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Cross density of states and mode connectivity: Probing wave localization in complex media
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We introduce the mode connectivity as a measure of the number of eigenmodes of a wave equation connecting
two points at a given frequency. Based on numerical simulations of scattering of electromagnetic waves in
disordered media, we show that the connectivity discriminates between the diffusive and the Anderson localized
regimes. For practical measurements, the connectivity is encoded in the second-order coherence function
characterizing the intensity emitted by two incoherent classical or quantum dipole sources. The analysis applies
to all processes in which spatially localized modes build up, and to all kinds of waves.
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I. INTRODUCTION

Spatially localized modes are key elements in the descrip-
tion of many phenomena in mesoscopic and wave physics [1],
and their control is a central issue in photonics, acoustics,
or microwave engineering. Indeed, wave transport through
disordered media is substantially affected by Anderson lo-
calization [2]. Surface-plasmon modes on percolated metallic
films also undergo a localization process in certain conditions,
producing a subwavelength concentration of energy of interest
in nanophotonics [3]. In photonics and acoustics (phononics),
band gaps in periodic structures [4,5] and cavity modes are
used to enhance wave-matter interaction, e.g., to enter the
regimes of cavity quantum electrodynamics (QED) [6] or
optomechanics [7,8]. An underlying question in the descrip-
tion of localization phenomena, and in the design of artificial
structures producing localized modes, is the characterization
of an isolated mode (e.g., as a signature of Anderson local-
ization itself, or to reach cavity QED regimes [9,10]), and the
measure of the spatial connection between individual modes
(e.g., in the description of transport through a chain of weakly
connected modes [11]).

In this article, we introduce the concept of mode connec-
tivity, defined from the local and cross densities of states
(LDOS and CDOS), as a measure of the connection between
two points sustained by the eigenmodes at a given frequency.
We focus on electromagnetic waves, but the concept applies
to other kinds of waves. As an illustration, we show that
the mode connectivity allows one to discriminate between
diffusive transport and Anderson localization in disordered
media. We then define observables that depend directly on
the connectivity and the LDOS, and that could be measured
from the power emitted by two dipole sources placed inside
the medium or at close proximity to its surface. We exam-
ine separately the case of classical sources (antennas) and
of quantum emitters (single-photon sources). The proposed
approach could provide an unambiguous probe of Anderson
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localization of electromagnetic waves in 3D, whose existence
remains a debated issue [12].

II. CROSS DENSITY OF STATES AND CONNECTIVITY

For a monochromatic electromagnetic field at a frequency
ω, we define the CDOS ρ12 as [13]

ρ12 = 2ω

πc2
Im[u1 · G(r1, r2, ω)u2], (1)

where r1 and r2 are two points, u1 and u2 are two unit
vectors, and c is the speed of light in vacuum. In this
expression, G(r1, r2, ω) is the electric Green function that
connects an electric-dipole source p at point r2 to the elec-
tric field generated at point r1 through the relation E(r1) =
μ0 ω2 G(r1, r2, ω)p. Note that we consider here a partial
CDOS, projected over two polarization directions u1 and
u2, that differs from the full CDOS initially introduced in
Ref. [13] in which the polarization degrees of freedom are
averaged out.

The CDOS measures the connection between point r1 and
r2 sustained by the eigenmodes [13,14]. Interestingly, the
CDOS obeys the inequality

ρ12 � √
ρ11ρ22, (2)

where ρii = 2ω/(πc2)Im[ui · G(ri , ri , ω)ui] is the (partial)
LDOS that measures the weighted contribution of eigenmodes
at position ri , projected along the polarization direction ui

[15]. The inequality (2) was initially derived in Ref. [16],
and the proof is recalled in Appendix A, for consistency. This
naturally leads to the introduction of the mode connectivity

C12 = |ρ12|√
ρ11ρ22

, (3)

a dimensionless number lying within [0,1]. The two obser-
vation points r1 and r2 are highly connected at frequency ω

when C12 � 1, and weakly connected when C12 � 0.
A particular case of a strong connection between two

points is the single-mode regime, for which the equality
C12 = 1 is satisfied, as we shall now see. In a single-mode
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lossless cavity, the electric Green function can be expanded
in the form

