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Abstract

Nanostructured materials offer the possibility to tailor light–matter interaction at scales below the wavelength. Metallic nanostructures benefit
from the excitation of surface plasmons that permit light concentration at ultrasmall length scales and ultrafast time scales. The local density of
states (LDOS) is a central concept that drives basic processes of light–matter interaction such as spontaneous emission, thermal emission and
absorption. We introduce theoretically the concept of LDOS, emphasizing the specificities of plasmonics. We connect the LDOS to real
observables in nanophotonics, and show how the concept can be generalized to account for spatial coherence. We describe recent methods
developed to probe or map the LDOS in complex nanostructures ranging from nanoantennas to disordered metal surfaces, based on dynamic
fluorescence measurements or on the detection of thermal radiation.
& 2014 Elsevier B.V. All rights reserved.

Keywords: Local density of states; Plasmonics; Spontaneous emission; Thermal radiation; Spatial coherence; Cross density of states
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Electromagnetic local density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1. Non-absorbing closed cavity: a canonical example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2. LDOS and Green's function: general definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Dipole radiation, spontaneous decay rate and LDOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1. Power radiated by a classical oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2. Spontaneous decay rate of a quantum emitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3. Purcell factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4. Strong coupling regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5. Radiative and non-radiative decay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6. Dipole–dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7. Semi-infinite geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.8. Extreme near field and non-local effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Probing and mapping the LDOS in plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1. Far-field detection techniques (fluorescence microscopy). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2. Scanning fluorescent-probe techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3. Probing the photonic LDOS with electron microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4. Towards a full characterization of a plasmonic nanostructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
10.1016/j.surfrep.2014.11.001
14 Elsevier B.V. All rights reserved.

g author.
ss: remi.carminati@espci.fr (R. Carminati).

www.sciencedirect.com/science/journal/01675729
http://dx.doi.org/10.1016/j.surfrep.2014.11.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.surfrep.2014.11.001&domain=pdf
www.elsevier.com/locate/surfrep
http://dx.doi.org/10.1016/j.surfrep.2014.11.001
http://dx.doi.org/10.1016/j.surfrep.2014.11.001
http://dx.doi.org/10.1016/j.surfrep.2014.11.001
mailto:remi.carminati@espci.fr


R. Carminati et al. / Surface Science Reports 70 (2015) 1–412
5. Equilibrium radiation. Electric and magnetic LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1. Blackbody spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2. Electric and magnetic LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3. Electric and magnetic LDOS in semi-infinite geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4. Measurement of electric and magnetic LDOS in the near field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6. Thermal radiation scanning tunneling microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.1. Probing the LDOS through the near-field thermal emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2. Blackbody spectrum in the near field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7. Spatial coherence and cross density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1. Field–field correlation and Green's function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2. Cross density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.1. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.2. Non-absorbing closed cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.3. Phenomenological theory for weak losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2.4. Spatial coherence and polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8. LDOS and CDOS on disordered plasmonic films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1. Probing localized plasmons on disordered metallic films. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2. Modelling plasmon excitations on disordered metallic films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2.1. Simulation of the film growth process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2.2. Numerical solution of Maxwell's equations in the near field of disordered metallic films . . . . . . . . . . . . . . . . . . . . 30
8.3. LDOS calculations on disordered plasmonic films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8.3.1. Radiative and non-radiative LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3.2. Distance dependence of the LDOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4. CDOS and spatial coherence on disordered plasmonic films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.1. Green function expansion in eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2. Lippmann–Schwinger equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.3. Green's tensor in the moments method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1. Introduction

Plasmonics couples surface plasmon excitations [1,2] with
nanostructures in view of enhancing and controlling light
emission and absorption at small length and time scales. This
field of research has become an important branch of nano-
optics [3,4], and several reviews have been published, describ-
ing developments towards applications in integrated subwave-
length photonics [5–7], light concentration and manipulation at
the nanoscale [8–10] including the design of optical antennas
[11], active [12] and quantum plasmonics [13]. Our goal here
is not to present another review of the field of plasmonics, but
rather to revisit fundamental aspects based on the unifying
concept of density of states. Measuring and engineering
the electromagnetic local density of states (LDOS) in plasmo-
nic structures is a major issue, since the LDOS drives basic
processes of light–matter interaction such as spontaneous
emission (fluorescence), thermal emission and absorption.
New possibilities are emerging for the design of efficient
sources and absorbers of visible and infrared radiation, for
optical storage and information processing with ultrahigh
spatial density, or for the development of nanoscale markers
for biomedical imaging and therapy. In the last decade,
methods have emerged that enable us to map the LDOS on
nanostructured surfaces, or to engineer the LDOS in order to
control light emission by single quantum sources. On the
theoretical side, the concept of LDOS itself has been clarified
to better account for specific features of the optics of metal
surfaces, for example regarding the electric and magnetic
contributions, or the splitting into radiative and non-radiative
components. The purpose of this review article is to give a
self-contained presentation of the concept of LDOS and of the
connection between the LDOS and real observables in optics,
and a state-of-the-art description of the methods permitting to
probe or map the LDOS in real structures (from nanoantennas
to complex disordered surfaces). The extension of the concept
of density of states to include a description of spatial
coherence, through the introduction of a cross density of states
(CDOS), is also introduced. The concepts of LDOS and CDOS
allow us to connect different aspects of plasmonics in complex
structured geometries. They also help establishing connections
with other fields of wave physics, in which wave–matter
interaction is controlled by similar quantities.

