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We use a scattering formalism to derive a condition of strong coupling between a resonant scatterer and

an Anderson localized mode for electromagnetic waves in two dimensions. The strong coupling regime is

demonstrated based on exact numerical simulations, in perfect agreement with theory. The strong

coupling threshold can be expressed in terms of the Thouless conductance and the Purcell factor. This

connects key concepts in transport theory and cavity quantum electrodynamics, and provides a practical

tool for the design or analysis of experiments.
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Enhancing and controlling light-matter interaction has
been an issue of tremendous interest for years. The pio-
neering prediction of the dependance of the spontaneous
decay rate of an emitter on its environment in the weak
coupling regime, known as the Purcell effect [1], was
observed in optics by Drexhage [2]. The development of
cavity QED has led to the observation of the strong cou-
pling regime, characterized by Rabi oscillations of the
excited-state population, or a splitting in the frequency
spectrum [3]. Strong coupling has been demonstrated
with single atoms in engineered vacuum cavities [4] and
in condensed matter using quantum-well or quantum-dot
excitons in microcavities or photonic crystals [5–7]. In
nanophotonics, surface-plasmon modes on metallic nano-
particles or substrates provide subwavelength light con-
finement without a physical cavity, and strong coupling has
been reported with quantum dots or molecules [8–12].
Multiple scattering in disordered media provides an alter-
native route since confined modes can be produced by the
mechanism of Anderson localization [13]. Substantial
modifications of the spontaneous decay rate (Purcell
effect) have been demonstrated using quantum dots and
localized modes in disordered photonics crystal wave-
guides [14]. In these one-dimensional structures, even
fabrication imperfections in otherwise perfect waveguides
generate efficient localization on the micrometer scale
[15], and the strong coupling regime is expected to be
within experimental reach [16]. In addition to multiple
scattering, near-field interactions also contribute to an
enhancement of light-matter interaction with large
Purcell factors in the weak coupling regime [17].

In this Letter, we study the interaction between a reso-
nant dipole scatterer and a 2D Anderson localized mode,
based on a scattering formalism for electromagnetic waves.
Using exact numerical simulations, we demonstrate the
strong coupling regime in 2D localized systems. The
results are in perfect agreement with a simple coupled-
mode theory. Using this theory, we examine the strong
coupling criterion, and show that it can be expressed in
terms of the Thouless conductance and the Purcell factor.

This result establishes an interesting connection between
concepts in transport theory and cavity QED. It also
provides a simple rule for the design and/or the analysis
of future experiments aiming at demonstrating or using
(classical or quantum) strong coupling with electromag-
netic waves.
In the first part, we use the LDOS spectrum to character-

ize an Anderson localized mode. We consider a two-
dimensional disordered medium and TE waves (electric
field perpendicular to the plane containing the 2D scatter-
ers), so that we are left with a scalar problem. To introduce
the methodology, let us first consider the canonical situ-
ation of a nonabsorbing environment placed in a closed
cavity. In this case, one can define an orthonormal discrete
basis of eigenmodes with eigenfrequencies !n and eigen-
vectors enðrÞ. The electromagnetic response of the medium
can be expanded over the set of eigenmodes [18]

Gðr; r0; !Þ ¼ X
n

c2
e�nðr0ÞenðrÞ
!2

n �!2
; (1)

where c is the speed of light in vacuum, ! the frequency,
and Gðr; r0; !Þ the outgoing 2D scalar Green function. In
the general case of a leaky system the weak losses out of
each mode can be taken into account phenomenologically
using an effective linewidth �n. For an open system, as the
one considered in this study, this effective linewidth
accounts for radiative leakage. It could also account for
other loss mechanisms, such as material absorption or out-
of-plane scattering in a quasi-2D system. The electric part
of the LDOS, relevant for the coupling with electric
dipoles, is defined as �ðr; !Þ ¼ 2!=ð�c2ÞImGðr; r; !Þ
[19]. Therefore, the LDOS spectrum is given by

�ðr; !Þ ¼ X
n

�nðr; !Þ ¼ X
n

An

�

�n=2

ð!n �!Þ2 þ ð�n=2Þ2
;

(2)

where An ¼ jenðrÞj2. The LDOS spectrum contains all the
relevant parameters of a given mode (central frequency,
linewidth, and local intensity). A major interest is that it
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can, in principle, be determined experimentally from fluo-
rescent lifetime measurements, even at the nanoscale in
complex geometries [20]. For convenience, we also define
the Purcell factor associated with a given mode n, and a
position r, as Fp ¼ �nðr; !nÞ=�0, where �0 ¼ !=ð2�c2Þ
is the vacuum LDOS in 2D.