G(r1, r2, ω) = c2 eM (r1)e∗
M (r2)

[
P

(
1

ω2
M − ω2

)

+ iπ

2ωn

δ(ω − ωM )

]
, (4)

where eM (r) is the eigenmode and ωM the eigenfre-
quency of the vector Helmholtz equation (see, for example,
Ref. [15]). Note that we use a tensor notation such that
[eM (r1)e∗

M (r2)]v = [e∗
M (r2) · v]eM (r1) for any vector v. In the

presence of weak losses (by absorption or radiation), we can
write

G(r1, r2, ω) = c2 eM (r1)e∗
M (r2)

ω2
M − ω2 − iωγM

, (5)

where γM is the mode damping rate. This phenomenological
expression is built in such a way as to recover Eq. (4) in the
limit γM → 0, and is only valid for a large quality factor Q =
ωM/γM , and for near-resonant frequencies. A more general
approach could be built using quasinormal modes [14], but
we assume here that the conditions of the phenomenological
approach (large Q regime) are satisfied. Using the reciprocity
theorem G(r1, r2, ω) = GT (r2, r1, ω) satisfied by the Green
function, one easily shows that Im[eM (r1)e∗

M (r2)] = 0. As
a consequence, the projected CDOS ρ12 = (2ω/πc2)Im[u1 ·
G(r1, r2, ω) · u2], with u1 and u2 two real unit vectors,
reduces to

ρ12 = γM

2π

u1 · [eM (r1)e∗
M (r2)]u2

(ωM − ω)2 + γ 2
M/4

, (6)

where we have used ω � ωM except in the resonant term.
Using the definition of the tensor product, this expression can
be transformed into

ρ12 = γM

2π

[e∗
M (r2) · u2][eM (r1) · u1]

(ωM − ω)2 + γ 2
M/4

. (7)

Introducing the LDOS at positions r1 and r2,

ρ11 = γM

2π

|u1 · eM (r1)|2
(ωM − ω)2 + γ 2

M/4
, (8)

ρ22 = γM

2π

|u2 · eM (r2)|2
(ωM − ω)2 + γ 2

M/4
, (9)

one immediately obtains

ρ2
12 = ρ11ρ22 (10)

in the case of a single mode. Note that we have identified the
square and the square modulus of the real-valued denominator
in ρ12. From the definition of the connectivity [Eq. (3)], we
directly see that C12 = 1 when the two points r1 and r2 are
connected by a single weakly dissipative mode.

III. CONNECTIVITY AND ANDERSON LOCALIZATION

Using the connectivity as a measure of the mode con-
nection between two points is of interest, for example, to
probe the existence of a single-mode regime, resulting from a
specific design of a structure, or from a self-built localization
process. As an important application of the concept, we shall

now show that the connectivity discriminates between diffu-
sive transport and Anderson localization in disordered media.
Identifying an unambiguous marker of these two regimes
remains a challenging issue, in particular for electromagnetic
waves.

Before analyzing the relevance of the connectivity in this
context, we give a qualitative picture of the difference between
diffusion and localization in terms of eigenmodes. In the
diffusive regime, the eigenmodes overlap both in frequency
and space. At a given frequency, the eigenmodes are spatially
extended, and any point in the medium is covered by a large
number of modes. Conversely, in the localized regime, at a
given point and for a given frequency, no more than one mode
has a non-negligible contribution [10].

To support this qualitative picture, we provide numerical
simulations of scattering of electromagnetic waves in two
dimensions (2D). We restrict the simulations to 2D since the
existence of Anderson localization of electromagnetic waves
in three dimensions (3D) remains an open question, while
its existence in 2D has been proven [17,18]. Although the
method proposed in this work could provide an unambiguous
signature of localization even in 3D, our purpose here is
to prove the principle using numerical simulations in a 2D
geometry for which the diffusive and localized regimes can
be clearly identified. Indeed, even the numerical proof of An-
derson localization of electromagnetic waves in 3D remains a
matter of debate [12], and we do not intend to solve this issue
here.

