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Probing two-dimensional Anderson localization without statistics

O. Leseur,1 R. Pierrat,1 J. J. Sáenz,2,3 and R. Carminati1,*
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We investigate the possibility of using the independence of the transmitted speckle pattern on the illumination
condition as a signature of Anderson localization in a single configuration of a two-dimensional and open
disordered medium. The analysis is based on exact numerical simulations of multiple light scattering. We
introduce a similarity function that we propose as a reliable observable to probe Anderson localization without
requiring any statistical averaging over an ensemble.
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Initially proposed as an explanation for the metal-insulator
transition in disordered solids [1], Anderson localization has
become a concept at the center of wave physics, with impact
far beyond solid-state physics [2,3]. Although the existence of
localization in electronic transport has been clearly established
[4], the search for convincing evidences of Anderson localiza-
tion of other kinds of classical or quantum waves has remained
an active area of research. The observation of localization has
been reported in acoustics [5,6], for electromagnetic waves
[7], matter waves [8], and in optics [9,10]. In optics, the
observation of localization in three dimensions (3D) is still
under debate due to the inherent presence of absorption [11],
of nonlinearities [12], or the influence of polarization degrees
of freedom [13].

Anderson localization cannot be described using classical
transport theory, a wave theory being necessary to han-
dle the interferences between multiply scattered amplitudes
that induce localization. The scaling theory uses β(g) =
∂ log g/∂ log L as a central concept, with g the dimension-
less conductance and L the size of the system [14]. It
predicts different behaviors for different space dimensions
[one-dimensional (1D) and two-dimensional (2D) systems
are always localized while a phase transition is expected in
3D]. The so-called self-consistent theory provides a transport
model for the averaged energy density, taking into account
interferences between coherently multiply scattered waves
[15]. Random matrix theory is another approach that in
quasi-1D geometries (disordered waveguides) also predicts
wave localization, based on computations of the statistical
distribution of the transmission eigenvalues [16–19]. It is
interesting to note that all quantities in these approaches are
averaged over a set of realizations of a stochastic process
that generates different configurations of the disorder medium
(e.g., the spatial distribution of the potential or the position
of the scattering centers). This is probably a consequence of
the original observation of Anderson localization for electronic
conduction, for which the only observable is the (self) averaged
conductance. Since, at least for classical waves, it is possible to
observe the wavefield in a given realization of the disordered
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medium [20–22], one can question whether a signature of
Anderson localization in a single realization of disorder can
be found that does not require any statistical measurement.
The purpose of this paper is to address this issue, based on
simple theoretical arguments and exact numerical simulations
of electromagnetic wave scattering in two dimensions.

In quasi-1D geometries (waveguides), it is known from ran-
dom matrix theory that a discrete set of localized eigenmodes
exists, that are all exponentially decaying in space [16–19]. In
the localized regime (for a system with length L larger than
the localization length ξ ), only one eigenmode contributes to
transmission, meaning that the transmitted speckle pattern re-
produces the spatial dependence of this specific eigenmode. An
important consequence is that the transmitted speckle pattern is
independent on the illumination conditions. This feature of the
localized regime in quasi-1D waveguide geometries has been
observed in microwave experiments [23] and implications have
been discussed in the context of wavefront shaping [24] or
control of transmitted eigenchannels [25]. In this article we
show that the independence of the transmitted speckle pattern
on the illumination conditions in the localized regime holds
for two-dimensional open systems, and we propose to use this
property as a reliable signature of Anderson localization. The
analysis is based on exact numerical simulations of multiple
light scattering. First, we characterize the localized and the
diffusive regimes by analyzing the spectrum of the transmitted
intensity and of the local density of optical states (LDOS)
inside the medium. Second, we introduce a similarity function
that measures the invariance of the transmitted speckle
pattern that we propose as an observable to probe Anderson
localization in a single realization of a disordered medium.

