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Abstract

We present numerical calculations of the local density of optical states (LDOS) in the near field of disordered plasmonic films.

The calculations are based on an integral volume method, that takes into account polarization and retardation effects, and allows us

to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS fluctuations are dominated by

non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling

to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial

distributions.
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1. Introduction

Disordered plasmonic films obtained by evaporating

noble metals on a substrate are known to exhibit unusual

optical properties [1]. Close to the percolation thresh-

old, metallic clusters with fractal perimeters leads to

the emergence of subwavelength areas supporting

enhanced electric field, commonly called hot

spots [2]. These randomly distributed localized fields

turned out to be very promising for sensing [3,4],

subwavelength focusing [5], or non-linear optics [6].

Although several theoretical and numerical works have

been reported on the subject, the question of the local

density of optical states (LDOS) has been hardly

addressed.
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It has been known for long that the decay rate of a

fluorescent emitter depends on its electromagnetic

environment [7,8], the dependence being described by

the LDOS r(r, v), with r the location of the emitter and

v the emission frequency. Indeed, the lifetime t of the

excited state of a dipole emitter with transition dipole p

is given in perturbation theory by 1/t = pv|p|2r(r, v)/

(3e0 9) where e0 is the vacuum permittivity and 9 the

reduced Planck constant. Thus the LDOS can be

directly probed experimentally by measuring t. In a

disordered medium, changes in the LDOS probe the

local environment [9–11], the photon transport

regime [12,13] or drive long-range correlations of

speckle patterns [14,15]. Recently, LDOS statistics in

the vicinity of disordered films have been studied

experimentally [16]. Enhanced LDOS fluctuations have

been observed close to the percolation threshold, in a

regime where the film morphology is controlled by

fractal clusters. These enhanced fluctuations have been

qualitatively associated to localized plasmon modes.
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Theoretical and numerical studies of semi-continuous

disordered metallic films are very often based on

approximations, such as mean-field theories [17] or

quasi-static calculations [6,18]. An exact numerical

approach has been reported recently using a FDTD

(finite-difference time-domain) scheme [19].

In this paper, we present numerical calculations of

the LDOS in the vicinity of disordered metallic films

based on an integral volume method. This exact

formulation is limited only by the discretization of

the films into finite size cells. The numerical algorithm

is divided into two steps. Firstly, we use a Monte–Carlo

algorithm to simulate the growth of a gold film under an

evaporation/deposition process, and check that the

geometrical properties of the film near the percolation

threshold are in good agreement with experimental

observations. Secondly, we solve Maxwell’s equations

in 3D, taking into account polarization and retardation

effects, which allows us to compute maps and statistical

distributions of the LDOS. The computations are in

agreement with known experimental results. The

approach allows us to split the LDOS into its radiative

and non-radiative contributions, and to discuss their

relative contributions to the spatial fluctuations of the

LDOS, which is the main focus of this work.

2. Numerical approach

2.1. Generation of disordered films

Our first goal is to generate numerically disordered

metallic films that have the same properties as the

experimental evaporated metallic films. To do so, we

use a kinetic Monte–Carlo algorithm, as proposed

in [20]. The idea is to randomly deposit 5 nm large gold

particles on a square grid via an iterative algorithm, and

let the particles diffuse under the influence of an

interaction potential until a stable geometry is reached.

At every iteration of the algorithm, we randomly choose

either to deposit a new particle (probability p0) or to
Fig. 1. Numerically generated gold films for three different filling fractions f

T = 300 K, a = 2.58 . 10�2, F = 1014 s�1, A = 0.2061 eV, B = 1.79 eV, p = 1
make a particle on the grid jump to a more stable

neighbour site (probability pi!j to scatter from site i to

site j). Using the normalization p0 +
P

i,j6¼ipi!j = 1, we

only need to pick a random number out of [0, 1] to

determine the relative weight of each process. More

precisely, the probability to deposit a particle reads

p0 = NF, where N is the number of particles that remains

to be deposited in order to reach the prescribed filling

fraction, and F is a constant (with dimension s�1)

modeling the experimental deposition rate. The prob-

ability for a particle located on site i to jump to the

neighbor site j reads pi!j = exp [� DEi!j/(kBT)], where

kB is the Boltzmann constant, T the temperature of the

surface and DEi!j the activation energy barrier.

