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ABSTRACT

When a solid metal is struck, its free surface can eject fast and fine particles. Despite the many diagnostics that have been implemented to
measure the mass, size, velocity, or temperature of ejecta, these efforts provide only a partial picture of this phenomenon. Ejecta characteriza-
tion, especially in constrained geometries, is an inherently ill-posed problem. In this context, Photon Doppler Velocimetry (PDV) has been a
valuable diagnostic, measuring reliably particles and free surface velocities in the single scattering regime. Here, we present ejecta experiments
in gas and how, in this context, PDV allows one to retrieve additional information on the ejecta, i.e., information on the particles’ size. We
explain what governs ejecta transport in gas and how it can be simulated. To account for the multiple scattering of light in these ejecta, we use
the Radiative Transfer Equation (RTE) that quantitatively describes PDV spectrograms, and their dependence not only on the velocity but also
on the size distribution of the ejecta. We remind how spectrograms can be simulated by solving numerically this RTE and we show how to do
so on hydrodynamic ejecta simulation results. Finally, we use this complex machinery in different ejecta transport scenarios to simulate the cor-
responding spectrograms. Comparing these to experimental results, we iteratively constrain the ejecta description at an unprecedented level.
This work demonstrates our ability to recover particle size information from what is initially a velocity diagnostic, but more importantly it
shows how, using existing simulation of ejecta, we capture through simulation the complexity of experimental spectrograms.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0220642

I. INTRODUCTION

Probing matter’s behavior under the extreme conditions of
shock compression experiments allows one to better understand its
properties at rest. Ejecta formation, the process through which a
shocked material ejects a cloud of fast and fine particle, has been
extensively studied lately.1 It has been shown that ejecta is a limiting
case of Richtmyer–Meshkov instabilities2,3 which occurs when the
initial shockwave interacts with the irregularities at the free surface
of the material.4,5 It causes matter to partially melt, creating numer-
ous expanding micro-jets. These micro-jets eventually fragment,

giving birth to the actual ejecta [see Fig. 1(b)]. One of the purpose of
ejecta study is to determine the size–velocity distribution of this par-
ticle cloud.

Advances on the ejecta source model theory6–8 in shock com-
pression experiments and the corresponding simulation9–12 have
permitted a better description of the distribution created by a given
sample in response to a given solicitation. These simulations study
the particles from their creation at the early moment of the experi-
ment to their transport throughout the propagation medium. This
simulation effort on the ejecta side was supported by the experi-
mental development of numerous and diverse optical diagnostics
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which refined ejecta description to further constrained ejecta
simulations. Especially, Mie-scattering13,14 and holography diagnos-
tics15,16 have given valuable insights on the particle size–velocity
distribution. The main limitations of these diagnostics remain their
difficulty of implementation and the fact that they only allow the
study of elementary examples of ejecta formation, namely, ejection
with a few micro-jets. For now, one has no other choice than
assuming that the ejection process in more complex experiments
gives the same particle size–velocity distribution with no mean of
verifying this claim.

Photon Doppler Velocimetry (PDV) is another optical diag-
nostic which was initially developed to monitor particle velocity
distributions.17,18 With a single scattering hypothesis, the PDV

response of an ejecta, its time-velocity spectrogram, can be seen as
the velocity distribution of the ejecta at a given time. Recently, we
have shown19 that this spectrogram is in fact the solution of a
broader light transport model which is sensitive to the particle size
distribution and its statistical inhomogeneities throughout the
medium. Compared to Mie-scattering and holography diagnostics
that are based on off-axis and transmission measurements, PDV is
on-axis and in reflection. A unique collimated probe is used for
illumination and detection. This makes it compact, reliable, and
minimum invasive. These perks have made it one of the key diag-
nostic implemented in almost all experiments and especially the
most constrained ones. Showing that it is possible to recover addi-
tional size information from a PDV spectrogram would highly
impact ejecta analysis. This would enable the evaluation of particle
sizes in the most complex configurations and allow one to verify
that the ejecta formation process is in fact similar to that of ele-
mentary experiments.

The purpose of this work is to showcase an experiment where,
using only PDV spectrograms, we constrain the size distribution of
an ejecta. To proceed, we first introduce ejecta experiments in gas,
their interest for particle size study, and the means available to sim-
ulate particle transport in such media. Then, we remind the
working principle of PDV measurements, why they are sensitive to
the ejecta size distribution and how we can compute simulated
spectrograms from simulated ejecta transport. Matching the simu-
lated spectrograms to the experimental ones acquired for three dif-
ferent gas conditions, we are able to better constrain the initial size
distribution of the ejecta and test its robustness. Finally, we discuss
how the present work reflects on existing literature and ejecta
understanding.

The paper is organized as follows. Section II is dedicated to
the presentation of ejecta experiments in gas. We introduce the
micro-jetting mechanism and the resulting size–velocity distribu-
tion. We explain the ways ejecta is assumed to interact with gas
and how it depends on particle size. We then introduce the Phénix
code that handles ejecta transport in gas and allows one to
compute the expected ejecta description at each step of the corre-
sponding experiment. In Sec. III, we recall the PDV instrumenta-
tion ejecta experiments receive and how, with a single scattering
hypothesis, the resulting PDV spectrogram accurately estimates the
velocity distribution of the ejecta. For the ejecta considered here,
multiple scattering cannot be ignored. In this regime, we rewrite
this spectrogram as a function of the specific intensity, a com-
monly used quantity in statistical optics. This quantity is the sol-
ution of a Radiative Transfer Equation (RTE) that has been
modified to account for both Doppler shifts due to the particle
movement and the statistical inhomogeneities of the ejecta. The
PDV spectrogram can then be computed given the ejecta’s size–
velocity distribution in space and time and we do so directly on
ejecta transport results obtained with the Phénix hydrodynamic
simulation code. Our comprehensive study of particle size distri-
bution based on simulated PDV spectrograms in different gases
is reported in Sec. IV. We start in the simplest case of vacuum
and then gradually increase the complexity with helium and air.
Finally, Sec. V discusses the implications of this work, how it
compares to existing literature and what it argues in favor of for
future ejecta studies.

FIG. 1. (a) Typical explosive setup of a planar shock experiment. (b) Illustration
of the micro-jetting mechanism in a typical shock ejecta experiment. Upon
reaching the machined free surface, the shock wave first comes into contact
with the inwardly directed grooves. Under right angle conditions, the shock wave
is reflected and the inward grooves become outward micro-jets. Due to the
velocity gap between the jet-heads and the free surface, the micro-jets stretch
until surface tension is no longer sufficient to hold matter together and fragmen-
tation begins. This results in the creation of an ejecta.
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II. EJECTA EXPERIMENTS AND SIMULATION IN GAS

A. Ejecta creation

Typical ejecta experiments, as the ones studied in Sec. IV, are
the planar shock experiments. In a tube, a sample of the material of
interest, here a grooved surface of tin (Sn), is shocked by a
High-Explosive (HE) driven pellet [see Fig.1(a)]. The shockwave’s
interaction with the surface irregularities creates liquid micro-jets of
matter. These micro-jets eventually undergo fragmentation giving
birth to the actual ejecta. In our experiment, the barrel’s inner
diameter is Φbarrel ¼ 98 mm, and the samples are tin disks with
60 μm-by-8 μm surface groves. With a copper flyer hitting the tin
samples at 1650 m=s, we reach a shock pressure of Pshock ¼ 29:5 GPa,
which ensures liquid phase transition in expansion.

