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I. RANDOM BARRIERS MODEL

In this section we describe a model for a time-
disordered homogeneous medium that could be used as
an alternative to the d-kicks model presented in the main
text. Q2(t) is considered to be a chain of rectangular bar-
riers, as represented in Fig. 1. Each barrier is denoted as
a kick, with the times t’j and ¢; defining the onset and
end of kick number j. The times t; and t;, as well as the

kick strengths (barrier heights) Qj2 are random variables.
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Figure 1. Random chain of rectangular barriers, each of them
referred to as a “kick”. The barrier heights Q? and the times
t; and ¢; are random variables. After each kick the medium
recovers the background value Q2.

The transfer matrix M; of a single block j takes the
form

aj by

M= [if o] W

with

aj =TT} exp[—i(0; + ¢;)] + R; R} exp[—i(0; — ¢;)|2)
bj = TR} expli(0; — ¢;)] + RyTj expli(0; + &;)] . (3)

Here, Tj = (Qb—FQ])/(ZQb), T]/ = (Qb—FQj)/(QQj), Rj =
(Q — $25)/(2%) and R, = (5 — Qp)/(2Q;) are time-
domain transmission and reflection coefficients, that can
be deduced from the continuity of the field and its time
derivative at the times ¢ = ¢/ and ¢t = t;. The phases
¢; = Q(t; — 1) and 0; = Qp(t} —t;_1) correspond to

* remi.carminati@espci.psl.eu

free propagation during the kick, and free propagation
between two succesive kicks, respectively.

We note that the transfer matrix takes the same form
as Eq. (6) in the main text, but with different matrix
elements. It can be verified that the matrix elements
also satisfy Eqs. (8) and (9) of the main text, which are
very general and independent of the model of disorder
(see Ref. [1] for a general derivation of these properties).

II. TRANSFER MATRIX FOR §-KICKS

In this section we deduce the expression of the trans-
fer matrix for the §-kicks model described in Fig. 1 of
the main text, starting from the random barriers model
decribed in the previous section. For kick number j we
take a barrier with duration dt and amplitude such that

ty—ty=6t, QF —Qf =v;/6t. (4)

Taking the limit 6t — 0 leads to Q*(t) = Q} + . v;0(t —
tj) which corresponds to the d-kicks model with v; the
amplitude of kick number j. Taking the same limit for

the coefficients of the transfer matrix M, in Egs. (2) and
(3) leads to

aj = [L —iv;/(26%)] exp(—ib;), ()
bj = —iv;/(20) exp(i6;). (6)

These expressions correspond to Eq. (7) of the main text.

III. DERIVATION OF THE MOMENT
RELATION LEADING TO EQ. (20)

In this section we derive the moment relation (2}') =

(n!)(z;)™ that is used as a step in the derivation of
Eq. (20) in the main text. We start by raising Eq. (19)
of the main text to the power n. Keeping terms of order

v/B; and f;, we obtain

27 =27+ nﬁjz;‘:f + an;’:f\/ Bjzj—1cos(0©;)

+2n(n — 1)277! B cos(€,)* + O(8]"%). (7)
We perform an average over O, assuming that it is fully
randomized after a sufficiently large number of kicks (this
hypothesis is discussed in the main text) and indepen-
dent of 3;, and a subsequent average over an arbitrary



distribution for §;. This leads to the following recursion
relation for the moments of z

(27) = (2j1) + n*(B)(2] ), (8)
with the first moment given by (z;) = j(8). We now
assume that the moment of order n is

(277) = nl(z;)" = nlg"(B)". 9)

Inserting the above relation in Eq. (8), it is easy to see
that it is satisfied up to terms of order 1/52. This con-
cludes the derivation of the relation (27) = n!(z;)", valid
for large enough j.

IV. DERIVATION OF MELNIKOV’S EQUATION

In this section we derive Eq. (21) of the main text. The
derivation can be found in Ref. [1], and we summarize
the main steps here. We starts with the basic recursion
relation for the variable z [Eq. (12) in the main text],
that can be rewritten as

zj = 2zj—1+ Bi(1+22j1)
+2\/ﬁj(1+ﬁj)2’j_1(1+2j_1)COS@j. (10)

Considering as above that ©; is fully randomized, the
above relation can be transformed into a recursion rela-
tion for the probability density P;(z), which takes the

form

pe = [ s [

x Pj_q (z + B(1+22) — 2/B(1 + B)2(1 + 2) cos 9) ,
(11)

where f(B) is the probability density asociated to the
random variable 8. For weak disorder such that g < 1,
we can perform a second order Taylor expansion for P;_,
which leads to

OP;_1(2) | € 0°Pj_1(2)
0z 2 022
+0(eY), (12)

Pi1(z+€)=Pja1(z) +e

where € = B(1+22) —21/B(1 + B)z(1 + z) cos ©. Substi-
tuting in Eq. (11), we obtain

P) = Pra() + (8)(1 + 292010

9Py (2)

()20 + )

+0(B%. (13)

This can be factorized in the form

9
0z

OP;_,

(= + 253

Pi(z) = Pj—1(2) + (B) (14)

where terms beyond first order have been neglected. This
is Eq. (21) in the main text, which in the continuous limit
leads to Melnikov’s equation (22).
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