Computing DEi!j is a complex issue for

atoms [21,22], and is not possible from first principles

for nanometer size particles. In the present approach, we

have chosen to deal with a rescaled atomic potential that

renormalizes the energy barrier in order to apply to a

nanoparticle. We assume that DEi!j = a(Ei � Ej),

where a is a positive dimensionless adjustable para-

meter taking into account the influence of the substrate

and the scaling. Ei is the rescaled ‘‘atomic’’ potential of

a particle located on site i, which is allowed to jump to

the neighbor site j if Ei > Ej. This potential is given by

the following expression based on a tight-binding

second moment method [23]:

Ei ¼ A
X
i 6¼ j

exp½� pðrij=r0 � 1Þ�

�B
X
i 6¼ j

exp½�2qðrij=r0 � 1Þ�
( )1=2

:

(1)

In this expression, r0 is the size of one particle, rij the

distance between two sites i and j and A, B, p and q are

constants that were tabulated for atoms [23]. The itera-

tive deposition process is stopped when all particles

have been deposited (so that the prescribed filling

fraction has been reached) and no particle can move

to a more stable site.
 (gold is represented in dark). The parameters for the computation are:

0.229, q = 4.036.
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Three examples of films, with a lateral size of

375 nm and three different surface filling fractions f , are

shown in Fig. 1.

When the filling fraction increases, a continuous

metallic path appears linking two sides of the sample

(percolation). Avery important feature of the disordered

metallic films is the apparition of clusters with fractal

perimeter near the percolation threshold [1]. The

perimeter P of a cluster is said to be fractal when

Pfractal / SD/2, where S is the cluster surface and D is a

non-integer number called fractal dimension [24].

Usual euclidian 2D surfaces have a perimeter satisfying

Peuclidian / S1/2. It has been shown experimentally that

on disordered metallic films, the fractal dimension is

D = 1.88 [25]. To check this feature, we generated

100 films with filling fractions f = 20% and f = 50%.

We extracted the perimeter and surface of all clusters in

all numerically generated films. We show in Fig. 2 the

location of each cluster in a perimeter/surface diagram,

in a log-log scale (each blue cross corresponds to one

cluster), for both filling fractions.

For low filling-fraction, every cluster has an

euclidian perimeter (D = 1). For filling fraction

f = 50%, we clearly see the existence of fractal clusters

with D ’ 1.88. This result, already shown in [20], is a

strong evidence that the geometrical features of

experimental disordered films are well described by

the numerical generation method.

2.2. Expression of the LDOS

In order to compute the electric field and the LDOS

on disordered films, we consider that a unit pixel of a

numerically generated film as that shown in Fig. 1 is a

5 nm size gold cube described by its dielectric constant

e(v), taken from [26]. To compute the LDOS r(r0, v),
Fig. 2. Distribution in a perimeter/surface diagram of the clusters taken out

Right: filling fraction f = 50%. The red solid line and green dotted line ar

respectively. (For interpretation of the references to color in this figure leg
we have to compute the imaginary part of the dyadic

electric Green function G at the position of the

emitter [8,27]. The normalized LDOS reads:

r

r0

¼ 2p

k0

Im TrGðr0; r0; vÞ½ �: (2)

k0 = v/c = 2p/l and r0 = v2/(p2c3) is the LDOS in free

space. The dyadic Green function G connects an elec-

tric dipole p at position r0 to the radiated electric field at

position r through the relation E(r, v) = m0v
2G(r, r0,

v)p. It describes the electromagnetic response of the

environment.

2.3. Calculation of the dyadic Green function

To compute the dyadic Green function G in the

presence of the film, we consider an electric dipole p
located at position r0, and use a volume integral

method [28]. The electric field at any point r obeys the

volume integral equation (Lippmann–Schwinger equa-

tion)

Eðr; vÞ ¼ m0v
2G0ðr; r0; vÞp

þk2
0½eðvÞ � 1�

R
V G0ðr; r0; vÞEðr0; vÞd3r0

(3)

where V is the volume occupied by the metallic film. G0

is the dyadic Green function of free space, given

by [29,30]

G0ðr; r0; vÞ ¼ PV I þrr
k2

0

� �
expðik0RÞ

4pR

�dðr � r0Þ I

3k2
0

;
(4)

where R = |r � r0|, PV denotes the principal value op-

erator and d is the Dirac delta function. In order to solve
 from 100 numerically generated films. Left: filling fraction f = 20%.

