precisely, in
a statistically homogeneous and isotropic medium, and in
absence of nonlocality (meaning that field variations on the
scale of the correlation length of the medium are disregarded),
the average scattered field obeys a Helmholtz equation similar
to Eq. (6), with δε replaced by an effective dielectric function,
and E replaced by 〈E〉 in the source term [1]. Starting from
this equation, and following the same steps as those leading to
Eq. (54) (given in Appendix B), we obtain

Pe(r) = Pa(r) + P s(r). (58)

From Eqs. (57) and (58),we immediately find that

P̃a(r) + P̃s(r) = 0, (59)

which also implies that

〈Pa(r)〉 = Pa(r) − P̃s(r). (60)

The first term on the right-hand side is by definition

Pa(r) = 1
2 Re[〈 j(r)〉〈E∗(r)〉]. (61)

It actually corresponds to the factorized contribution to
〈Pa(r)〉1 in Eq. (26), namely

Pa(r) = ε0c2

2ω
Im

[∫
�(r, r′)〈E (r′)〉〈E∗(r)〉d3r′

]
. (62)

In the diagrammatic representation, this term results from all
possible scattering sequences for E and E∗ that are discon-
nected from one another. In the radiative-transfer limit, it also
corresponds to

Pa(r) = vE

�e
U (r), (63)

where U (r) is the ballistic energy density (i.e., the energy
density associated with the average field). Note that Eq. (63)
is deduced from Eq. (62) by following the steps leading from
Eq. (37) to Eq. (48) (the full derivation is not written for the
sake of brevity). In the expression above, we clearly see that
Pa is not the power absorbed by the ballistic beam, which
would be proportional to �−1

a U .
The second term on the right-hand side in Eq. (60) is

deduced by identification with the other terms in Eqs. (26)
and (32), which gives

P̃s(r) = −ε0c2

2ω
Im

[∫
�(r, r′)〈E (r′)E∗(r)〉cd3r′

+
∫

〈G∗(r − ρ, ω)〉	(r,ρ, r′,ρ′, ω)

× 〈E (r′, ω)E∗(ρ′, ω)〉d3r′d3ρd3ρ ′
]
, (64)

where 〈XX ′〉c = 〈XX ′〉 − 〈X 〉〈X ′〉 denotes the connected part
of a correlation function. In the radiative-transfer limit, this
corresponds to

P̃s(r) = −vE

�e
Ũ (r) + vE

�s
U (r) (65)

= −vE

�a
Ũ (r) + vE

�s
U (r), (66)

where Ũ = U − U is the diffuse energy density. The total ab-
sorbed power Pa is obtained by integrating the power density
over the volume of the disordered medium. From Eq. (60), we
immediately find that

〈Pa〉 = Pa − P̃s. (67)

The term P̃s, which represents the scattered power of the
fluctuating part of the field, is the integral of P̃s(r) defined
in Eq. (56), and can be easily shown to be the integral
of |δEs|2 over a sphere with radius tending to infinity and
embedding the disordered medium. This proves that P̃s � 0,
thus suggesting a strategy to maximize the average absorbed
power by minimizing P̃s and maximizing Pa. This idea was
previously examined in Ref. [32] using numerical simulations,
and will be analyzed theoretically below. It is also useful to
note that the two terms on the right-hand side in Eq. (67) have
the following expressions in the radiative-transfer limit:

Pa = vE

�e

∫
U (r)d3r, (68)

P̃s = vE

�s

∫
U (r)d3r − vE

�a

∫
Ũ (r)d3r. (69)

The structure of Eq. (69) confirms the positivity of P̃s. Indeed
the first term on the right-hand side corresponds to the power
lost by the ballistic intensity due to scattering, which con-
tributes as a source for the diffuse intensity. The second term
corresponds to absorption of the diffuse intensity, which needs
to be subtracted to count the net contribution of the diffuse
intensity to the scattered power.

B. Minimizing ˜Ps

Minimizing P̃s amounts to maximizing the scattering
mean-free path �s. Indeed, P̃s is expected to vanish in the limit
�s → ∞, as can be seen from Eq. (69). The first term on the
right-hand side vanishes due to the prefactor 1/�s, and the
second term vanishes since Ũ = 0 in absence of a source term
generating a diffuse intensity.