To model this ejecta in gas, we need to make a few assump-
tions. The first one is that the ejecta is made out of spherical parti-
cles with radius a. Right after impact, it can then be described by
its initial size–velocity distribution g(a, v) normalized such that

ð
g(a, v)dadv ¼ 1: (1)

While recent holography imaging results15,16 and molecular
dynamics simulations10–12 suggest otherwise, this is discussed in
Sec. V, our second assumption is that the initial size and velocity
distributions are independent. This reads

g(a, v) ¼ h(a)j(v), (2)

with h(a) being the initial size distribution, j(v) the initial velocity dis-
tribution, and ð

h(a)da ¼ 1, (3)

ð
j(v)dv ¼ 1: (4)

Our last assumption is that the initial size and velocity distributions do
not depend on the presence nor the nature of the gas in the chamber.
Once again Mie-scattering measurements have shown the limits of
such an hypothesis,20 but as a first approximation it will prove useful.

In Sec. IV, different initial size distributions will be tested but
the velocity distribution will be imposed from here on. Instead of
defining it directly, we prefer using the integrated mass–velocity
distribution M(v), where v ¼ jvj. Assuming all velocities to be
along the ejection direction uz , the distribution then reads

j(v) ¼ � 1
Ms

d
dv

M(v)δ
1
v
v � uz

� �
, (5)

where Ms is the surface mass. Independent Asay foil measure-
ments4 in vacuum for these experiments give

M(v) ¼ Ms exp �β
v
vs
� 1

� �� �
, if v [ [vmin, vmax],

0, otherwise,

8<
: (6)

with the surface mass Ms ¼ 12mg=cm2, β ¼ 11:7, vs ¼ vmin

¼ 2060 m=s, and vmax ¼ 3350 m=s.
Now that the initial properties of the ejecta have been

described, we need to model its interaction with gas.

B. Ejecta transport in gas

In the case of a vacuum-tight chamber, the objects are in bal-
listic transport and the ejecta size–velocity distribution remains the
same during propagation. Now if the chamber is gas filled, the
transport properties of the ejecta are altered. While we assume the
same initial size–velocity distribution as in vacuum, knowing that
gas interaction depends both on particle size and velocity, the size–
velocity distribution will evolve with time. This discrimination is
what makes ejecta experiments in gas extremely insightful. The
same set of initial conditions in different gases must allow us to
retrieve radically different particles transport scenarios. In other
words, the robustness of a unique initial description can be tested
against different gas transport conditions to see whether or not it
allows one to match all experimental results. While different from a
direct measurement, this technique must be seen as a powerful new
way of evaluating particle size–velocity distribution with existing
diagnostics and in otherwise inaccessible configurations.

In the presence of gas in front of the ejecta, the particles inter-
act with it mainly through the drag force, which tends to drive the
particle toward the gas velocity. The drag force depends on the par-
ticle radius, the gas density, and the drag coefficient (based on the
particle’s Reynolds and Mach numbers). We take into account the
two-way coupling of the particle and the gas. The drag force is cal-
culated using the KIVA-II formulation21 given by

Fi ¼ � 1
2
πai

2ρg vi � vg
� �

vi � vg
�� ��Cd,i, (7)

with ρg being the gas density, vg its velocity, ai the ith particle’s
radius, vi its velocity, and Cd,i its drag coefficient. The drag coeffi-
cients are computed using a model based on Ref. 22.

A hydrodynamic breakup model, based on Ref. 23, is also
introduced. The Weber number is expressed as the ratio between
hydrodynamic forces and the surface tension of the particle,

Wei ¼
2aiρg vi � vg

�� ��2
σ i

, (8)

with σ i the particle surface tension. If the Weber number is super-
critical, the particle breaks up. The calculation of the ratio between
the initial and new radius depends on the value of We and is
detailed in Ref. 23. The corresponding typical values for the critical
Weber number are Wecrit ¼ 10� 20, and current work at
CEA-DAM shows that Wecrit ¼ 15 is well suited for tin.

Given an initial ejecta distribution and these two interactions,
we need a simulation handling the transport of particles accord-
ingly in time.

C. Phénix code for particle transport simulation

Hydrodynamic simulations have become the standard to
compute matter’s behavior in shock compression experiments.9 In
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this work, the simulations are run with the Phénix code, developed
at CEA-DAM which uses a multiphase particulate transport
method to model two-way coupling of momentum and energy.
This is based on the approach proposed by Amsden et al. and
implemented in the KIVA-II code,21 which has been improved
from the original paper.

To perform the simulations, we have to initialize the particle
cloud according to the experimental parameters to fit the other
diagnostics implemented in the experimental setup. We define the
ejected mass–velocity curve M(v) in agreement with the Asay foil4

measurement under vacuum (still assuming the gas does not
change the total ejected mass). For the initial size distribution, we
rely on previous experiments and deal with power laws or lognor-
mal distributions. Studying its influence on the spectrograms is one
of the purpose of this article as described in Sec. IV.

For each experiment, the Phénix code gives the corresponding
cloud description at different time steps. For each of these times,
the description corresponds to a list of so-called numerical particles.
Instead of actually simulating the transport of each individual parti-
cles, we only consider a smaller set of numerical particles. Each of
them has a size, a numerical weight, i.e., the number of physical
particles it represents, a position, and a velocity. The number of
numerical particles must be high enough to encompass the full
dynamics of the ejecta while being low enough to ensure a reason-
able compute time. In practice, the typical scale of the velocity distri-
bution introduced in Eq. (6) is vs=β, which roughly gives 200 m=s
for the case considered here. Since vmax � vmin � 1000 m=s and the
sampling step in the velocity distribution needs to be at least
ten times smaller than vs=β, we need 50 points. Taking the same
number of points for the size distributions, which are introduced in
greater details in Sec. IV A, leads to steps of 0:1 μm that are smaller
than the typical scales of the size distributions that are considered.
This 50� 50 discretization on the size–velocity distribution gives a
total of 2500 numerical particles, which is the number that will be
used for the ejecta simulations in the rest of this work.

Once the ejecta is initialized, the particle transport happens as
follows. On the one hand, the drag force affects the velocity and,
therefore, the position of the numerical particles. On the other
hand, the breakup process, which takes place only if the Weber
number Wei is superior to the critical Weber number Wecrit ¼ 15,
decreases the particle size. In practice, when a given numerical par-
ticle breaks up, it gets associated a new size depending on its initial
Weber number and its numerical weight is increased to maintain
its total associated mass.