For the numerical simulations, we consider a medium com-
posed of randomly distributed nonabsorbing subwavelength
scatterers. For illustrative purposes we consider TE polarized
waves, with the electric field and the two polarization di-
rections u1 and u2 perpendicular to the plane containing the
scatterers. The scatterers are characterized by their electric
polarizability α(ω) = (2�/k2

0 )(ω0 − ω − i�/2)−1 with reso-
nance frequency ω0 = 3 × 1015 s−1, natural linewidth � =
5 × 1016 s−1, and k0 = ω/c = 2π/λ, where λ is the wave-
length in vacuum. This form of the polarizability is valid for
near-resonance frequencies and satisfies energy conservation
(or equivalently the optical theorem). The surface density
of scatterers is ρ = 3.98 × 1012 m−2, which corresponds to
N = 2292 point scatterers located in a square domain with
size L = 24 μm [see Fig. 1(a)]. From these parameters one
can determine the scattering mean free path 	s = (ρσs )−1,
and estimate the localization length ξ = 	s exp(πk0	s/2).
For λ = 400 nm, we get ξ = 4.16 × 1010μm � L and the
medium is in the diffusive regime, while for λ = 1500 nm,
ξ = 1.5 μm � L and the medium is in the localized regime.
The wavelength λ = 1000 nm provides an intermediate case
for which ξ = 19.6 μm ∼ L.

We compute the field in the medium upon illumination by a
single dipole source using the coupled dipole method that has
been described in previous studies [10]. From the field, one
can deduce the Green function and the CDOS or the LDOS
based on Eq. (1). Maps of the LDOS inside the medium are
displayed in Figs. 1(b)–1(d). In order to avoid border effects
and consider only bulk properties, we remove from the maps
a 2 μm border [see Fig. 1(a)] that is larger than both 	s =
993 nm in the diffusive regime (λ = 400 nm) and ξ = 1.5 μm
in the localized regime (λ = 1500 nm). We clearly see that
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FIG. 1. (a) Realization of a 2D disordered medium with N = 2292 subwavelength scatterers. To avoid border effects, fields are calculated
within the inner 20 μm by 20 μm square box defined by the solid line. (b)–(d) Calculated LDOS maps. (b) Diffusive regime (λ = 400 nm).
(c) Intermediate regime (λ = 1000 nm). (d) Localized regime (λ = 1500 nm).

in the diffusive regime [Fig. 1(b)] the medium supports a
spatially homogeneous distribution of LDOS, while in the
localized regime [Fig. 1(d)] LDOS spots corresponding to
localized modes are clearly visible, whereas a large part of
the sample is not covered by any eigenmode.

In free space, for TE polarized waves in 2D, the connec-
tivity for two points separated by a distance r = |r1 − r2|
is simply C0 = |J0(k0r )|. In this simple case, C0 � 1 for
positions separated by a subwavelength distance (k0r � 1),
while two positions far apart (k0r � 1) are poorly connected.
From the qualitative behavior described above, we can expect
the connectivity C12 to change substantially when the transport
regime shifts from diffusive to localized. In the first case we
await the connectivity to quickly decrease with distance as in
the vacuum case, due to the overlap of numerous eigenmodes.
On the opposite, in the localized regime where the modes are
spatially separated, the connectivity is expected to fluctuate
between C12 � 1 (for two points in the same localized mode)
and C12 � 0 (for unconnected points), the latter being more
likely for distance |r1 − r2| > ξ . We have checked this be-
havior numerically by computing maps of C12 versus r2, with
r1 fixed at the center of the medium.

The results are shown in Fig. 2, with connectivity maps
in the left column and cross sections along the line y = 0 in

the right column. The top row corresponds to the diffusive
regime (λ = 400 nm), the middle row to the intermediate
regime (λ = 1000 nm), and the bottom row to the locali-
zed regime (λ = 1500 nm). The three maps exhibit large
qualitative differences: values of C12 clearly below one are ob-
tained in the diffusive regime (top) except close to the origin,
which corroborates the idea that any point in the medium is
covered by a large amount of modes. Conversely, in the local-
ized regime (bottom) we observe that the relative connectivity
saturates to its maximum (C12 = 1) over distances |r1 − r2| ∼
ξ . This shows that the relative connectivity is a good marker of
the difference between the diffusive and the localized regimes,
even in a single realization of the disordered medium. This
behavior has been systematically observed for many different
realizations and results in different profiles for the ensemble-
averaged connectivity (see Appendix C).