In order to maximize �s, we now move to the particular
case of absorbing particles in a transparent matrix. We are
thus left with the problem of connecting �s to structural
correlations in a medium made of discrete scatterers in a
transparent background. In a dilute medium, the expansion
of the intensity vertex 	 can be limited to the first diagram
in Eq. (28) (diagrams with increasing number of scattering
events can be shown to be proportional to increasing powers
of the number density of scatterers ρ). The first diagram
corresponds to

	(r,ρ, r′,ρ′) = k4
0 C(r − ρ)δ(r − r′)δ(ρ − ρ′), (70)
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where C(R) is the correlation function defined in Eq. (1).
Inserting this expression into Eq. (46), we obtain

1

�s
= k4

0

16π2

∫
C̃[kr (u′ − u)]du′, (71)

where C̃(q) is the Fourier transform of C(R). For a set
of identical (nonresonant) absorbing scatterers occupying a
volume V → ∞, the dielectric function can be written

ε(r) = 1 + �ε
∑

j

�(r − r j ),

where �(r − r j ) =
{

1, if r is in particle j,
0, otherwise. (72)

The correlation function C(r − ρ) reads as

C(r − ρ) = |�ε|2
∫

�(r − ra)�(ρ − ρa)

×
〈∑

i, j

δ(ra − ri )δ(ρa − r j )

〉
c

d3rad3ρa, (73)

which, after Fourier transformation, becomes

C̃(q) = |�ε�(q)|2
V

∫
exp[−iq · (ra − ρa)]

×
〈∑

i, j

δ(ra − ri )δ(ρa − r j )

〉
c

d3rad3ρa. (74)

We now introduce the structure factor defined by

S(q) = 1

N

〈∣∣∣∣∣∑
i

exp[iq · ri]

∣∣∣∣∣
2〉

, (75)

where N → ∞ is the number of scatterers, which can also be
cast in the form

S(q) = 1

N

∫
exp[−iq · (ra − ρa)]

×
〈∑

i, j

δ(ra − ri )δ(ρa − r j )

〉
d3rad3ρa. (76)

From Eqs. (71), (74), and (76), the scattering mean-free path
can be written

1

�s
= ρk4

0 |�ε|2
16π2

∫
|�[kr (u′ − u)]|2S̃[kr (u′ − u)]du′, (77)

where ρ = N/V is the number density of scatterers. Here we
have introduced a corrected structure factor S̃(q), defined by
Eq. (76) with the average value replaced by its connected
part 〈. . .〉c. S̃(q) actually corresponds to the structure factor
corrected from its forward contribution; see for example Ref.
[46, Sec. 2.1] or the Supplemental Information of Ref. [16].
Also note that � in Eq. (77) accounts for the size of an
individual scatterer. Actually the form factor is defined as
F (q) = k4

0k2
r |�ε|2|�(q)|2/(16π2).

From Eq. (77), we see that the limit �s → ∞ is reached if
the structure factor S̃(q) vanishes in a neighborhood of q = 0
containing the integration domain. This condition on S̃(q)
defines a stealth hyperuniform distribution of the scatterers

L

FIG. 1. A slab of a scattering medium with thickness L, illumi-
nated by a plane wave at normal incidence.

in space [46,47]. It is interesting to note that Eq. (77) holds
in the multiple-scattering regime (only the condition of weak-
extinction k0�e � 1 has been assumed). This means that if K
is the size of the domain in which S̃(q) = 0 around q = 0,
�s can be considered infinite provided that 2kr < K . In a
nonabsorbing medium, this coincides with the transparency
regime originally discussed in Ref. [16]. In an absorbing
medium, this transparency condition has to be understood as
the condition minimizing the scattered power P̃s. Finally, let us
note that since Eq. (77) results from a first-order perturbative
analysis (only the first diagram in the intensity vertex 	 has
been taken into account), corrections to the value 1/�s =
0 discussed above are expected, due to the contribution of
higher-order diagrams in 	. This means that 1/�s can be
made very small in the multiple-scattering regime, but not
exactly zero. In practice, the “transparency” regime is reached
when the effective �s becomes much larger than the size
of the disordered medium. Beyond hyperuniformity, which
is a particular case of correlated disorder, the dependence
of the scattering mean-free path on correlations has been
studied in different contexts such as in scattering in biological
tissues [5], condensed matter physics [48,49], or scattering
from colloidal suspensions [6]. Stealth hyperuniformity has
the particularity to lead to a strong increase of the scattering
mean-free path [26,46].