The geometry of interest is depicted in Fig. 1. It consists of
a finite size slab containing N = 17 500 randomly distributed
nonoverlapping scatterers, and illuminated by a Gaussian
beam. The slab thickness is L = 4.19 × 10−5 m, and its
transverse size is D = 1.05 × 10−4 m, which is chosen large
compared to L. We consider TE-polarized waves with electric
field parallel to the invariance axis of the 2D geometry, so that
we can deal with a scalar field. The scatterers are described by
their electric polarizability

α(ω) = − 2�c2

ω2(ω − ω0 + i�/2)
, (1)
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O. LESEUR, R. PIERRAT, J. J. SÁENZ, AND R. CARMINATI PHYSICAL REVIEW A 90, 053827 (2014)

FIG. 1. (Color online) Sketch of the disordered medium. The
incident Gaussian beam is focused on the input interface with an
angle θ . r0 is a point inside the medium where the LDOS ρ(r0,ω) is
computed. rs is a point on the observation plane where the transmitted
intensity I (rs ,ω) is computed. The red solid line is an example of
speckle pattern calculated in the observation plane.

where ω is the frequency and c is the speed of light in vacuum.
This expression of the polarizability is consistent with the
optical theorem (energy conservation) and is typical of a
resonant scatterer with resonance frequency ω0 and linewidth
�. For the simulations we selected ω0 = 3 × 1015 s−1 and
� = 5 × 1016 s−1, so that the resonance has a low quality
factor ensuring smooth variations of the scattering cross
section over a large spectral width. The expression of the
incident Gaussian beam reads

E0(r,ω) = E0√
1 + ia

exp

[
ik0r‖ − r2

⊥
w2(1 + ia)

]
, (2)

with a = 2r⊥/(kw2), r‖ being the component of r along the
direction of propagation and r⊥ the transverse component
of r. The beam waist is w = 2.1 × 10−5 m, which is small
compared to D, and the beam is focused at the center of the
input interface. The direction of incidence is defined by the
angle θ (see Fig. 1). In order to solve numerically the scattering
problem, we use the coupled dipoles method [26]. The exciting
field on scatterer number j is written as

Ej = E0(rj ,ω) + α(ω)k2
0

N∑
k = 1
k �= j

G0(rj − rk,ω)Ek, (3)

with k0 = ω/c = 2π/λ. The 2D scalar Green function G0

connects a source dipole p at a position r′ to the electric field
E(r) radiated at position r and is given by G0(r − r′,ω) =
(i/4) H(1)

0 (k0|r − r′|), where H(1)
0 is the Hankel function of

zero order and first kind. Equation (3) defines a set of N

linear equations that are solved by a standard matrix inversion
procedure. Once the exciting field is known on each scatterers,
the field at any position r inside or outside the scattering

medium can be calculated using

E(r,ω) = E0(r,ω) + α(ω)k2
0

N∑
k=1

G0(r − rk,ω)Ek. (4)

The first step consists of finding two frequency ranges
corresponding to the diffusive and localized regimes, re-
spectively, in a given realization of the disordered medium.
The relevant parameters are the scattering mean free path
�, the optical thickness b = L/�, and the localization length
ξ . For a 2D system, the localization length predicted from
the self-consistent theory is ξ = � exp[π Re(keff)�/2], where
keff is the effective wave number of the medium [21,27].
For a rough estimate we can make the approximation keff ∼
k0 + i/(2�) and use the independent scattering mean free
path � = 1/(ρσ ), where σ = k3

0 |α(ω)|2/4 is the scattering
cross section. The two frequencies ωl

c = 1.50 × 1015 s−1 and
ωd

c = 2.70 × 1015 s−1 can be used to define the center of
two frequency intervals that correspond to the localized and
the diffusive regimes, respectively. The corresponding wave-
lengths are λl

c = 1.26 × 10−6 m and λd
c = 6.98 × 10−7 m (all

geometrical lengths such as system size L and D and incident
beam waist w remain large compared to the wavelength).
The mean free paths are �(ωl

c) = 3.15 × 10−7 m (giving a
scattering strength k0� = 1.57) and �(ωd

c ) = 5.66 × 10−7 m
(giving k0� = 5.10). The optical thicknesses are b(ωl

c) = 133
and b(ωd

c ) = 74, and the localization lengths are ξ (ωl
c)/L ∼

0.09 and ξ (ωd
c )/L = 40. This set of parameters shows that

for both frequencies the system is in the multiple scattering
regime, and that for the incident frequency ωl

c it is expected to
be localized, while for ωd

c it is expected to be diffusive.
This prediction can be checked numerically. To do so

we first compute the spectrum of the transmitted intensity
I (rs ,ω) = |E(rs ,ω)|2 at position rs at a distance d = 2λc