e guides for the eye, corresponding to P = 7S1/2 and P = 0.28S1.88/2,

end, the reader is referred to the web version of the article.)
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the integral equation numerically, we discretize V into cells

of size D, and assume that the electric field is constant in

each cell (the volume of cell number j will be denoted by

Vj). For all calculations presented in this paper, D is set to

2.5 nm so that each gold cube is divided into eight cells. To

improve convergence of the numerical computation, we

integrate the Green dyadic on the cell volume (moment

method) and define Gint
ij ¼

R
V j

G0ðri; r0; vÞ d3r0. To cal-

culate the electric field in each cell, we have to solve the

following linear system:

I � k2
0 eðvÞ�1½ �Gint

ii

� �
Ei�k2

0 eðvÞ � 1½ �
X
j 6¼ i

Gint
ij E j

¼ m0v
2G0ðri; r0; vÞp:

(5)

The solution leads to the expression of the three com-

ponents of the electric field Ei in cell number i, for all i.

The computation of Gint
ii has to be performed with care,

due to the singularity of the Green function G0 at the

origin. This can be done in Fourier space, using the

Weyl expansion as exposed in [31]. Solving Eqs. (5) for

three orthogonal orientations of the source dipole gives

direct access to the full dyadic Green function G(r, r0,

v). The LDOS is deduced from Eq. (2) (note that the

imaginary part of the Green dyadic is not singular at the

origin for r0 in vacuum).

The numerical approach also allows us to calculate

separately the radiative LDOS rR (which is proportional

to the far-field power radiated by the dipole source) and

the non-radiative LDOS rNR (which is proportional to

the power absorbed inside the metal) [32,33]. Energy

conservation requires that r = rR + rNR, so that only

two quantities need to be calculated. We can compute
Fig. 3. Maps of the total (r), non-radiative (rNR) and radiative LDOS (rR) n

films with filling fractions f = 20% and f = 50%. The wavelength is l = 78
the normalized non-radiative LDOS from

rNR

r0

¼ 6pe2
0

k3
0jpj

2
Im½eðvÞ�

Z
V

jEðr0; vÞj2 d3r0 (6)

and then deduce rR by subtraction. Eq. (6) is discretized

the same way as Eq. (3). From such calculations it is

possible to address the contribution of radiative and

non-radiative modes to the LDOS, as we will see. This is

an important issue in the understanding of the optical

response of disordered metallic films, and their use for

the control of the dynamics of fluorescent sources.

3. Results

3.1. Mapping the LDOS and its radiative and non-

radiative components

Using the approach described in Section 2, we

computed maps of the total, radiative and non-radiative

LDOS at 40 nm above numerically generated dis-

ordered metallic films. This distance has been chosen

since it provides substantial near-field effects and

remains compatible with standard computational

resources. A full study of the distance dependence,

both theoretical and experimental, will be published

elsewhere [34]. The results are shown in Fig. 3.

We clearly see that near the percolation threshold

(film with f = 50%), complicated LDOS structures

appear, with local enhancements on subwavelength

areas. The existence of local enhancements of the

electric field intensity (hot spots) is a well-known result,

that was observed before in experiments [2]. These local

field enhancements directly translate into LDOS
ormalized by the LDOS in vacuum (r0) at 40 nm distance above two

0 nm. Note that the color scale is different for every map.
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Fig. 4. Histograms of the total (r), non-radiative (rNR) and radiative

LDOS (rR) normalized by the LDOS in vacuum (r0) at 40 nm distance

above two series of films of same filling fraction (red: f = 20%; blue:

f = 50%). Every generated film has a lateral size of 375 nm . (For

interpretation of the references to color in this figure legend, the reader

is referred to the web version of the article.)
enhancements, leading to strongly fluctuating LDOS

patterns. Another interesting output of the calculations

is that at a distance 40 nm above a film with 375 nm

lateral extension, LDOS spatial fluctuations are mainly

due to non-radiative channels (this can be seen by

comparing the standard deviations of rNR and rR in

Fig. 3). Moreover, the spatial distribution of the

radiative LDOS rR is completely different from that

of the non-radiative LDOS rNR. In a fluorescence

experiment using single nanoscale emitters, this means

that the trade-off between radiative and non-radiative

decay is dependent on the emitter position. The

apparent quantum yield also becomes a spatially

fluctuating quantity, with expected strong fluctuations.

3.2. Statistical distributions of r, rNR and rR

The existence of localized modes on disordered

metallic films was recently studied experimentally

measuring the statistical distribution of the LDOS [16].