As an order of magnitude, each ejecta simulation correspond-
ing to Sec. IV have around 2500 numerical particles, taken at 180
temporal steps each separated by δt ¼ 0:16 μs. The corresponding
compute time is 2 h on 1 AMD EPYC 7763 64-core CPU clocked
at 2:45 GHz.

In summary, the three main parameters that control the evolu-
tion of the particle cloud during the simulation are the initial size
distribution, drag force, and breakup model. In the study reported
in Sec. IV, these parameters are the ones we expect to fine-tune to
make the ejecta robust to transport in different gases. The efficiency
of such a procedure depends on the sensitivity of the chosen diag-
nostic to changes in ejecta transport properties. The diagnostic
chosen here, PDV, is presented in Sec. III.

III. PHOTON DOPPLER VELOCIMETRY IN EJECTA

While PDV in ejecta has been shown to be deep in the multi-
ple scattering19 regime (which will be the case for all the ejecta pre-
sented here), it is interesting to consider first the single scattering
regime for which PDV was initially developed. This is the purpose
of Sec. III A.

A. Photon Doppler Velocimetry in the single scattering
regime

Photon Doppler Velocimetry is an interferometric tech-
nique17,18 where a collimated laser beam at frequency ω0 is shined
toward a cloud of moving particles and a free surface. As seen in
Fig. 2, light then get scattered by this ejecta and slightly shifted in
frequency before part of it is captured in reflection. The collected
field interferes at the detector with a reference field at ω0, resulting
in a beating signal I(t) at the detector. This signal can be written as

I(t) ¼ 2Re �Es(r, t)�E
*
0(r, t)

h i
, (9)

with �Es(r, t) being the analytic signal associated to the scattered
field, �E0(r, t) the analytic signal associated to the reference field, and
r denotes position of the probe.

In post-treatment, a Short-Term Fourier Transform (STFT) is
applied defining the spectrogram S(t, ω) as

S(t, ω) ¼
ð
I(τ)w(τ � t)exp(iωτ)dτ

����
����
2

, (10)

where w(t) is a gate function of typical width Tw such thatÐ
w(t)dt ¼ Tw.

FIG. 2. Schematic representation of a typical shock-loaded experiment with a
PDV setup. The probe illuminates the ejecta and the free surface with a highly col-
limated laser beam (numerical aperture of 4:2 mrad and pupil size fp ¼ 1:3 μm).
The backscattered field is collected by the probe acting as the measuring arm and
interferes with the reference arm at the detector. The beating signal is registered
with a high bandwidth oscilloscope before being analyzed.
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With a single scattering hypothesis, the scattered field is the
sum of the fields scattered by each particle. We consider scalar
fields, since our focus in this work will be in the multiple scat-
tering regime, where the field can be considered unpolarized,
since depolarization is known to occur on scales of the order of
the scattering mean free path.24 For a number of particle N(t),
and assuming a detection in the far field, the scattered field
then reads

�Es(r, t) ¼ eik0r

r

XN(t)

j¼1

Aj(u, u0, t)

� exp �i ω0 þ k0(u� u0) � vj(t)
	 


t
� �

, (11)

where r ¼ jrj, k0 ¼ ω0=c with c being the light velocity in
vacuum, u0 is the unit vector defining the direction of illumina-
tion, u ¼ r=r defines the direction of observation, Aj(u, u0, t) is
the amplitude of the field scattered by particle j, and vj(t) its
velocity. Using Eq. (11) and for an observation direction
u ¼ �u0, the spectrogram given in Eq. (10) becomes

S(t, ω) ¼ π2 A0j j2
r2

ðXN(t)

j¼1

Aj(� u0, u0, t)
�� ��2

� δ ωþ 4π
λ
vj(t)

� �����
����
2

þ δ ω� 4π
λ
vj(t)

� �����
����
2

( )
dr, (12)

where A0 is the amplitude of the reference field and δ the Dirac
delta function. This simple expression allows one to convert the
frequency appearing in PDV spectrograms directly into a veloc-
ity using v ¼ ω=(4π)λ. In this regime, as shown in Fig. 4(a), the

FIG. 4. (a) Experimental spectrogram in vacuum. The setup characteristics are
given in Sec. II A. The shock pressure is Pshock ¼ 29:5 GPa and vacuum resid-
ual pressure was Pvacuum ¼ 1 Pa. The ejecta is created at t ¼ 4 μs, it travels in
ballistic expansion before reaching the probe at t ¼ 23 μs. (b) Simulated spec-
trogram in vacuum with a power law size distribution of parameter α ¼ 5. (c)
Extraction of the simulated spectrogram at v ¼ 2100 m=s where the expected
small signal decrease is fitted linearly t ¼ 4 to t ¼ 23 μs.

FIG. 3. Illustration of how to use hydrodynamic simulation results as input data
for PDV spectrogram simulation. The medium is sliced in layers of equal thick-
ness and each of them intersects part of the ejecta. For each layer, the numeri-
cal particles concerned are then used to compute the local mean free paths
and phase functions.
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spectrogram gives an accurate estimation of the velocity distribu-
tion in the ejecta.

B. Photon Doppler Velocimetry beyond single
scattering

With z denoting the depth along the ejection direction, the
single scattering hypothesis holds as long as the optical thickness
b � 1. The optical thickness is defined as

b ¼
ð

1
‘s(z)

dz, (13)

where ‘s(z), the photon scattering mean free path, will be intro-
duced in greater details in this section. We have shown that in
ejecta experiments b can far exceed unity, for example, b ¼ 42, in
the study by Shi et al.25 In these conditions, Eq. (11) does not hold
and the spectrogram expression must be enriched to account for
multiple scattering. This was the purpose of a previous work19

where we explain in great details and with the relevant hypothesis
how the PDV spectrogram expression given in Eq. (12) can be
extended to the multiple scattering regime. The purpose of this
section is to recall the most important results of this previous work
that will be useful to perform spectrogram simulation in Sec. IV.

The quantity of interest in the multiple scattering regime is
the specific intensity I(r, u, t, ω).26–29 This radiometric quantity
can be interpreted as a radiative flux at position r, in direction u, at
time t, and at frequency ω. In this sense, we can show that the spe-
cific intensity satisfies the Radiative Transfer Equation (RTE) which
will be presented in detail below. The specific intensity can also be
related to the wave field via the Fourier transform of its correlation
function. This definition allows one to connect the specific inten-
sity to the spectrogram by the following relation:

S(t, ω) ¼ δ(k� kr)TwS
2
p A0j j2

�
ð
Ω
Is(r, u, t, ω0 þ ω)þ Is(r, u, t, ω0 � ω)½ �

� kr
2
uþ k0

2
n

� �
� n

� �2
krdu, (14)

where Sp is the surface of the probe, kr ¼ nrω0=c, nr being the real
part of neff the effective refractive index of the medium as defined
in Ref. 19, Ω is the angular aperture of the probe, du corresponds
to integration over the solid angle, and n is the unit vector normal
to the probe surface.