C. Maximizing Pa

Maximizing the average absorbed power 〈Pa〉 in Eq. (67)
also requires maximizing Pa. Assuming that the condition
P̃s � 0 is satisfied, Pa can be obtained in the radiative-transfer
limit by solving the RTE Eq. (44) in absence of the source
term on the right-hand side, and making use of Eq. (68). For
practical calculations, we consider a medium confined within
a slab with thickness L, illuminated by a plane wave at normal
incidence, as represented schematically in Fig. 1.

In this geometry, and for index-matched media, we obtain

Pa = vE S

�a

∫ L

0

I0

vE
exp

[
− s

�a

]
ds (78)

= P0

[
1 − exp

(
− L

�a

)]
, (79)
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where we have assumed �e � �a, and introduced I0 the spe-
cific intensity of the incident wave, S the transverse section of
the slab (supposed to be tending to infinity), and P0 = I0S the
incident power. As expected, Pa reaches its maximum value
Pa = P0 for L � �a. The condition of index matching has
been chosen for the sake of illustration. Index mismatch would
result in multiplying the incident power by a factor 1 − R,
with R being the reflectivity of the input interface, and by
slightly increasing absorption due to total internal reflection.
Keeping in mind the goal of designing efficient absorbers
based on dilute materials, these effects should remain weak
compared to the absorption enhancement mechanism induced
by structural correlations.

The fact that absorption reaches a maximum value when
�a 	 L may seem obvious, since once scattering has been
suppressed, the medium is seen as homogenized by the prop-
agating wave. Two subtle points need to be put forward. First,
the homogenization regime that is found is induced by chang-
ing the structure factor at a constant number density ρ. In other
words, it only results from spatial correlations in the positions
of the scatterers (and not from a change in the average distance
between them). Second, although �s depends substantially
on the structure factor [Eq. (77)], the absorption mean-free
path �a is almost independent of structural correlations. This
interesting feature has been observed recently in numerical
simulations based on an exact formulation or a perturbative
treatment of the scattering problem, in hard-sphere correlated
systems [26,27] or hyperuniform distributions [32]. It is also
supported by a more refined analysis based on perturbation
theory, which is presented in Appendix C. This means that
even in the presence of structural correlations, in the weak-
extinction regime, the absorption mean-free path �a can be
taken to be close to the independent scattering (or Boltzmann)
mean-free path �B

a = 1/(ρσa), where σa is the absorption
cross section of an individual scatterer.

In summary, the scattered power P̃s can be made arbitrarily
small using a stealth hyperuniform distribution of scatterers,
by reaching the regime �s � L. In this regime, the average
absorption 〈Pa〉 � Pa, and reaches a maximum provided that
�B

a 	 L, a condition that only depends on the density ρ,
and on the absorption cross section of individual scatterers.
The fact that �s can be tuned independently on �B

a makes
structural correlations a practical degree of freedom in the
maximization of the average absorption. This result can also
be understood qualitatively using a random walk picture, valid
in the radiative-transfer limit, in which the average absorbed
power can be written as

〈Pa〉
P0

= 1 −
∫ ∞

0
P(s) exp

[
− s

�B
a

]
ds, (80)

where P(s) is the probability density of a path with length
s. From this expression, we clearly see that 〈Pa〉/P0 is max-
imized when the condition �B

a 	 L 	 �s is fulfilled. In this
case the integral vanishes since P(s) = 0 over the integration
range limited by the exponential cutoff.