IV. FRAMEWORK FOR PRACTICAL IMPLEMENTATION

In this section, we shall discuss the relationship between
the connectivity and observables in order to provide a frame-
work for practical implementations. Inspired by previous
studies [16,19], a strategy relies on placing two incoherent
dipole sources inside the medium (or close to its surface),
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FIG. 2. Left column: maps of the relative connectivity C12 versus r2, for a fixed position of r1 (chosen at the center), in a single realization
of disorder. Right column: cross sections along the line y = 0. From top to bottom the system transits from the diffusive to the localized
regimes, with the wavelength as a control parameter.

and measuring the time fluctuations in the total power emit-
ted outside the medium. This strategy is studied here in
the general case that covers 2D and 3D geometries. We
also consider both classical emitters (e.g., two dipole an-
tennas excited with mutually uncorrelated time-fluctuating
currents) and quantum single-photon sources, thus provid-
ing tools for a practical implementation in different spectral
ranges.

For classical emitters, fluctuations of the total emitted
power are characterized by the second-order quantity G

(2)
class =

P 2/(P )
2
, where P is the total power emitted by two dipole

sources and X denotes the time average of X over the temporal
fluctuations of the sources. For uncorrelated (incoherent) and
similar sources, one shows that [19]

G
(2)
class(r1, r2, ω) = 1 + 1

2

(
1 − F2

12

)
C2

12, (11)
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FIG. 3. Maps of the second-order coherence function G
(2)
class/quant (r1, r2, ω) in a single realization of disorder, with r1 fixed at the center and

r2 scanning the medium, with classical sources (left) and quantum sources (right).

where F12 is the LDOS contrast defined as

F12 = |ρ11 − ρ22|
ρ11 + ρ22

. (12)

Although this result can be directly deduced from the analysis
in Ref. [19], it is derived in Appendix B for the sake of
consistency. The dimensionless quantity F12, that also lies
within [0,1], measures the relative difference between the
LDOS at positions r1 and r2. Values F12 � 0 correspond

to ρ11 ∼ ρ22, while F12 � 1 when ρ11 � ρ22 or ρ11 � ρ22.
From Eq. (11), one readily sees that the classical second-order
function G

(2)
class lies in [1, 3/2] since both (1 − F2

12) and C2
12 are

in [0,1].
For two single-photon quantum emitters, the second-

order coherence function for measurements integrated over
all output channels is defined as G

(2)
quant = 〈P2〉/〈P1〉2,

where P1 and P2 are the single and double photodetec-
tion operators integrated over all output channels and the
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brackets denote quantum expectation values. Denoting by
�1(r1, α1) [�2(r1, α1, r2, α2)] the single (double) photode-
tection quantum operators, r1 and r2 denoting two de-
tector positions and α1 and α2 being two polarization
states, one has P1 = (ε0c/2)

∫
S1

dr1
∑

α1
�1(r1, α1) and P2 =

(ε0c/2)2
∫
S1

dr1
∫
S2

dr2
∑

α1,α2
�2(r1, α1, r2, α2). The sum-

mation over polarization and the integration over two surfaces
S1 and S2 enclosing the medium define photodetection pro-
cesses integrated over all output channels [16]. In the case of
two similar emitters initially in the excited state, the second-
order coherence function G

(2)
quant can be expressed in terms of

the LDOS contrast and the relative connectivity in the form

G
(2)
quant (r1, r2, ω) = 1

2

(
1 − F2

12

)(
1 + C2

12

)
. (13)

This result is directly deduced from the analysis in Ref. [16],
and is also derived in Appendix B for consistency. Expression
(13) shows that 0 � G

(2)
quant � 1, meaning an antibunching

behavior in the emission from the two quantum sources.
For both classical or quantum sources, we conclude that

second-order coherence functions G(2) are fully determined
by the mode connectivity C12 and the LDOS contrast F12.
From the maps of the LDOS presented in Fig. 1, we expect
F12 to increase when the system goes from the diffusive
regime to the localized regime. This is confirmed in the 2D
numerical simulations, since the averaged value of F12 over
the maps gives 0.29 for λ = 400 nm (diffusion), 0.63 for λ =
1000 nm (intermediate regime), and 0.74 for λ = 1500 nm
(localization). As a consequence, since both quantities C12

and F12 have a very different behavior in the diffusive and
localized regimes, we expect G(2) to be quite a useful tool to
discriminate between the two regimes.