The RTE governing the evolution of the specific intensity
takes the form19

1
vE(r, t, ω)

@

@t
þ u � ∇r þ 1

‘e(r, t, ω)

� �
I(r, u, t, ω)

¼ 1
‘s(r, t, ω)

ð
p(r, u, u0, t, ω, ω0)I(r, u0, t, ω0)du0

dω0

2π
, (15)

with vE being the energy velocity, ‘e the extinction mean free path,
and p the phase function. Equation (15) is a generalized form of
RTE that takes into account the inhomogeneities of the particle

cloud (under a quasi-homogeneous approximation30,31). This equa-
tion that naturally accounts for multiple scattering can be under-
stood as an energy balance. The two derivatives of the specific
intensity in the left-hand side of Eq. (15) corresponds to the spatio-
temporal evolution of this quantity. This evolution is governed by
both losses and gains. Losses are caused by absorption and scatter-
ing as described by the extinction mean free path ‘e. It is worth
pointing out that these losses happen at the same frequency ω. The
gains, also caused by scattering, are handled by the phase function
in the right-hand side of Eq. (15). The scattering process being
inelastic, it allows a conversion from a frequency ω0 to ω. The
extinction mean free path ‘e is defined as

1
‘e(r, t, ω)

¼
ð
ρ(r, t)σe(a, ω)h(r, t, a)da, (16)

where σe(a, ω) is the extinction cross section of a particle with
radius a at frequency ω and h(r, t, a) is the size distribution at posi-
tion r and time t. In our case h(r, t0, a) ¼ h(a) as introduced in
Sec. II, with t0 the ejecta creation time. The scattering mean free
path ‘s and the phase function p are defined as

1
‘s(r, t, ω)

p(r, u, u0, t, ω, ω0)

¼
ð
ρ(r, t)

dσs(a, u � u0, ω)
du

� 2πδ ω0 � ω� kr(u
0 � u) � v½ �g(r, t, a, v)dadv, (17)

where σs(a, ω) is the scattering cross section of a particle with
radius a and g(r, t, a, v) is the size–velocity distribution at position
r and time t. Again, in our case, g(r, t0, a, v) ¼ h(a)j(v) as intro-
duced in Sec. II. With this definition, the phase function is normal-
ized as

ð
p(r, u, u0, t, ω, ω0)du0

dω0

2π
¼ 1, (18)

and, integrating Eq. (17) over u, the scattering mean free path reads

1
‘s(r, t, ω)

¼
ð
ρ(r, t)σs(a, ω)h(r, t, a)da: (19)

We define the absorption mean free path ‘a(r, t) as

1
‘a(r, t)

¼ 1
‘e(r, t)

� 1
‘s(r, t)

: (20)

Finally, since we have nonresonant scattering, the energy velocity
vE is given by vE ¼ c=neff .

The quasi-homogeneous approximation used in this form of
the RTE, which amounts here to the r and t dependencies of the
ejecta description, makes it perfectly suited here to evaluate the
effects of inhomogeneities caused by ejecta experiments in gas.
Moreover, the dependence of the mean free paths and phase func-
tion on the size–velocity distribution of the ejecta g(r, t, a, v)
makes PDV a good candidate for indirect size–velocity
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measurement we aim to perform. While the idea of ejecta experi-
ments in gas to evaluate particle size–velocity distribution is not
new,20,32 the novelty of this work resides in connecting historic
ejecta simulations schemes directly to a light transport model for
PDV. The intricacies of this link are the subject of Sec. III C.

C. Photon Doppler Velocimetry spectrogram
simulation

The RTE given in Eq. (15) can be rewritten in an integral form
which is naturally suited for a Monte Carlo simulation scheme. Such
a process can be seen as a random walk for energy quanta (behaving
as classical particles), where each step is sampled in statistical distri-
butions for step length, scattering direction, and frequency. While
the expression of these statistical distributions and the details of the
random walk procedure are available in Ref. 19, what is relevant in
the scope of this paper is that they only require the mean free paths
and phase function defined in Eqs. (16) and (17) on a time scale
small enough to capture the temporal evolution of the ejecta and on
a spatial scale small enough to capture its spatial statistical inhomo-
geneities. The challenge here is to connect the ejecta description, i.e.,
the numerical particles, computed by the Phénix code to the afore-
mentioned quantities of interest.

First, the value of δt, the time step introduced in Sec. II chosen
for the Phénix code, is well below the typical value of 1 μs for the
ejecta evolution time scale. Same goes for the spatial scale where the
typical number of numerical particles of 2500 mentioned in Sec. II
provides a good sampling of the ejecta on position, velocities, and
size. Now, at a given step of the hydrodynamic simulation, here is
how the resulting ejecta description, i.e., the numerical particles and
their attributes, allows to compute the corresponding mean free
paths and phase function. The numerical particles are given in the
launch tube geometry. This ejecta is then discretized spatially into
several layers depending on the space variations of the ejecta’s statis-
tical properties. In each layer, the integration over size a and velocity
v appearing in Eqs. (16) and (17) is replaced by a discrete sum over
the numerical particle. In these discrete sums, the product
ρ(r, t)h(r, t, a) and ρ(r, t)g(r, t, a, v) is replaced by the particle
number density wi=δV where wi corresponds to the numerical
weight of the ith numerical particle and δV the volume of the layer
in the ejecta geometry. The regular and differential cross sections are
computed using the routine given in Ref. 33. An example of this
entire procedure is depicted in Fig. 3 for computing the extinction
mean free path. As an order of magnitude, the compute time for
each simulated spectrogram presented in Sec. IV is around
1 h 20 min on 80 AMD EPYC 7763 64-core CPUs clocked at
2:45 GHz for 5:12� 109 Monte Carlo draws, at 180 different times,
with 2500 numerical particles arranged in 100 effective layers.

After presenting the simulation tools permitting to describe
the path from the solicitation on the sample to the spectrogram,
the aim of Sec. IV is to do a comprehensive study to constrain
ejecta description using simulated PDV spectrograms.

IV. EJECTA BEHAVIOR RECOVERY BASED ON PDV
SPECTROGRAMS ANALYSIS

In the remainder of this article, we propose to study a
complex set of ejection experiments in gas. We consider three

experiments, differing only by the gas present in the chamber. The
experimental setup is the one presented in Sec. II A and pictured in
Fig. 1. Ejecta travels, respectively, in Pvacuum ¼ 1 Pa vacuum,
Phelium ¼ 500 kPa helium, and Pair ¼ 100 kPa air.

We start by simulating a spectrogram in vacuum to define a
size–velocity distribution baseline. Next, in order to see if this
baseline holds in helium, we focus on the induced drag forces.
Finally in air, we explore the additional effect of hydrodynamic
breakup.