A medium made of absorbing and scattering particles in a
transparent matrix has been chosen to provide a simple model
in which the substantial influence of structural correlations on

FIG. 2. Scattering optical thickness bs giving the maximum
average absorbed power versus the absorption thickness ba. The
calculation is performed in the radiative-transfer limit, by solving
the RTE using a Monte Carlo method for isotropic scattering, i.e.,
with a phase function p(u, u′) = 1/(4π ) in Eq. (44). Beyond the
critical absorption optical thickness ba,c, the average absorbed power
is maximum for bs = 0. The value ba,c � 2.61 is found in this
numerical simulation.

absorption can be demonstrated. On the practical side, disor-
der assemblies of scatterers in which absorption needs to be
controlled are found, for example, in soft matter (a colloidal
suspension of metallic nanoparticles, or a structural paint),
in photonics (an ensemble of quantum dots in a semicon-
ductor structure), or in atomic physics (a cold atomic cloud).
Given the nature of the individual scatterers, maximizing (or
more generally controlling) the collective absorption can be
achieved using structural correlations as the only available
degree of freedom. For example, in structural paints, one uses
small absorbers to saturate the colors produced by scattering
at specific wavelengths; in atomic physics and photonics, one
can use reduced scattering and enhanced absorption to favor
collective effects.

D. Critical optical thickness for absorption

Before concluding, it is worth analyzing the condition
�B

a 	 L that maximizes Pa in more detail. Introducing the
scattering and absorption optical thicknesses bs = L/�s and
ba = L/�B

a , respectively, we can expect that in the condition
bs � 0 provided by stealth hyperuniformity, Pa reaches its
maximum value for ba > ba,c, with ba,c a critical absorption
optical thickness. Beyond ba,c, the homogenized medium can
be considered as semi-infinite [which corresponds to Pa � P0

in Eq. (79)], and the average absorbed power is maximized.
The value of ba,c can be determined numerically. As an
illustration, we find ba,c ∼ 2.61 in the radiative-transfer limit,
by solving the RTE using a Monte Carlo method for isotropic
scattering [50], as shown in Fig. 2. This value of ba,c can also
be determined using a semianalytical approach, as described
in Appendix D.
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V. CONCLUSION

In conclusion, we have derived an expression for the aver-
age absorbed power in a disordered medium using multiple-
scattering theory. This exact expression is consistent with
radiative-transfer theory in the weak-extinction regime. In this
framework, we have discussed the possibility of maximizing
the average absorbed power 〈Pa〉, using structural correlations
in the disorder as a degree of freedom. In a medium made
of absorbing scatterers in a transparent background, we have
shown that a stealth hyperuniform distribution of the scatterers
allows 〈Pa〉 to reach its maximum value, provided that the
absorption optical thickness is larger than a critical value.
We have also shown that although the scattering mean-free
path �s can be tuned using spatial correlations, the absorption
mean-free path is almost independent of correlations, which
is key point for a practical implementation of the proposed
strategy to maximize the absorbed power. The analysis in this
paper provides a clear theoretical support to the observation
made in Ref. [32] based on numerical simulations. It provides
a theoretical framework for the design of blackbody-like non-
resonant absorbers made of dilute materials, for broadband
and omnidirectional light, and for other kinds of waves. The
techniques developed in this work could also serve as a basis
to study the relevant problem of minimization absorption in
a scattering material. Another perspective is the study of
absorption in a scattering medium made of an absorbing
background, which requires a substantially different model.
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APPENDIX A: WARD IDENTITY

In the particular case of a nonabsorbing medium [i.e.,
Im δε(r) = 0], it is well known that the self-energy � and the
intensity vertex 	 are related by the Ward identity, as a con-
sequence of energy conservation. This fundamental relation is
usually derived from the Bethe-Salpeter equation [1,2,51,52].
A Ward identity for the propagation of electromagnetic waves
in the presence of absorption has been derived in Ref. [53].
Here we check that the result derived in Sec. II is consistent
with the usual Ward identity. To proceed, we integrate Eq. (37)
over the unbounded volume of a bulk and nonabsorbing
medium, which leads to