It was shown that the apparition of fractal clusters was

correlated to enhanced fluctuations of the LDOS, that are a

direct signature of the presence of spatially localized field

distributions. We computed the statistical distribution of

the total, non-radiative and radiative LDOS, for two

collections of films of lateral size 375 nm with filling

fractions f = 20% and f = 50%. For each filling fraction,

we generated 60 different films and computed the value of

the LDOS at a distance 40 nm above the center of the film.

The histograms are shown in Fig. 4.

From the calculations, we recover the enhanced

fluctuations of the LDOS observed in [16] close to the

percolation threshold. A comparison of the histograms for

r, rNR and rR also confirms that at a distance 40 nm from

the film, the LDOS fluctuations are mainly driven by non-

radiative channels, as already discussed in Section 3.1.

Finally we note that the computations are performed on

samples with lateral size on the order of l/2, so that the

LDOS spatial distribution might be affected by finite-size

effects. Although not shown for brevity, we have

performed computations with sample sizes from 150 nm

to 375 nm. These computations have shown that although

the statistical distribution of rR is size-dependent in this

regime, the distribution of r and rNR are quite robust.

3.3. Correlation between LDOS hot spots and film

topography

To get more insight about the origin of the localized

LDOS enhancements, we superimpose the maps of the

total normalized LDOS and the topography of the films,

as shown in Fig. 5.
The maps clearly show that at low filling fraction

(left), classical plasmon resonances of isolated particles

are responsible for local enhancements of the LDOS.

Near the percolation threshold (right), the origin of the

LDOS structure is more complex. The non-trivial

relation between the topography and the location of
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Fig. 5. Maps of the total normalized LDOS at a distance 40 nm represented on top of the film topography (gold is represented with black color).

Wavelength l = 780 nm. Left: f = 20%. Right: f = 50%.
localized field enhancements is sustained by collective

interactions. Finding a simple model to understand this

connection is still an open issue.

4. Conclusion

In conclusion, we have presented exact 3D numerical

calculations of maps and statistical distributions of the

LDOS in the near-field of disordered plasmonic films. The

calculations describe the well-known existence of

localized enhancements of the near-field intensity and

the LDOS on subwavelength areas, for filling fractions

close to the percolation threshold. The method also permits

a calculation of the radiative and non-radiative contribu-

tions to the LDOS. We have shown that at a distance 40 nm

above the film (near-field zone), the LDOS fluctuations are

chiefly driven by non-radiative channels. Nevertheless,

both radiative and non-radiative LDOS exhibit strong

spatial fluctuations, with completely different spatial

distributions. Understanding the trade-off between radia-

tive and non-radiative channels is a key issue for the

understanding of the optical properties of disordered

plasmonic films, and their use as sensors, absorbers or new

materials for the control of light emission.

References

[1] V.M. Shalaev, Nonlinear Optics of Random Media: Fractal

Composites and Metal-Dielectric Films, Springer Tracts in

Modern Physics, Berlin Heidelberg, 2000.

[2] S. Grésillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quélin, C.
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[21] R. Ferrando, G. Tréglia, Phys. Rev. B 50 (1994) 12104.

[22] C. Mottet, R. Ferrando, F. Hontinfinde, A.C. Levi, Surf. Sci. 417

(1998) 220.

[23] F. Cleri, V. Rosato, Phys. Rev. B 48 (1993) 22–33.

[24] B. Mandelbrot, The Fractal Geometry of Nature, Freeman, New

York, USA, 1983.

[25] P. Gadenne, PhD thesis, University of Paris VI (1986).

[26] E.D. Palik, Handbook of Optical constants of solids, Academic

Press, San Diego, USA, 1998.

[27] J.M. Wylie, J.E. Sipe, Phys. Rev. A 30 (1984) 1185.

[28] R.F. Harrington, Field Computations by Moment Methods,

IEEE Press, New York, USA, 1992.

[29] J. van Bladel, Singular Electromagnetic Fields and Sources,

Clarendon, Oxford, 1991.

[30] A.D. Yaghjian, Proc. IEEE 68 (1980) 248.

[31] P.C. Chaumet, A. Sentenac, A. Rahmani, Phys. Rev. E 70 (2004)

036606.

[32] R.X. Bian, R.C. Dunn, X. Sunney Xie, P.T. Leung, Phys. Rev.

Lett. 75 (1995) 4772.

[33] V.V. Klimov, M. Ducloy, V.S. Letokhov, Quant. Electr. 31 (2001)

569.
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