A. Ejecta’s initial size distribution in vacuum

For this first simulation in vacuum, we choose a standard
truncated power law distribution of the particle size, in the form14

h(a) ¼
α � 1

a�αþ1
min � a�αþ1

max

a�α , if a [ [amin, amax],

0, otherwise,

8<
: , (21)

with α ¼ 5, amin ¼ 1 μm, and amax ¼ 6 μm. With these input
parameters, the Phénix code handles the particle transport during
the entire simulation, from t ¼ 0 to t ¼ 27 μs. These data are then
given as input data in the Monte Carlo simulation to compute the
corresponding expected spectrogram for the experimental setup
characteristics.

On the one hand, for the experimental spectrogram, we do
not directly have access to I(t) as introduced in Eq. (9). In prac-
tice, the time frequency analysis is performed on the signal in volts
recorded at the photodiode which gives Sexp(t, ω). Instead of
directly representing the spectrogram, the preferred quantity is
Pexp(t, v), defined as

Pexp(t, v) ¼ 10 log10
1

K2
phT

2
wP0Pref

Sexp t,
4π
λ
v

� �" #
, (22)

where K ph is the efficiency of the photodiode, P0 is the optical
power of the reference arm, and Pref is a reference power.
For this set of experiments, we have KPh ¼ 104 V=W and choose
P0,exp ¼ 1 mW such that Pexp(t, v) is expressed in dBm. On the
other hand, we represent the simulated spectrogram with
Psim(t, v) defined as

Psim(t, v) ¼ 10 log10
4

(kr þ k0)
2T2

w A0j j2S2pF0,sim
S t,

4π
λ
v

� �" #
, (23)

where A0 is the amplitude of the reference field, Sp is the
surface of the detector, and the reference flux F0,sim ¼ 1V�2s�2.
Even in the presence of the multiple scattering regime, for both
spectrograms frequencies are converted to apparent velocities
using the single scattering relation v ¼ ω=(4π)λ. One has to keep
in mind that the apparent velocity corresponds to the actual
velocity of particles only in the single scattering regime. Given
these definitions, it is meaningful to compare the dynamic range
rather than the absolute value.

Figure 4 displays the comparison between the experimental
spectrogram in vacuum [Fig. 4(a)] and the first simulated
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spectrogram of this study [Fig. 4(b)]. The first interesting obser-
vation is that, while the levels differ, the dynamic ranges of both
spectrograms are similar—around 50 dB. Second, we see that the
dynamic of velocities is, as expected, between v ¼ 2000m=s and
v ¼ 3000 m=s and that from t ¼ 4 to t ¼ 23 μs, the spectrogram
does not depend much on time. We only see a slight decrease on
velocity readings as displayed, for example, for v ¼ 2100 m=s in
Fig. 4(c). To understand this second observation, we have to con-
sider the behavior of particles in vacuum.

In vacuum, the size–velocity distribution of the particles
remains constant due to ballistic transport. The velocity difference
between the front and the back particles will, therefore, stretch the
ejecta along the z axis linearly over time. Since the size–velocity dis-
tribution does not change, this stretch does not impact the local
phase function but nonetheless it causes the particle number density
to decrease as 1=t and, therefore, the mean free paths to increase lin-
early with t. To predict the impact on the specific intensity measured
by the PDV probe, it is instructive to stick to the random walk
picture. On the one hand, since the mean free paths expand at the
same rate as the medium, all the random walks will expand accord-
ingly, i.e., the light propagation in the ejecta is homothetic with time.
If we consider the transverse profile of the specific intensity distribu-
tion at the front of the ejecta, it spreads and, therefore, decreases
quadratically with time t in the xy-plane. On the other hand, consid-
ering its narrow aperture of 4:2 mrad, the collection from the PDV
probe mostly happens in a cylinder of diameter fp which does not
change with time. The combination of both these phenomena results
in a decrease with time of the PDV signal. In practice, considering
that the particle are mostly forward scattering, the light spread at the
front of the ejecta remains small and the decrease is subtile as seen
in Fig. 4(c). While obvious in the single scattering regime, this obser-
vation is here extended to multiple scattering. A formal explanation
of this phenomenon based on the RTE is provided in the Appendix.
Finally, the fastest particles reach the probe at t ¼ 23 μs in both the
experimental and simulated spectrograms. In the experimental case,
this causes a particle accretion on the probe and an almost immedi-
ate loss of return signal. In the simulation, we do not account for
this effect. The particles are simply removed for the medium and we
eventually recover the free surface at t ¼ 27 μs.

The key difference in the experimental spectrogram is that the
free surface is visible almost over the full duration of the experi-
ment, while it does not appear in the simulation. This observation
suggests that the ejecta has a too large optical thickness b for the
free surface to be seen. Indeed, we find b ¼ 16 from t ¼ 4 to
t ¼ 23 μs. To investigate this, we break down the scattering mean-
free path contributions of each numerical particle compared to its
corresponding particle size, i.e., we plot the integrand of Eq. (19).
We observe in Fig. 5(a) that, while they do not contribute much to
the mass of the ejecta, a group of numerical particles with a small
associated size have the leading contribution to the scattering
mean free path. This ought to be the main reason why the free
surface remains hidden in the simulated spectrogram compared to
the experimental one. This result argues in favor of a size distribu-
tion with a lesser density at small particle sizes.

Beyond the standard power law distributions, lognormal size
distributions have been proposed lately.14 Since they tend to 0
when a tends to 0, they precisely address the divergence issue of

power laws at small particle sizes. Therefore, we propose to change
h(a) to a truncated lognormal distribution which reads

h(a) ¼
K

aσ
ffiffiffiffiffi
2π

p exp � ln2 a=a0ð Þ
2σ2

� �
, if a [ amin, amax½ �

0, otherwise

8<
: (24)

with σ ¼ 0:5, a0 ¼ 2:25 μm, amin ¼ 1 μm, amax ¼ 6 μm, and
K ¼ 2=erf ½lnðamax=a0Þ=ðσ

ffiffiffi
2

p Þ� � erf ½lnðamin=a0Þ=ðσ
ffiffiffi
2

p Þ� where
erf is the Gauss error function. In Fig. 5(a), we see that for the same
surface mass, the lognormal distribution tends to attenuate the con-
tribution of the numerical particles having a small associated size.
This results in a drastic decrease of the optical thickness to b ¼ 6
and should allow to recover the free surface in the simulated
spectrogram.

FIG. 5. (a) Scattering mean free path contributions over size for power law and
lognormal initial particle size distribution. (b) Simulated spectrogram in vacuum
with a lognormal size distribution of parameters σ ¼ 0:5 and a0 ¼ 2:25 μm.
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Figure 5(b) represents the simulated spectrogram in vacuum
for this corrected size distribution. As expected, it allows one to
recover the free surface in the spectrogram while keeping all the
already present and desired characteristics of the simulated
spectrogram.