Im

[∫
�̃(k)〈|E (k)|2〉 d3k

8π3
+

∫
〈G̃∗(k)〉

× 	̃(k, k, k′, k′)〈|E (k′)|2〉 d3k

8π3

d3k′

8π3

]
= 0. (A1)

Making use of the following reciprocity relation (for a deriva-
tion, see for example Ref. [43, Chap. 3, Problem 3.27]),

	(r,ρ, r′,ρ′) = 	∗(ρ, r,ρ′, r′) = 	(r′,ρ′, r,ρ), (A2)

which leads to

	̃(k, k, k′, k′) = 	̃∗(k, k, k′, k′) = 	̃(k′, k′, k, k). (A3)

In Fourier space, Eq. (A1) becomes∫
Im �̃(k)〈|E (k)|2〉 d3k

8π3

=
∫

Im〈G̃(k)〉	̃(k, k, k′, k′)〈|E (k′)|2〉 d3k

8π3

d3k′

8π3
. (A4)

This equation is consistent with the usual form of the Ward
identity [1,2,51,52]

Im �̃(k) =
∫

Im〈G̃(k′)〉	̃(k, k, k′, k′)
d3k′

8π3
. (A5)

APPENDIX B: ENERGY BALANCE IN
A SCATTERING MEDIUM

In this Appendix we derive the local energy balance
Eq. (54). We start by rewriting Eq. (6) in the form

�Es + k2
0Es = −iμ0ω j, (B1)

with j(r) = −iωε0δε(r)E (r) the induced current density in
the medium. From Eq. (B1), it is easy to show that

E∗
s �Es − Es�E∗

s = −iμ0ω jE∗
s − iμ0ω j∗Es, (B2)

which can be rewritten as

∇ · (E∗
s ∇Es − Es∇E∗

s ) = −2iμ0ω Re[ j(E∗ − E∗
0 )]. (B3)

Defining the energy current of the scattered field Js by

Js = 1

2μ0ω
Im(E∗

s ∇Es), (B4)

Eq. (B3) can be written in the form of a conservation law,

∇ · Js + 1
2 Re( jE∗) = 1

2 Re( jE∗
0 ). (B5)

In this equation, Pa = (1/2) Re( jE∗) is the absorbed power
per unit volume, and Ps = ∇ · Js can be understood as the
scattered power per unit volume. The right-hand side Pe =
(1/2) Re( jE∗

0 ) is known as the extinguished power, and corre-
sponds to the work done by the incident field on the scattered
medium. Equation (B5) simply means that the power trans-
ferred from the incident field E0 to the medium (Pe) is either
absorbed (Pa) or scattered (Ps). This concludes the derivation
of Eq. (54).

APPENDIX C: WEAK DEPENDENCE OF
THE ABSORPTION MEAN-FREE PATH ON

STRUCTURAL CORRELATIONS

The weak dependence of the absorption mean-free path
�a on structural correlations of disorder has been reported in
previous studies [26,27,32]. Here we show that this interesting
feature can be supported by a theoretical analysis based on
a perturbative approach. We start with diagrammatic expan-
sions of the self-energy � and the intensity vertex 	 slightly
different from that given in Eqs. (19) and (28), in which the
free-space Green’s functions G0 are replaced by the average
Green’s function 〈G〉 in all diagrams. Technically, this means
that each diagram in the new expansions results from a partial
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summation of an infinite number of the former diagrams. The
new expansions for � and 	 take the form

Σ =

Σ(1)

+

Σ(2)

+

Σ(3)

+ . . .

(C1)

and

Γ =

Γ(2)

+

Γ(3)

+

Γ(3)

+

Γ(3)

+ . . .