To confirm this assertion we present maps of the classical
and quantum second-order coherence functions evaluated in
one realization of disorder for a 2D system in Fig. 3, for
the diffusive regime with λ = 400 nm (top), the intermediate
regime with λ = 1000 nm (middle), and the localized regime
with λ = 1500 nm (bottom).

The maps for the classical second-order function G
(2)
class (left

panels) are very similar to the maps of the relative connectivity
in Fig. 2: small values are obtained in the diffusive regime,
while large clusters with high values of G

(2)
class appear in the

localization regime. In the quantum case, the maps of G
(2)
quant

(right panels) are slightly different, as a result of the influence
of two factors: the relative connectivity C12 that governs the
patterns close to the origin, corresponding to small distances
between the two observation points, and the LDOS contrast
F12 that acts as a background for larger separations. These
differences can be traced back to the fact that the two second-
order coherence functions include the factor (1 − F2

12), but
differ by their dependence on the relative connectivity. In
particular, while the variation of G

(2)
class is directly proportional

to C2
12, the quantum second-order coherence function, being

proportional to (1 + C2
12), is less sensitive to C12. Moreover,

for distant observation points such that C12 � 0, one has
G

(2)
class → 1, while G

(2)
quant → (1 − F2

12)/2, explaining why the
background is affected by the spatial distribution of the LDOS
in the case of single-photon sources.

The similarity between the spatial behavior of the classical
coherence function G

(2)
class and the mode connectivity suggests

using the measurement of G
(2)
class as a strategy to probe the

appearance of localized modes in disordered media, and in
particular the transition from diffusive transport to Anderson
localization. The numerical study shows a robust signature of
localization even in a single realization of disorder. As a sup-
plemental analysis, disordered-averaged profiles of G

(2)
class and

G
(2)
quant versus the distance |r1 − r2| between the observation

points are presented in Appendix C.

V. CONCLUSION

In summary, we have introduced the concept of mode con-
nectivity as a measure of the connection between two points
at a given frequency. We have demonstrated the relevance
of the connectivity in probing spatially localized modes in
complex media. In the case of electromagnetic waves, we have
defined observables that directly depend on the connectivity,
and proposed schemes for practical implementations. The
analysis could allow one to define an unambiguous approach
to probe 3D Anderson localization of electromagnetic waves.
It can be extended to other kinds of waves, and is relevant to
all processes creating spatially localized modes.
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APPENDIX A: DERIVATION OF THE INEQUALITY
BETWEEN CDOS AND LDOS

In this section we derive Eq. (2). We consider two
monochromatic electric dipole sources (frequency ω) with
dipole moments p1 = p1u1 and p2 = p2u2, located at posi-
tions r1, r2 in a linear and nonabsorbing medium. The electric
field radiated at point r can be written in terms of the Green
function

E(r) = μ0ω
2G(r, r1, ω)p1 + μ0ω

2G(r, r2, ω)p2. (A1)

The total power emitted by the two sources outside the
medium is

P = ε0c

2

∫
S

|E |2dS, (A2)

where S is a sphere with radius R → ∞ that encloses the
medium. Using Eq. (A1), this can be rewritten as

P = πω2

4ε0
[|p1|2ρ11 + |p2|2ρ22 + 2 Re[p1p

∗
2]ρ12], (A3)

where ρij = (2ω/πc2)Im[ui · G(ri , rj , ω) · uj ] is the CDOS
for i �= j and the LDOS for i = j . Assuming that the two
dipole sources are in-phase (p2 = βp1 with β a real number),
we get

P = πω2

4ε0
|p1|2[ρ22β

2 + 2ρ12β + ρ11], (A4)
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which is a second-order polynom in β. As the radiated power
P is positive, the determinant of this polynom must be nega-
tive, which yields

(ρ12)2 � ρ11ρ22. (A5)

This proves Eq. (2).