In order to investigate Anderson localization numeri-
cally, we consider an assembly of 2D point scatterers
described by their electric polarizability �ð!Þ ¼
ð2�0=k

2
0Þð!0 �!� i�0=2Þ�1, where k0 ¼ !=c, !0 is

the resonance frequency and �0 the natural linewidth.
This form of the polarizability describes nonabsorbing
scatterers and satisfies energy conservation. It has been
chosen to provide the simplest model of a strongly scat-
tering medium exhibiting Anderson localization. The influ-
ence of absorption (in the host medium or in the scatterers)
and of out-of-plane scattering (in a quasi-2D system) on
Anderson localization is beyond the scope of the present
study that is focused on the strong coupling condition. We
have fixed !0 ¼ 3� 1015 s�1 (visible optical radiation)
and �0 ¼ 5� 1016 s�1 � !0. With such a wide reso-
nance, the scattering cross section of the scatterers is
constant over the spectral range considered in the numeri-
cal simulations below. The scatterers are randomly distrib-
uted in a cylinder of radius R. In order to compute the
LDOS at the central point rS, we need to compute the field
scattered at rS when the system is illuminated by a source
dipole p also located at rS [see Fig. 1(a)]. The exciting
field on scatterer number i is given by the self-consistent
equation

Ei¼�0!
2G0ðr;rS;!Þpþ!2

c2
�ð!ÞX

j�i

G0ðri;rj;!ÞEj; (3)

where ri is the position of scatterer number i.

The 2D vacuum Green function is G0ðr; r0; !Þ ¼
ði=4ÞHð1Þ

0 ðk0jr� r0jÞ, where Hð1Þ
0 is the zero-order Hankel

function of the first kind. For a system with N scatterers,
the linear system of N self-consistent equations can be
solved numerically. Once the exciting field on each
scatterer is known, it is possible to compute the scattered
field at rS and to deduce the Green function and the
LDOS �ðrS; !Þ.

Let us consider one configuration of the random system,
with N ¼ 5000 scatterers in a cylinder of radius R ¼
20 �m. Two computed LDOS spectra, with the same
bandwidth but centered on two different central frequen-
cies !d

c ¼ 2:7� 1015 s�1 (diffusive regime) and !l
c ¼

1:5� 1015 s�1 (localized regime), are shown in
Figs. 1(b) and 1(c), respectively. To choose these two
frequencies, we have estimated the localization length by
� ¼ ‘s exp½�ReðkeffÞ‘s=2�, with ‘s the scattering mean
free path and keff the effective wave number in the medium
[21,22]. For a rough estimate, we have made the approxi-
mation keff � k0 þ i=ð2‘sÞ, valid in the weak scattering

limit. In the spectrum shown in Fig. 1(b), one has
� ’ 84R and the sample is in the diffusive regime.
We observe a smooth profile corresponding to the intuitive
picture of a continuum of modes. Conversely, in Fig. 1(c),
the localization length is � ’ R=5 and the sample is in the
localized regime. We observe very sharp and well-
separated peaks, each of them being a signature of a
localized mode. A peaked spectrum, characteristic of
localized modes, is found numerically on any configuration
of the disorder, provided that � � R. A zoom on one of the
LDOS peaks, as displayed in Fig. 1(d), shows that it can be
perfectly fitted by a Lorentzian line shape as in Eq. (2),
demonstrating the relevance of this description. Such a
Lorentzian line shape for localized modes is consistent
with measurements performed in disordered waveguides
[14,23]. This isolated Anderson localized mode will be
denoted by mode M in the following and will be used to
demonstrate numerically the strong coupling regime. It is
characterized by an eigenfrequency !M ’ 1:5� 1015 s�1,
an effective linewidth �M ’ 8� 109 s�1 (the quality factor
QM ’ 1:8� 105), and a Purcell factor Fp ’ 36.