2. Electromagnetic local density of states

2.1. Non-absorbing closed cavity: a canonical example

The concepts of density of states (DOS) and local density of
states (LDOS) can be introduced starting from the textbook
situation of a non-absorbing and non-dispersive medium
embedded in a closed cavity with volume V ¼ L3 (it is usually
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assumed that L5λ, λ being the wavelength in vacuum).
In such a situation, a discrete set of eigenmodes of the
vector Helmholtz equation can be introduced [14]. The
mathematical procedure is detailed in Appendix A.1, and here
we summarized the useful results. The eigenvectors enðrÞ and
eigenfrequencies ωn are solutions of the vector Helmholtz
equation

∇� ∇� en rð Þ�ϵ rð Þω
2
n

c2
en rð Þ ¼ 0 ð1Þ

where ϵðrÞ is the dielectric function of the medium and c the
speed of light in vacuum. The eigenmodes also obey the
orthogonality conditionZ
V
ϵðrÞemðrÞ � ennðrÞ d3r ¼ δmn ð2Þ

where the superscript n stands for complex conjugate.
The DOS ρðωÞ at a frequency ω counts the number of

eigenmodes in an infinitely small frequency range, and is
defined as

ρ ωð Þ ¼ 1
V

X
n

δ ω�ωnð Þ: ð3Þ

This DOS is a global quantity that characterizes the spectral
density of eigenmodes of the medium as a whole. A local
quantity ρeðr;ωÞ (LDOS) can be introduced, through a summa-
tion weighted by the amplitude of the eigenmodes at point r:

ρeðr;ωÞ ¼
X
n

jenðrÞj2δðω�ωnÞ: ð4Þ

This relation defines the LDOS in the particular case of a
medium for which a discrete set of eigenmodes can be
introduced. The subscript e is used since this definition of the
LDOS is based on the eigenmodes of the Helmholtz equation
written in terms of the electric field. A LDOS defined in terms
of the magnetic field will be introduced later.

Another expression of the (electric) LDOS can be estab-
lished, using the electric Green function GEðr; r0

;ωÞ of the
vector Helmholtz equation. The electric Green function is
defined as the solution of

∇� ∇�GE r; r
0
;ω

� ��ϵ rð Þω
2

c2
GE r; r

0
;ω

� �¼ δ r�r
0� �
I ð5Þ

where I is the unit tensor, together with appropriate boundary
conditions on the surface of the closed cavity (the boundary
conditions are the same as that satisfied by the electric field).
The Green function defined this way has a simple physical
interpretation: For a monochromatic point electric-dipole
source p located at a position r

0
, the electric field radiated at

a point r is EðrÞ ¼ μ0ω
2GEðr; r0

;ωÞp. A magnetic Green
function will be introduced later, connecting a magnetic dipole
source to the radiated magnetic field.

In terms of the eigenmodes introduced above, the
Green function can be written as (the derivation is given
in Appendix A.1)

GE r; r
0
;ω

� �¼X
n

c2enn r
0� � � en rð Þ

� PV
1

ω2
n�ω2

� �
þ iπ

2ωn
δ ω�ωnð Þ

� �
ð6Þ

where PV stands for principal value. This expression is often
cast in the simplified form

GE r; r
0
;ω

� �¼X
n

c2
ennðr

0 Þ � enðrÞ
ω2
n�ω2

ð7Þ

in which the splitting into a principal value and a singular part
is implicit. From Eqs. (4) and (6), one can rewrite the LDOS in
the form

ρe r;ωð Þ ¼ 2ω
πc2

Im Tr GE r; r;ωð Þ� 	 ð8Þ

where Tr denotes the trace of a tensor.

2.2. LDOS and Green's function: general definition

The simplicity of the expression of the LDOS in terms of the
imaginary part of the Green function is striking. In particular, it
shows that the correct counting of eigenmodes is implicit in the
Green function, although the latter can be computed by solving
the Helmholtz equation without referring to any set of
eigenmodes. In the most general case of an open absorbing
medium, described by a complex frequency-dependent dielec-
tric function ϵðr;ωÞ, the Green function can be defined as the
solution of

∇� ∇�GE r; r
0
;ω

� ��ϵ r;ωð Þω
2

c2
GE r; r

0
;ω

� � ¼ δ r�r
0� �
I

ð9Þ
satisfying an outgoing wave condition (Sommerfeld's radiation
condition) when k0jr�r

0 j-1, with k0 ¼ ω=c ¼ 2π=λ (this
Green function is sometimes denoted by retarded Green
function). In an open geometry and/or in the presence of lossy
materials, a basis of eigenmodes cannot be defined based on the
canonical approach for Hermitian operators. Although the
eigenmodes picture can be recovered using appropriate proce-
dures even for open and lossy systems [15,16], the Green
function approach has the advantage to be unambiguously
defined. Therefore we use Eq. (8) as a definition of the LDOS
in an arbitrary environment. This definition does not assume
any particular set of eigenmodes. Let us also note that we
restrict in this review the discussion of the LDOS calculated, or
measured, at a point r lying in vacuum, although this point
might be at close proximity from a material surface, including
the surface of an absorbing metal. In these conditions, the
imaginary part of the Green function at r¼ r

0
is non-singular

and the LDOS in Eq. (8) is a well-defined quantity [17].