APPENDIX B: SECOND-ORDER COHERENCES

In this Appendix we recall the expression of the second-
order coherence functions that were initially derived in
Refs. [19] and [16] for classical and quantum sources,
respectively.

1. Classical sources

We consider two incoherent classical sources located at
positions r1, r2 in a linear and nonabsorbing medium, whose
dipole moments p1, p2 are written as pk (t ) = pke

ıφk (t )e−ıωtuk ,
where φ1(t ), φ2(t ) are slowly varying uncorrelated random
phases and u1, u2 are fixed orientations. Using Eqs. (A1) and
(A2) above, the total power emitted outside the medium reads
as

P = πω2

4ε0
[|p1|2ρ11 + |p2|2ρ22 + 2 Re[p1p

∗
2e

ı(φ1−φ2 )]ρ12],

(B1)

where ρij = (2ω/πc2)Im[ui · G(ri , rj , ω) · uj ] is the CDOS
for i �= j and the LDOS for i = j . When averaging over time,
eı(φ1−φ2 ) vanishes in the interference term which leads to

P = πω2

4ε0
[|p1|2ρ11 + |p2|2ρ22].

On the opposite, when looking at the variance of P , a cross
product of interference terms survive the averaging process
and

P 2 − (P )2 = 2

(
πω2

4ε0

)2

|p1p2|2(ρ12)2,

which leads to the second-order coherence of the total emitted
power

G
(2)
class = P 2

(P )2
= 1 + 2|p1p2|2(ρ12)2

[|p1|2ρ11 + |p2|2ρ22]2
.

For emitters with the same amplitude (|p1| = |p2|), it simpli-
fies to

G
(2)
class = 1 + 1

2

[
1 − F2

12

]
C2

12, (B2)

where

F12 = |ρ11 − ρ22|
ρ11 + ρ22

, C12 = |ρ12|√
ρ11ρ22

are the LDOS contrast and the mode connectivity between
locations r1 and r2, respectively. Expression (B2) highlights
that, for the coherence to reach high values (G(2)

class � 3/2), the
emitters must be located at positions that are well connected
(C12 � 1) and where the LDOS is well balanced (F12 � 0).

2. Quantum sources

A similar derivation can be conducted for the case of quan-
tum emitters, in which case the positive-frequency component
of the electric-field operator can be connected to the source
operators using the same Green tensors (see Ref. [16] for more
details):

E(+)(r) = μ0ω
2σ−

1 G(r, r1)p1 + μ0ω
2σ−

2 G(r, r2)p2.

Then the photodetection of one photon at position ra , with
polarization state αa along ea , is described by the opera-
tor �1(ra, αa ) = E

†
aEa , where Ea = ea · E(+)(ra ). Similarly,

one defines the photodetection of two photons at positions
(ra, rb ), with respective polarizations (αa, αb ), with the oper-
ator �2(ra, αa, rb, αb ) = E

†
aE

†
bEbEa . When integrating over

all possible directions and polarizations one gets the operators

P1 = ε0c

2

∫
Sa

dra

∑
αa

�1(ra, αa ),

P2 =
(

ε0c

2

)2 ∫
Sa

dra

∫
Sb

drb

∑
αa,αb

�2(ra, αa, rb, αb ),

where the prefactors are chosen to define observables corre-
sponding to radiated power. Assuming the two emitters in the
excited state, the probabilities to detect one or two photons
over all output channels can then be simply expressed from
the LDOS and CDOS at the positions of the emitters:

〈P1〉 = πω2

4ε0
(|p1|2ρ11 + |p2|2ρ22),

〈P2〉 = 2

(
πω2

4ε0

)2

|p1p2|2[ρ11ρ22 + (ρ12)2].

While the first quantity is similar to P for classical emitters,
the second quantity differs as it does not contain terms with
(ρii )2, due to the fact that the sources are single-photon emit-
ters. The second-order coherence for an emission integrated
over directions and polarization is then

G
(2)
quant = 〈P2〉

〈P1〉2
= 2|p1p2|2[ρ11ρ22 + (ρ12)2]

[|p1|2ρ11 + |p2|2ρ22]2
,

which for emitters with similar amplitudes simplifies to

G
(2)
quant = 1

2

[
1 − F2

12

][
1 + C2

12

]
. (B3)

Again, the later expression is quite useful as it readily shows
that the second-order coherence reaches its maximum values
(G(2)

quant � 1) when F12 � 0 and C12 � 1.