In the second part, we describe theoretically the cou-
pling between a resonant dipole scatterer and an Anderson
localized mode, in order to establish the threshold
condition for strong coupling. In very general terms, the
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FIG. 1 (color online). (a) Sketch of the system. (b) LDOS
spectrum centered at !d

c ¼ 2:7� 1015 s�1 (diffusive regime).
(c) LDOS spectrum centered at !l

c ¼ 1:5� 1015 s�1 (localized
regime). (d) Zoom on one peak in the localized regime. Circles
correspond to a fit by Eq. (2).
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scattering medium is described by the scattered Green
function Sðr; r0; !Þ ¼ Gðr; r0; !Þ �G0ðr; r0; !Þ, where G0

is the vacuum Green function (or more generally the Green
function in a reference medium). The resonant dipole
scatterer, placed at position rS, is described by its electric
polarizability �S in vacuum (or in the same reference
medium), such that its induced dipole moment reads

pð!Þ ¼ �0�Sð!ÞEexcðrS; !Þ; (4)

where EexcðrS; !Þ is the exciting field. The eigenmodes of
the coupled systems are found by assuming that the excit-
ing field is provided by the polarizable scatterer itself
(no external illumination), so that

EexcðrS; !Þ ¼ �0!
2SðrS; rS; !Þpð!Þ: (5)

Combining Eqs. (4) and (5), one obtains the implicit
equation satisfied by the eigenfrequencies of the coupled
system [24]:

!2

c2
�Sð!ÞSðrS; rS; !Þ ¼ 1: (6)

This general relation rules the coupling between the scat-
terer and its environment whatever the strength of this
coupling (it is not restricted to the strong coupling regime).

In the case of an Anderson localized mode centered at
!M, the Green function in the vicinity of !M is given by

Gðr; r0; !Þ ¼ c2

2!M

e�Mðr0ÞeMðrÞ
!M �!� i�M=2

: (7)

The resonant scatterer, assumed on resonance with mode
M, is described by a polarizability

�Sð!Þ ¼ 2c2

!2

�R
S

!M �!� ið�R
S þ �NR

S Þ=2 ; (8)

where �R
S and �NR

S are, respectively, the radiative and in-

trinsic nonradiative linewidth. This polarizability describes
either a classical resonant scatterer (the nonradiative line-
width corresponding to dissipation in the material) or a
quantum two-level system far from saturation (in this case
�NR
S ¼ 0). Note that �R

S also appears in the numerator as it

includes the oscillator strength. The complex eigenfrequen-
cies � of the coupled system are solutions of Eq. (6), in
which �Sð!Þ is given by Eq. (8) and SðrS; rS; !Þ is deduced
from Eq. (7). One finds two solutions,

�� ¼ !M �
�
g2c � f�NR

S � �Mg2
16

�
1=2 � i

2

�
�M þ �NR

S

2

�
;

(9)

where gc ¼ ð�R
S�MFp=4Þ1=2 is the coupling constant. Under

the condition

g2c 	 ð�NR
S � �MÞ2

16
; (10)

the two new eigenmodes of the coupled system are no
longer degenerated. This defines the strong coupling regime.

For a quantum two-level system, �NR
S ¼ 0 and the condition

is simply gc 	 �M=4, which is consistent with the usual
criterion in cavity QED [6,27]. The frequency splitting
between the two eigenmodes is given by the Rabi frequency
�R, such that

�R ¼ �þ ���

2
¼

�
g2c � f�NR

S � �Mg2
16

�
1=2

: (11)

The spectral width � of the new eigenmodes is the average
of �NR

S and �M, i.e., of the intrinsic linewidths of the

uncoupled system. Let us note that condition (10) is not
sufficient to ensure that the Rabi splitting is larger than the
linewidth (this would be a necessary condition to observe
Rabi oscillations in the time domain). One needs to satisfy
the more restrictive condition 2�R 	 �, that reads

g2c 	 ð�NR
S Þ2 þ �2

M

8
: (12)

Finally, let us note that the weak coupling regime is recov-
ered when Eq. (10) is not satisfied, in the limit �M � �S. In
this limit, Eq. (9) shows that the system remains degener-
ated. The resonance of the scatterer broadens without affect-
ing the localized mode. The broadening in this regime
(or the change in the spontaneous decay rate for a quantum
emitter) is exactly given by the Purcell factor.
The expected strong coupling regime can be checked

using exact numerical simulations. We consider the same
system as in Fig. 1(a), and add at position rS a resonant
dipole scatterer (probe scatterer), tuned to the resonance
frequency !M of the localized mode M identified in the
spectrum in Fig. 1(c). The polarizability of the probe scat-
terer is given by Eq. (8), with �NR