A residual defect is that free surface response seems to fade
away quicker in the experimental spectrogram than in the simu-
lated one. We assume this effect is due the modeling of the free
surface as a loss-less specular reflector instead of properly account-
ing for the deformation induced by micro-jetting. This tends to
overestimate its contribution to the spectrogram. Moreover, it is
known experimentally and confirmed by molecular dynamics
simulations10–12 that an intermediate regime exists right after
breakout and before the transverse homogenization of the ejecta. In
this time window, between 4 and 7 μs in Fig. 4(a), the microjets’
structure causes only the spike velocity at high values and the
bubble velocity at values around the free surface to be visible in the
early moment for the ejecta34 [see Fig. 1(b)]. This effect is indeed
not rendered in the current simulation where we assume the ejecta
creation to happen instantly at the breakout. Additionally, we also
assume the ejecta to be translationally invariant right after break-
out, which again takes a few microseconds experimentally. These
phenomena explain the remaining discrepancies between the exper-
imental and simulated spectrograms.

This study of ejecta in vacuum is conclusive and gives us a
first draft of ejecta description. Comparing different simulated
spectrograms to the experimental one allowed us to clearly favor
one distribution over the other only based on a PDV spectrogram.
Before, a choice would have been harder to justify. The next step is
a more complex particle transport scenario—ejecta in helium—and
the aim is to see if the description established in vacuum holds.

B. Drag coefficient effect study for ejecta in helium

We now consider an ejecta in helium at Phelium ¼ 500 kPa. We
assume the same initial size distribution as in vacuum, the lognor-
mal distribution given in Eq. (24), but now the presence of gas will
change the transport of particles as stated in Sec. II B. In the case
of helium, the shockwave in gas, with a velocity v ¼ 3084 m=s,
travels ahead of most of the ejecta. Therefore, particles travel in
shocked gas resulting in low particle–gas velocity differences. The
Weber number Wei given by Eq. (8) remaining subcritical, the
ejecta interacts with the gas mostly through drag forces. Figure 6(a)
represents the experimental spectrogram in helium. The interaction
with gas can be seen in the slowing down of the fastest particles,
typically from 3000 to 2500 m=s. Since the drag force Fi scales
with particle size as a2i , the slowing down of particles scales in a�1

i .
Recovering the slowing down slope in simulated spectrograms
would further confirm the choice of the size distribution. To have a
comparison point for the simulations, we compute a numerical fit
of the experimental spectrogram’s upper boundary. It appears as a
red overlay in Fig. 6.

As for vacuum in Sec. IV A, we use the Phénix code to
compute the ejecta description throughout transport in helium. We
then use these output data to simulate the expected spectrogram in
Fig. 6(b) and compare it with the experimental one. We see in
Fig. 6(b) that we keep the desired characteristics obtained in the

FIG. 6. (a) Experimental spectrogram in helium. The setup characteristics are
given in Sec. II A. The shock pressure is Pshock ¼ 29:5 GPa and helium pres-
sure was Phelium ¼ 500 kPa. The ejecta is created at t ¼ 4 μs, it travels in
helium before reaching the probe at t ¼ 26 μs. The spectrogram is overlayed
with an analytic fit of its upper boundary (red line). (b) Simulated spectrogram in
helium for a lognormal size distribution of parameters σ ¼ 0:5 and
a0 ¼ 2:25 μm, overlayed with an analytic fit of the upper boundary of the exper-
imental spectrogram (red line). (c) Simulated spectrogram in helium for a lognor-
mal size distribution of parameters σ ¼ 0:5 and a0 ¼ 2:25 μm, corrected drag
force coefficients and overlayed with an analytic fit of the upper boundary of the
experimental spectrogram (red line).
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vacuum case, but this first spectrogram in helium does not fit the
slowing down curve of the experimental spectrogram. The slowing
down of particles is underestimated, suggesting that the current
drag force Fi is undervalued. Considering the expression of Fi in
Eq. (7) to increase drag forces we can either shift back the particle
size distribution toward smaller particles or increase the drag coef-
ficients Cd . Since we need to change the slowing down slope of the
spectrogram while keeping the current optical thickness, we have
chosen to modify the drag coefficients Cd to fit the experimental
spectrogram. Indeed, in a context where drag models in turbulent
flows are still under debate,35,36 we use this case in helium to exper-
imentally tune the drag coefficient model for our ejecta thanks to
the comparison allowed by simulated spectrograms. After such a
correction, the drag coefficients are roughly multiplied by a factor
of 5 compared to their initial values and we obtain another spectro-
gram in helium which is shown in Fig. 6(c). This time, the slowing
down nicely fits the experimental upper boundary. A down side
remains the overvaluation of the free surface which remains visible
in the simulated spectrogram while it disappears at t ¼ 8 μs in the
experimental one. This bias of the model was already discussed in
Sec. IV A.

Now that we have a size distribution tested in the presence of
a drag force, the next step is to see how it holds up in a configura-
tion with an additional interaction, i.e., hydrodynamic breakup.

C. Ejecta breakup model in air

We now consider the final and most complicated case, ejecta
transport in air. We keep the same size distribution as in helium,
the lognormal distribution given by Eq. (24), and check its rele-
vance in this new scenario. In air, the initial shockwave travels at
v ¼ 2520 m=s. This means that while the slowest particles travel in
shocked air and, as in helium, interact with the gas mostly through
drag forces, the fastest particles travel in unshocked air. For the
latter, if they are rather small, they slow down rapidly through drag
forces before being caught-up by the shockwave and eventually
reaccelerated in shocked air. If they are rather big, their Weber
number Wei is supercritical and they additionally experience
breakup. They may first slow down with a gentle slope but as soon
as they break up, their reduced size makes them slow down much
faster before being caught by the shock wave and reaccelerated in
the shocked air. In Fig. 7(a), displaying the experimental spectro-
gram in air, we can observe both phenomena. Between 4 and 7 μs,
we can see a plateau around 2800 m=s corresponding to the fast
particles before breakup. After breakup, around 8 μs, the free
surface gets screened and the slowing down is much more substan-
tial. In the meantime, between 10 and 15 μs, we see around
1800 m=s the reacceleration of the slowest particles. We aim to
capture these two phenomena in the simulated spectrogram.

Figure 7(b) represents the simulated spectrogram in air. The
expected key features are clearly observed. First, we observe that
high-velocity particles remain visible between t ¼ 4 and t ¼ 6 μs
before disappearing, which matches very well the experimental
spectrogram. Second, some particles are heavily slowed down and
then reaccelerated by the shocked air between t ¼ 7 and t ¼ 10 μs.
While this behavior is expected, it happens a bit too early, we do
not expect to see the reacceleration before t ¼ 10 μs. Third, we

keep the free surface velocity in the early moment of the spectro-
gram before breakup screens it. Finally, the main issue is the long
term velocity distribution. While in the experiment, all velocities
tend to the gas velocity of v ¼ 2060 m=s, and in the simulation, a
spreading between v ¼ 2000 m=s and v ¼ 2400 m=s remains. We
believe that the inability to perfectly match the experimental spec-
trogram puts forward the limit of validity of the hypothesis made
in Sec. II A on the initial size–velocity distribution. Namely, this
observation argues in favor of a correlated size–velocity distribu-
tion. This question is discussed in Sec. V.