APPENDIX C: ENSEMBLE-AVERAGED QUANTITIES

In order to overcome the dependence of the numerical
results on a particular realization of the positions of the
scatterers, we have repeated the process of generating the
maps of the various observables over 240 realizations of the
disordered medium. For an average over X(r1, r2), we first
compute an average over this ensemble for each position to
produce a single averaged map. The points are then grouped
by concentric rings to get a profile 〈X〉(r ) as a function of the
distance r = |r1 − r2| between the two positions. This enables
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FIG. 4. Estimate of the averaged mode connectivity profile
〈C12〉(r ) over 240 realizations of disorder, as a function of the
distance r between the two locations, for several values of the
wavelength λ. The thin solid line at the bottom is |J0(k0r )| for λ =
400 nm, which recreates the connectivity of vacuum, for comparison
of the behavior at small distances.

one to check that evaluations can rely in practice on a single
realization of disorder, and to observe the qualitative evolution
of an observable X(r1, r2) when the system goes from the dif-
fusive to the localized regime beyond the particular realization
of disorder.

1. Mode connectivity

We first consider the mode connectivity C12 which is the
absolute value of the CDOS between two positions normal-
ized by their LDOSs and takes values between zero and 1.
Maps of this quantity for a single realization of disorder are
presented in the main text and show a qualitative change
when going from the diffusive to the localized regime: in the
diffusive regime C12 takes values clearly below one except
close to the origin, while in the localized regime this quantity
saturates for distances larger than the localization length ξ .

The averaged profile 〈C12〉(r ) is presented in Fig. 4.
In the diffusive regime, 〈C12〉(r ) quickly decreases with

some oscillations, a reminder of the vacuum case where
C0(r ) = |J0(k0r )| for 2D TE modes. When the system enters
the localization regime the drop becomes weaker as expected
and high values are obtained up to several micrometers of
distance.

2. Classical coherence

We apply the same treatment to the second-order coherence
G

(2)
class in the case of two classical emitters.
The averaged profile 〈G(2)

class〉(r ) is presented in Fig. 5 and
corroborates the observation made for a single realization of
disorder: due to the large clusters of high values appearing
in the localization regime, the profile increases with the
wavelength. In the diffusive regime the averaged second-order
coherence decreases strongly with small oscillations that are
also present in the case of vacuum due to the varying mode
connectivity.
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FIG. 5. Estimate of the averaged second-order coherence for
classical sources 〈G(2)

class〉(r ) as a function of the distance r between
the two sources, for several values of the wavelength λ. The thin
solid line at the bottom is 1 + |J0(k0r )|2/2 for λ = 400 nm, which
recreates the case of vacuum, for comparison of the behavior at small
distances.

3. Quantum coherence

The same analysis can be conducted for the case of
quantum emitters. The profile of the averaged second-order
coherence 〈G(2)

quant〉(r ) is presented in Fig. 6 as a function of
the distance between the sources.

This time, while for small distances there is no clear
difference in the averaged coherence 〈G(2)

quant〉 between the
diffusive and localized regimes, for large distances one has
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FIG. 6. Estimate of the averaged second-order coherence for
quantum sources 〈G(2)

quant〉(r ) as a function of the distance r between
the two sources, for several values of the wavelength λ. Dashed lines
represent estimates of the averaged value of 〈(1 − F2

12)/2〉 and the
error bars show the standard deviation when using one realization
of disorder only. The thin solid line is [1 + |J0(k0r )|2]/2 for λ =
400 nm, which recreates the case of vacuum.
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C12 → 0 and the second-order coherence heads towards (1 −
F2

12)/2, which decreases from 0.5 for vacuum to lower values
when the system goes from the diffusive to the localized

regime. This asymptotic behavior is confirmed by numerical
estimations of 〈(1 − F2

12)/2〉 presented in dashed horizontal
lines of corresponding wavelengths.
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