S ¼ 0. A sketch of the

system is represented in Fig. 2(a). Under an illumination
by an external field E0ðr; !Þ (plane wave), a system of N
self-consistent equations similar to (3) can be written

Ei ¼ E0ðri; !Þ þ!2

c2
�ð!ÞX

j�i

G0ðri; rj; !ÞEj

þ!2

c2
�Sð!ÞG0ðri; rS; !ÞES; (13)

where the exciting field ES on the probe scatterer is
given by

ES ¼ E0ðrS; !Þ þ!2

c2
�ð!ÞX

N

j¼1

G0ðrS; rj; !ÞEj: (14)

Solving this linear system with N þ 1 equations allows us
to compute the induced dipole moment of the probe scat-
terer pSð!Þ ¼ �0�Sð!ÞESðrS; !Þ. We show in Fig. 2(b) the
resulting spectrum for five different values of the radiative
linewidth �R

S (increasing from top to bottom). The Rabi

splitting 2�R increases with �R
S , as expected from theory

since the coupling strength gc scales as ð�R
S Þ1=2. The de-

pendence of the Rabi splitting on �R
S extracted from the

numerical simulations is shown in Fig. 2(c). Excellent
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agreement is found with the theory. In summary, the simu-
lations, performed without any approximation, have dem-
onstrated the existence of the strong coupling regime with
an Anderson localized mode in two dimensions. The fre-
quency splitting and its dependence on the parameters of
the probe scatterer are described quantitatively using the
coupled-mode theoretical model, in which the parameters
of the Anderson localized mode are extracted from a spec-
trum of the LDOS.

We shall show that an alternative formulation of the
strong coupling criterion can be given, that is particularly
relevant in the case of Anderson localization. Let us intro-
duce the average linewidth of the electromagnetic modes
�! and the average mode spacing �!. Normalized

linewidths �̂R
S ¼ �R

S=�! and �̂M ¼ �M=�! can be intro-

duced, for the probe scatterer and for the localized mode

M. �̂R
S ¼ 1 means that the bandwidth of the scatterer

covers on average only one mode of the disordered me-
dium (the linewidth of the resonant scatterer can be chosen
or tuned to satisfy this condition). When the probe scatterer
is resonant with localized mode M, the strong coupling
criterion given by Eq. (12) becomes

Fp 	 1

2

�̂M

�̂R
S

g; (15)

where g ¼ �!=�! is the normalized Thouless conduc-
tance, a key concept in the theory of Anderson localization
[28]. The localized regime corresponds to g < 1 [this
condition describes statistically a spectrum as that in
Fig. 1(c)]. The inequality shows that the smaller the con-
ductance, the smaller the critical Purcell factor permitting
to enter the strong coupling regime. This confirms the idea

that deeply localized modes in 2D or quasi-1D [15,16]
are particularly suitable to achieve strong coupling in

the optical regime in condensed matter. For �̂R
S ’ 1 and

�̂M ’ 1 (this condition is satisfied on average for the
localized modes), the strong coupling criterion takes the
remarkably simple form Fp 	 g=2. This simple relation

directly connects the Purcell factor (a central quantity in
cavity QED) and the Thouless conductance (a statistical
concept in transport theory). Let us remark that the inverse
of the Thouless conductance is statistically the analog of
the finesse of a standard Fabry-Pérot cavity that enters
standard cavity QED analyses [3].
In conclusion, we have demonstrated numerically the

strong coupling regime between a resonant scatterer and an
Anderson localized mode for electromagnetic waves in
two dimensions. The numerical results are in perfect agree-
ment with a coupled-mode theory in which the parameters
of the localized mode are extracted from a spectrum of the
LDOS. The strong coupling threshold has been expressed
in terms of the Thouless conductance and the Purcell
factor. From the fundamental point of view, Eq. (15) estab-
lishes an interesting connection between concepts in trans-
port theory and cavity QED. On the practical side, it shows
that once localization is reached (g < 1), the strong cou-
pling criterion is not restrictive. For a resonant scatterer
with a linewidth on the order of the averaged mode spacing
(that on average is in coincidence with only one mode), the
criterion is equivalent to having a Purcell factor Fp > 1.

Although this criterion is rigorous only statistically, it
provides a simple rule that could be useful in practice for
the design and/or the analysis of future experiments aiming
at demonstrating or using (classical or quantum) strong
coupling with Anderson localized electromagnetic waves.
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