FIG. 7. (a) Experimental spectrogram in air. The setup characteristics are
given in Sec. II A. The shock pressure is Pshock ¼ 29:5 GPa and air pressure
is Pair ¼ 100 kPa. The ejecta is created at t ¼ 4 μs. The ejecta front is
heavily slowed down and experience break up in unshocked air until
t ¼ 10 μs. From t ¼ 10 up to t ¼ 20 μs, the slowest particles fall back in
shocked air and are reaccelerated. From t ¼ 20 to t ¼ 27 μs, all particles
seem at free surface velocity. (b) Simulated spectrogram in air for a lognormal
size distribution of parameters σ ¼ 0:5 and a0 ¼ 2:25 μm.
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V. DISCUSSION

A certain number of observations have been made in this
study and it is worth discussing their implications and comparing
them to results reported in the existing literature.

A. Effect of particle breakup on the scattering
mean-free path

In Sec. IV A, we showed that small particles between 1 and
3 μm had the leading contribution to the scattering mean free path.
This observation was confirmed by the free surface disappearance
for ejecta in air in Sec. IV C. We attributed this phenomenon to an
increase in the optical thickness due to the breakup of initially
large particles into numerous smaller ones. To check this hypothe-
sis, we have used the simulation results of the Phénix code and
Eq. (13) to compute the optical thickness during each simulation
reported in Sec. IV. The results are reported in Fig. 8. We see that
for all three simulations, the initial optical thickness is around
b ¼ 6, since all simulations have the same initial size–velocity dis-
tribution. In the vacuum and helium cases, this optical thickness
remains constant until t ¼ 23 μs where the ejecta gets shaved down
from reaching the probe. It eventually decreases back to zero by
t ¼ 27 μs. In the case of air, we see that because of fragmentation
the optical thickness increases up to b ¼ 9 from t ¼ 4 to t ¼ 7 μs.

Buttler et al.20 investigate ejecta in gas as well but consider a
reactive breakup scenario. In their study, a cerium ejecta is created
and travels in deuterium gas. Through an hydriding reaction
between the metal and the gas, the initial particles also break up
into multiple smaller ones. This mechanism is similar to the

hydrodynamic breakup in air we consider but interestingly Buttler
et al. report opposite observations. In their experiment, they
assume that the fragmentation of the ejecta’s front in smaller parti-
cles makes it invisible to the PDV wavelength, allowing to see parti-
cles that up to that point had been hidden in the back of the ejecta.
A key point to understand this difference is to consider the size
limit reached by each breakup mechanism. In the case of tin ejecta
in shocked air, we reach an average size of a ¼ 1 μm while
Buttler et al. assume the average size of particles to be on the
order of a ¼ 100 nm. For a mono-disperse ejecta of homoge-
neous particle number density, the initial scattering mean free
path is ‘s,0 ¼ 1=[ρ(a0)σs(a0)] with a0 being the initial particle
size and ρ(a0) the corresponding initial particle number density.
If this ejecta were to break up into smaller particles of size a
with mass conservation, the particle number density would scale
as ρ(a)=ρ(a0) ¼ (a0=a)

3, leading to

‘s(a) ¼ a3

a30

1
ρ(a0)σs(a)

: (25)

We have studied the scattering-mean free path given in
Eq. (25) for a tin ejecta of an initial size a0 ¼ 10 μm and
ρ(a0) ¼ 1014m�3 and used Mie theory37,38 to compute the scatter-
ing cross sections σs. In Fig. 9, we report its variation from 10 μm
down to 10 nm. We observe that, upon breakup and down to
a ¼ 250 nm, the scattering mean free path first decreases. This is
consistent with the phenomenon we observed for hydrodynamic
breakup. It corresponds to the limit case of particles much bigger
than the wavelength. The scattering cross-sectional scales as

FIG. 8. Optical thickness evolution during the simulation for each gas configura-
tion. Using the simulation results from Phénix code and Eq. (13), the optical
thickness is computed during the time corresponding to the experiments. The
three ejecta simulations for a lognormal size distribution of parameters σ ¼ 0:5
and a0 ¼ 2:25 μm seen in Sec. IV are represented: vacuum (dotted black line),
helium with corrected drag coefficients (solid orange line), and air (solid
magenta line).

FIG. 9. Scattering mean free path for a size mono-disperse ejecta of tin in air
experiencing fragmentation. The exact scattering mean free paths is computed
tanks to Mie theory (orange solid line). For comparison, we display the dipole
limit case (black dotted line) and the large particle limit case (dashed solid). Mie
theory allows one to describe the scattering mean free path evolution over this
large break up window and recover limit cases at each end of it.
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σs(a)/ a2 and, therefore, the scattering mean free path as
‘s(a)/ a. Now, if we were to reach smaller particle sizes, for
example, due to reactive breakup as in the study of Buttler et al., we
see that the scattering mean free path would increase again—even
exceeding its initial value below a ¼ 60 nm. We have reached here
the limit case of dipole approximation where the scattering cross-
sectional scales as σs(a)/ a6 and, therefore, the scattering mean-
free path as ‘s(a)/ a�3. Both limit cases are represented in Fig. 9.
We believe that this mechanism explains the phenomenon observed
by Buttler et al. after multiple breakup cycles for cerium in deute-
rium. Breakup first decreased the scattering mean free path, as in
our case, followed by an increase large enough to uncover particles
initially hidden.

The effects of reactive breakup were not opposite to the ones of
hydrodynamic breakup, they were in fact exceeding them. Going
past the initial decrease in the scattering mean free path, the increase
for small particle was enough to exceed the initial mean free path.

B. Introducing size and velocity dependencies

As mentioned in Sec. IV C, the main issues in the simulated
spectrogram show up at the end of the experiment and in its early
moments. At the end of the simulation, the spread in velocity is
broader than the one observed experimentally. We believe this is
due to large particles, that sit right before the shockwave in gas.
These particles only travel in shocked air; therefore, their velocity
differential to the gas is low and they do not break up. In the mean-
time, they are too big to slow down only through drag force to the
free surface velocity and by the 20 μs mark. The velocity curve of
such a particle with radius a ¼ 4:15 μm taken from the ejecta
dynamics simulation is overlayed in red on the simulated spectro-
gram in Fig. 10. This observation argues in favor of a size–velocity
distribution with bigger particles at low velocities and smaller parti-
cles at higher velocities. This is in agreement with observations
made by holographic measurements15 and the ejecta mechanism
suggested by molecular dynamics simulations.10–12

Nonetheless, in the early moments, particles at the front of
the ejecta must correspond to the high-velocity plateau between
between t ¼ 4 and t ¼ 6 μs. These particles need to be big enough
so that, despite of heavy drag forces in non-shocked air, they do
not slow down immediately. When eventually they break up and
slow down, they also allow us to recover the reacceleration slope
below the free surface velocity between t ¼ 7 and t ¼ 10 μs. An
example of such a particle of radius a ¼ 5 μm taken from our sim-
ulation is overlayed in green on the simulated spectrogram in
Fig. 10.