(C2)

Here a thick solid line corresponds to the average Green’s
function 〈G〉. The equivalence between these expansions and
those used in Sec. II can be verified by replacing each thick
line with the iterative solution of the Dyson equation for 〈G〉.
For the sake of simplicity, we have represented only pair
correlations up to third-order scattering. These expansions
are interesting since each diagram in � can be associated
with its corresponding diagrams in 	. Typically, �(1) will be
considered alone, �(2) will be considered together with 	(2),
�(3) together with all 	(3) diagrams, etc. Let us start with
first-order diagrams. In this case, only

�̃(1)(r − r′) = k2
0〈δε(r)〉δ(r − r′) (C3)

contributes in an infinite statistically homogeneous medium.
The expression of the average absorbed power is simply

〈
P(1)

a

〉 = 〈
P(1)

a

〉
1 = ε0c2

2ω
Im

[∫
�(1)(r, r′)〈E (r′)E∗(r)〉d3r′d3r

]
= ε0ω

2
〈δε′′〉

∫
〈I (r)〉d3r, (C4)

where δε′′ = Im δε. As expected, 〈P(1)
a 〉 = 0 in absence of

absorption, that is, when δε′′ = 0. We also recall that the
subscripts 1 and 2 are used here according to the definition
in Eq. (33). For the second-order contributions, we have to
consider both �(2) and 	(2). Straightforward calculations lead
to 〈

P(2)
a

〉 = 〈
P(2)

a

〉
1 + 〈

P(2)
a

〉
2

= ε0c2

4ω
Im

[∫
k4

0〈δε′′(r)δε(r′)〉c〈G(r − r′)〉

× 〈E (r′)E∗(r)〉d3rd3r′
]
. (C5)

FIG. 3. Geometry considered in the determination of the critical
absorption thickness ba,c. A slab of scattering and absorbing material
is illuminated by a plane wave at normal incidence. R (T ) denotes
the fraction of incident power that is reflected (transmitted).

Here as well we find that 〈P(2)
a 〉 vanishes in absence of

absorption, confirming that all relevant diagrams in � and
	 have been taken into account. Finally, for the third-order
contributions, we need to consider �(3) together with 	(3)′,
	(3)′′, and 	(3)′′′, which leads to

〈
P(3)

a

〉= 〈
P(3)

a

〉
1 + 〈

P(3)
a

〉
2

= ε0c2

4ω
Im

[
k8

0〈δε′′(r)δε(r′′′)〉c〈δε(r′′)δε(r′)〉c〈G(r−r′′)〉

× 〈G(r′′ − r′′′)〉〈G(r′′′ − r′)〉
×〈E (r′)E∗(r)〉d3rd3r′d3r′′d3r′′′

+
∫

k8
0〈δε′′(r′′′)δε(r)〉c〈δε∗(r′)δε(r′′)〉c〈G∗(r′′′−r′)〉

× 〈G(r′′′ − r′′)〉〈G(r′′ − r)〉〈E (r′)E∗(r)〉

× d3rd3r′d3r′′d3r′′′
]
. (C6)

Again, we find that 〈P(3)
a 〉 vanishes in absence of absorption,

as it should. For i ∈ {2, 3}, we clearly observe that the av-
erage absorbed power 〈P(i)

a 〉 involves at least one correlation
function of the form 〈δε′′(r)δε(r′)〉. Conversely, considering
the terms 〈P(i)

a 〉1 and 〈P(i)
a 〉2 separately, we find that they

only contain correlation functions involving δε and δε∗.
Since, for most materials, the imaginary part of the dielectric
function is small compared to the real part, we conclude
that 〈δε′′(r)δε(r′)〉 is small compared to 〈δε(r)δε(r′)〉 and
〈δε∗(r)δε(r′)〉. As a result, we must have

∀i > 1,
〈
P(i)

a

〉 	 {〈
P(i)

a

〉
1,

〈
P(i)

a

〉
2

}
. (C7)

The only exception is for i = 1 where

〈
P(1)

a

〉 = 〈
P(1)

a

〉
1, (C8)

a quantity that is not affected by structural correlations. Using
this result in the expression of the average absorbed power in
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the radiative-transfer limit, we find that

〈Pa〉 = vE

�a

∫
U (r)d3r =

∞∑
i=1

〈
P(i)

a

〉 ∼ 〈
P(1)

a

〉
∼ vE

�B
a

∫
U (r)d3r, (C9)

where �B
a is the independent scattering (or Boltzmann) ab-

sorption mean-free path, which would be obtained by only
considering the first-order approximation with �(1). In a set
of uncorrelated discrete scatterers with number density ρ,
the independent scattering mean-free path would be �B

a =
1/(ρσa), with σa the absorption cross section of a single
scatterer. From the result above, we can conclude that the
absorption mean-free path �a � �B

a , and that the absorption
mean-free path weakly depends on structural correlations of

disorder. Writing the two contributions 〈Pa〉1 and 〈Pa〉2 in the
same radiative-transfer limit, we obtain