from the output surface of the medium, as shown in Fig. 1,
and for an illumination at normal incidence (θ = 0). This
specific distance has been chosen to ensure far-field detection
(i.e., to avoid near-field effects). The intensity is calculated
in different spectral ranges, corresponding to localization
or diffusive transport, but in the same configuration of the
disordered medium. The spectra I (rs ,ω) are shown in Fig. 2
(blue solid line). In Fig. 2(a), corresponding to ωl

c (localized
regime), the spectrum exhibits strong fluctuations with many
narrow peaks, each of them corresponding to one specific
eigenfrequency. This is the expected behavior in the localized
regime, where the mean spectral mode spacing �ω is much
larger than the mean mode linewidth δω, the dimensionless
Thouless conductance being g = δω/�ω � 1. Conversely,
in Fig. 2(b) corresponding to ωd

c (diffusive regime), the
spectrum is smooth, in agreement with the intuitive picture
of a continuum of eigenmodes with g = δω/�ω 	 1. To go
further into the analysis, we have also computed the LDOS
ρ(r0,ω) at a point r0 placed at the center of the medium. The
LDOS is defined as

ρ(r0,ω) = 2ω

πc2
Im[G(r0,r0,ω)], (5)

where G is the Green function of the scattering medium. The
Green function G(r,r0,ω) is deduced from a calculation of the
electric field E(r,ω) based on Eq. (4), using a point dipole
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FIG. 2. (Color online) Normalized transmitted intensity spec-
trum I (rs ,ω)/I0 for θ = 0 (solid blue line) and normalized LDOS
spectrum ρ(r0,ω)/ρ0(ω) (dashed red line) at a point placed at the
center of the disordered region. (a) Localized regime. The spectrum is
centered at frequency ωl

c for which ξ/L ∼ 0.09. (b) Diffusive regime.
The spectrum is centered at frequency ωd

c for which ξ/L = 40.

source dipole p placed at r0. The LDOS spectrum is also
presented in Fig. 2 (red dashed line). In the localized regime
[Fig. 2(a)], the LDOS spectrum is very similar to the intensity
spectrum. Indeed, the one-to-one correspondence between
spectral peaks confirms that they allow us to identify individual
eigenmodes [28–30]. In the diffusive regime [Fig. 2(b)] the
spectra of the LDOS and of the transmitted intensity are
very different, due to the overlapping of several modes that
contribute to transmission with different weights.

Since the localized and diffusive regimes have been charac-
terized in the single configuration of the disordered medium,
we can now proceed to the analysis of the speckle pattern
produced in transmission in a plane at a distance d from the
output surface. We show in Fig. 3 the spatial distribution of
the intensity I (x,θ,ω) for two values of the incidence angle θ .
In the localized regime [Fig. 3(a)] we display the intensity
profiles for θ = 0◦ and θ = 30◦ at frequency ωl

c that has
been chosen to coincide with a well pronounced peak in the
transmission spectrum in Fig. 2(a). The intensity profiles are
similar in shape (although they have a different amplitude
before normalization). This result shows that, as in the quasi-

FIG. 3. (Color online) Normalized transmitted intensity
I (x,θ,ω)/I0 versus the normalized transverse direction x/λ in the
localized regime [ω = ωl

c, (a)] and in the diffusive regime [ω = ωd
c ,

(b)] at normal incidence (solid blue line) and for an incidence angle
θ = 30◦ (dashed red line).

1D geometry [18], one localized eigenmode dominates in
transmission and imposes the spatial shape of the transmitted
speckle. Therefore, this shape is independent on the incidence
angle that only influences the coupling efficiency to the
dominating eigenmode, changing only a constant prefactor
in the speckle intensity. In the diffusive regime [Fig. 3(b)],
the spatial intensity profiles are very different, with several
nonoverlapping peaks. The transmitted speckle results from a
weighted summation over many modes that becomes strongly
dependent on the incidence angle (and more generally on the
illumination conditions).