We believe this observation balances the previous one and
illustrates the need of a more complex size–velocity distribution.
Overall, we need big particles at the back of the ejecta and small
particles at the front to achieve the long term velocity profile. This
distribution must then be completed with a few big particles typi-
cally for the ejecta head to observe the desired plateau in the early
moments. While investigating such correlations is beyond the
scope of this article, this is an insightful observation. The ability to
simulate spectrogram has not only allowed to constrain size–veloc-
ity distributions to experimental spectrograms, but also to confirm

that the actual size velocity distributions of ejecta ought to be corre-
lated distributions.

VI. CONCLUSION

In summary, we have shown that PDV measurements could be
used to retrieve additional information on the size distribution of
ejecta particles in shock compression experiments. Based on a exact
relationship between the specific intensity and the measured signal
in PDV experiments and a rigorous RTE model for PDV experi-
ments in the multiple scattering regime, we have shown the influence
of particle size distribution in PDV spectrograms. To exploit this
sensitivity, we implemented a simulation scheme allowing to use
directly the results of ejecta hydrodynamic simulations to compute
simulated spectrograms. This opens up the possibility of indirect
size–velocity distribution evaluation thanks to different particle
transport conditions accounting for drag forces and particle breakup
models. Finally, a comprehensive study on a real-conditions experi-
ment showed how, through an iterative process, spectrogram simula-
tion allowed to better our ejecta description. We are not aware of
any technique that can describe in detail the partition of mass below
the resolution limit of that diagnostic. Indeed, we observed the effect
of particles down to a ¼ 60 nm while still working at λ ¼ 1:55 μm.

From a more general point of view, this work is a proof of
concept of a simulation chain aiming to mimic PDV measurement
in ejecta experiments. It shows that with a clear implementation of
the direct problem including the full path from an ejecta to its
expected spectrogram, the comparison with experimental spectro-
gram already allows one to have insightful ideas for the inverse
problem of reconstructing this ejecta (or at least its statistical

FIG. 10. Simulated spectrogram in air for a lognormal size distribution of
parameters σ ¼ 0:5 and a0 ¼ 2:25 μm. The simulated spectrogram is over-
layed with the velocity curves of two interesting numerical particles extracted
from the corresponding Phénix simulation: a particle of radius a ¼ 4:15 μm with
an initial velocity of v ¼ 2234 m=s (red solid line) and a particle of radius
a ¼ 5 μm with an initial velocity of v ¼ 2670 m=s (green solid line).
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properties). In the case of size–velocity distribution studies, this
works argues in favor of correlated size–velocity distributions, for
the early moments of the experiment, corresponding to the phenome-
nology captured by molecular dynamics simulations. The current simu-
lation chain, including particle transport and spectrogram simulation,
would remain identical. Coupled with a better treatment of light scat-
tering close the free surface, typically around the micro-jets, we believe
this would allow to recover experimental spectrograms even in very
complex cases as in air. This kind of indirect measurements could be
applied to many other ejecta scenarios, especially those with no analyti-
cal expression of the size–velocity distribution throughout the experi-
ment. For example, the transport of reactive ejecta in gas. In addition,
this opens the possibility of sensitivity studies on other parameters such
as shock pressure, illumination wavelength, or material type. In this
work, the fact that the simulated spectrograms give semi-quantitive
results, i.e., that spectrograms have the right dynamics even if their
absolute values are shifted from the experimental ones, allowed one to
compare them to their experimental counterpart. Either by the presence
of the free surface or the shape of slowing down slope of the fastest par-
ticles, being able to visually compare spectrograms has proven plenty
useful in this study. For future work, this difference would need to be
measured by global and local metrics that allow quantifying the dis-
tance between spectrograms, either experimental or simulated. These
are potential lines to be followed in further investigations.
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APPENDIX: SPECTROGRAM INVARIANCE FOR SINGLE
SHOCK EJECTA IN VACUUM

In the ejecta geometry where the mean free path and the
phase function depend only on depth, and in the quasi-static
approximation (slow cloud dynamics compared to the light travel
time in the ejecta), the RTE given in Eq. (15) becomes

u � ∇r þ 1
‘e(r � uz , t, ω)

� �
I(r, u, t, ω)

¼ 1
‘s(r � uz , t, ω)
�
ð
p(r � uz , u, u0, t, ω, ω0)I(r, u0, t, ω0)du0

dω0

2π
: (A1)

Equation (A1) taken at r 1þ Δt=tð Þ and t þ Δt reads

u �∇r þ 1
‘e r 1þΔt=tð Þ �uz , tþΔt,ω½ �

� �
I r 1þΔt=tð Þ, u, tþΔt,ω½ �

¼ 1
‘s r 1þΔt=tð Þ �uz , tþΔt,ω½ �

�
ð
p r 1þΔt=tð Þ �uz , u, u0, tþΔt,ω,ω0½ �

� I r 1þΔt=tð Þ, u0, tþΔt,ω0½ �du0 dω
0

2π
: (A2)

In a single shock experiment in vacuum, the particles at the depth
r � uz at time t are the one that will be at the depth r 1þ Δt=tð Þ � uz
at time t þ Δt. Therefore the mean free path and phase function
obey the following conservation law

p r 1þ Δt
t

� �
� uz , u, u0, t þ Δt, ω, ω0

� �
¼ p r � uz , u, u0, t, ω, ω0ð Þ, (A3)

‘s,e r 1þ Δt
t

� �
� uz , t þ Δtω

� �
¼ ‘s,e r � uz , t, ωð Þ 1þ Δt

t

� �
: (A4)

While the phase function remains constant, for the mean free paths
the 1þ Δt=tð Þ factor accounts for the decrease in particle density
caused by the homothetic stretch of the ejecta along the z-axis.
Using this property, Eq. (A2) multiplied by 1þ Δt=tð Þ reads

u � ∇r 1þ Δt=tð Þ þ 1
‘e r, t, ωð Þ

� �
I r 1þ Δt=tð Þ, u, t þ Δt, ω½ �

¼ 1
‘s(r � uz , t, ω)

ð
p(r � uz , u, u0, t, ω, ω0)

� I r 1þ Δt=tð Þ, u0, t þ Δt, ω0½ �du0 dω
0

2π
: (A5)
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Comparing Eqs. (A1) and (A5) shows that at t and t þ δt the spe-
cific intensity obeys to the same equation except that in the latter
configuration all distances are to be scaled up by a factor 1þ Δt=t,
which formally proves the claim of Sec. IV A.
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