〈Pa〉1 = vE

�e

∫
U (r)d3r =

∞∑
i=1

〈
P(i)

a

〉
1,

〈Pa〉2 = −vE

�s

∫
U (r)d3r =

∞∑
i=1

〈
P(i)

a

〉
2. (C10)

The series on the right-hand side cannot be simplified, show-
ing that both �e and �s may substantially depend on structural
correlations, even in a regime in which 1/�a = 1/�e − 1/�s

is not affected. Finally, we point out that the analysis in
this Appendix is based on orders of magnitude, consistently
with perturbative expansions, and may fail in the presence of
resonant scattering.

APPENDIX D: CRITICAL ABSORPTION OPTICAL THICKNESS: ANALYTICAL STUDY

In this Appendix we propose a semianalytical approach to determine the critical absorption optical thickness introduced in
Sec. IV D. With reference to Fig. 3, we write the average absorbed power as 〈Pa〉 = P0[1 − (R + T )], where P0 is the incident
power, and R and T are the fractions of reflected and transmitted power, respectively. R and T can be determined by solving the
RTE Eq. (44).

Since the critical absorption thickness corresponds to the transition between bs = 0 and bs �= 0 (see Fig. 2), we can use a
single-scattering approximation of the RTE. In this approximation, we can write

R =
∫ ∞

s=0
μs exp(−μss)

∫ 0

μ=−1
p(μ, 1)

∫ ∞

s′=0
μs exp(−μss

′) exp

[
−μa

(
s − s

μ

)]
�[L − s]�

[
s′ + s

μ

]
dsdμds′, (D1)

where we use the notations μs = �−1
s , μa = �−1

a , μe = μa + μs, μ = cos θ , with the angle θ defined in Fig. 3, and s denotes
a path length. � is the Heaviside step function, and p(μ,μ′) is the phase function integrated over the azimuthal angle ϕ. This
way of writing the solution to the RTE is common in slab geometries with azimuthal symmetry [45]. The first integral over s
corresponds to ballistic propagation inside the medium, the second integral over μ corresponds to the angular distribution of the
single-scattering event, and the last integral over s′ describes backward propagation. Similarly, for transmission we have

T = exp(−μeL) +
∫ ∞

s=0
μs exp(−μss)

∫ 0

μ=−1
p(μ, 1)

∫ ∞

s′=0
μs exp(−μss

′)

× exp

[
−μa

(
s + L − s

μ

)]
�[L − s]�

[
s′ − L − s

μ

]
dsdμds′. (D2)

From the equations above we readily find that

R + T = exp(−μeL) +
∫ 1

μ=0

μs

μe

μ

μ + 1
p(−μ, 1)

{
1 − exp

[
−μeL

μ + 1

μ

]}
dμ

+
∫ 1

μ=0

μs

μe

μ

μ − 1
p(μ, 1)

{
1 − exp

[
−μeL

μ − 1

μ

]}
exp

[
−μeL

μ

]
dμ. (D3)

The critical absorption thickness ba,c is the solution to the implicit equation

∂〈Pa〉
∂μs

∣∣∣∣
μs=0

= 0, (D4)

which, using Eq. (D3), becomes∫ 1

0

μp(−μ, 1)

1 + μ

{
1 − exp

[
−ba,c(1 + μ)

μ

]}
+ μp(μ, 1)

1 − μ

{
exp[−ba,c] − exp

[
−ba,c

μ

]}
dμ − ba,c exp[−ba,c] = 0. (D5)

This is the equation satisfied by the critical absorption thickness. As an illustration, we find ba,c � 2.61 for an isotropic phase
function [i.e., p(u, u′) = (4π )−1]. This result coincides with the full numerical solution of the RTE presented in Fig. 2.
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