As a measure of the similarity between the speckle pattern
obtained for an arbitrary incidence angle θ , and the reference
speckle pattern obtained for θ = 0, we define a similarity
function C(θ,ω) as follows:

C(θ,ω) =

∫
I (x,θ = 0,ω)I (x,θ,ω)dx√∫

I (x,θ = 0,ω)2dx

∫
I (x,θ,ω)2dx

(6)

and we propose this quantity as a new and simple criterion to
discriminate between the diffusive and the localized regimes
in a single realization of a disordered medium. This definition
is chosen so that C(θ,ω) = 1 if the normalized speckles are
identical, and C(θ,ω) < 1 otherwise, as a consequence of
the Cauchy-Schwarz inequality [31]. It is important to note
that the definition of C(θ,ω) does not involve any statistical
averaging (it is not a correlation function as that usually
defined to characterize the statistical properties of speckle
patterns). Moreover, this spatial integration is not expected
to replace a statistical average. In particular, there is no need
for the integration range to cover a wide region that would be
statistically representative. The integration is performed on a
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(deg)

FIG. 4. (Color online) Similarity function C(θ,ω) versus the
incidence angle θ in the localized regime (ω = ωl

c, dashed red line)
and in the diffusive regime (ω = ωd

c , solid blue line).

spatial range that is on the order of the transverse extent of the
modes of the system.

In order to show that the similarity can be used to
discriminate between the localized and the diffusive regime
from the measurement of the transmitted speckle pattern in
a single configuration of disorder, we plot in Fig. 4 the
dependence of C(θ,ω) on the incidence angle θ in the localized
regime (ω = ωl

c, dashed red line) and in the diffusive regime
(ω = ωd

c , solid blue line). In the localized regime the similarity
function remains constant to a value close to unity, while it
decreases very fast to stabilize around 0.6 is the diffusive
regime. Although not shown, we have observed this behavior
numerically in many different realizations of the disordered
medium. The similarity function C(θ,ω) thus appears as a
reliable observable to discriminate between transport regimes
in a single configuration of the disorder, without requiring any
statistical analysis.

The relevance of a criterion based on a single realization
of the disordered medium might be questioned, since in the
usual statistical approach an underlying random process is
assumed to create samples that belong either to the class

of diffusive samples or to the class of localized samples,
the distinction between both classes being made from the
computation of averaged quantities (such as the Thouless
conductance or the localization length). When considering
a single configuration, one could think of it as an element
belonging to both the ensemble created by a random process
of the localized class, and the ensemble created by a random
process of the diffusive class. Therefore, it seems paradoxical
that the similarity function be able to discriminate between a
localized or a diffusive sample without requiring any statistical
averaging over an ensemble. The paradox is solved by realizing
that a sample that would be at the intersection of the classes
of localized and diffusive samples is very unlikely, and would
not be found in practice.

In conclusion, we have investigated the Anderson local-
ization regime in two dimensions in a single configuration of
an open disordered medium. First, we have characterized the
transport regime by computing and comparing the transmitted
intensity and the LDOS spectra. We have observed a strong
connection between both spectra in the localized regime
reflecting the underlying spectral mode structure. Second,
we have shown that a similarity function can be introduced
that measures the change of the transmitted speckle pattern
when the direction of incidence of the illuminating beam is
changed. In the localization regime the similarity function
remains close to one, while it decreases very fast with the
incidence angle in the diffusive regime. This works opens new
possibilities to probe two-dimensional Anderson localization
without requiring any statistical averaging over an ensemble.
An analysis of these results in terms of quasieigenmode
expansions valid in open systems is beyond the scope of this
study and left for future work.
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Mello, and J. J. Sáenz, Phys. Rev. Lett. 89, 246403 (2002).
[20] P. Sebbah, B. Hu, J. M. Klosner, and A. Z. Genack, Phys. Rev.

Lett. 96, 183902 (2006).
[21] D. Laurent, O. Legrand, P. Sebbah, C. Vanneste, and F.

Mortessagne, Phys. Rev. Lett. 99, 253902 (2007).
[22] F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. D. Rossi,

S. Combrie, and D. S. Wiersma, Opt. Lett. 36, 127 (2011).
[23] Z. Shi and A. Z. Genack, Phys. Rev. Lett. 108, 043901 (2012).
[24] M. Davy, Z. Shi, J. Wang, and A. Z. Genack, Opt. Express 21,

10367 (2013).

[25] A. Peña, A. Girschik, F. Libisch, S. Rotter, and A. A. Chabanov,
Nat. Commun. 5, 3488 (2014).

[26] M. Lax, Phys. Rev. 85, 621 (1952).
[27] B. C. Gupta and Z. Ye, Phys. Rev. E 67, 036606 (2003).
[28] L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka,

and P. Lodahl, Science 327, 1352 (2010).
[29] J. Wang and A. Z. Genack, Nature (London) 471, 345 (2011).
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