3. Dipole radiation, spontaneous decay rate and LDOS

The relevance of the LDOS introduced in the previous
section in terms of Green's functions becomes apparent in the



R. Carminati et al. / Surface Science Reports 70 (2015) 1–414
study of classical radiation and quantum spontaneous emission
by an electric dipole.
3.1. Power radiated by a classical oscillator

Radiation by a point electric dipole source is a standard
problem in classical electrodynamics [18]. In the monochro-
matic regime, the time-averaged power transferred from a
source described by a current density jðrÞ to the electromag-
netic field is

P¼ � 1
2
Re
Z

jn rð Þ � E rð Þ d3r: ð10Þ

For a point electric-dipole source located at a position rs, the
current density is jðrÞ ¼ � iωpδðr�rsÞ, so that

P¼ ω

2
Im pn � E rsð Þ� 	 ð11Þ

where EðrsÞ is the field at the position of the dipole. Using the
Green function GEðr; rs;ωÞ the emitted power can be rewritten
in the form

P¼ μ0ω
3

2
jpj2 Im u �GE rs; rs;ωð Þu� 	 ð12Þ

with u being the unit vector along the direction of the dipole.
In this expression we assume that the source point rs is located
in vacuum, but the Green function GEðr; rs;ωÞ can describe an
arbitrary environment surrounding the emitter. In particular,
the power P calculated in this way accounts both for far-field
radiation and absorption in the environment.

In the case of a dipole with a fixed orientation u, we can
define a projected LDOS (sometimes denoted by partial
LDOS) [3]:

ρe;u rs;ωð Þ ¼ 2ω
πc2

Im u �GE rs; rs;ωð Þu� 	
: ð13Þ

In terms of the projected LDOS, the emitted power can be
rewritten in the form

P¼ πω2

4ϵ0
jpj2ρe;u rs;ωð Þ: ð14Þ

The projected LDOS accounts for radiation by an electric
dipole with a given orientation. The full LDOS

ρe rs;ωð Þ ¼
X

u ¼ ux ;uy;uz

ρe;u rs;ωð Þ ¼ 2ω
πc2

Im Tr GE rs; rs;ωð Þ� 	
ð15Þ

describes the emitted power summed up over the three
directions ux; uy; uz of the dipole.

In the particular case of a dipole placed in free space, the
power transferred to the environment equals the power radiated
to far-field radiation. It can be obtained from the free-space
dyadic Green function G0ðr; rs;ωÞ, whose imaginary part at
r¼ rs is simply [19,20]

Im G0 rs; rs;ωð Þ½ � ¼ k0
6π

I: ð16Þ
The projected and full LDOS in vacuum are readily deduced:

ρu;0 rs;ωð Þ ¼ ω2

3π2c3
; ρ0 rs;ωð Þ ¼ ω2

π2c3
: ð17Þ

From Eqs. (14) and (17), we recover the well-known
expression of the power emitted by an electric dipole in free
space [18]:

P0 ¼
ω4

12πϵ0c3
jpj2: ð18Þ

Finally let us point out that starting from the radiation by a
magnetic point dipole, a magnetic contribution to the LDOS
can be introduced following the same lines, with a Green
function describing the magnetic field radiated by a magnetic
dipole [21]. The existence of electric and magnetic contribu-
tions to the LDOS is discussed in Section 5.2.
3.2. Spontaneous decay rate of a quantum emitter

In the weak-coupling regime, the population of the excited
state of a quantum emitter decays exponentially in time, with a
characteristic time (fluorescence lifetime) τ¼ Γ�1, where Γ is
the spontaneous decay rate. The latter can be calculated from
first-order perturbation theory [22,23]. Here we give a heuristic
derivation of the expression of the spontaneous decay rate,
based on correspondence arguments [24].
We consider a two-level system with excited state je〉 and

ground state jg〉, Bohr frequency ωeg, and transition dipole
peg ¼ 〈gjDje〉, D being the electric dipole operator. Starting
from the time-averaged power emitted by a classical dipole
equation (12), with ω replaced by the Bohr frequency ωeg, we
can obtain the decay rate (averaged number of quantum
transitions per unit time) by dividing the power by the
quantum energy ℏωeg, and replacing the classical dipole
moment p by the transition dipole peg. The substitution of p
by peg includes a factor of two since only positive frequencies
have to be handled in the emission problem (in quantum
mechanics positive and negative are treated specifically), while
the classical treatment involves both positive and negative
frequencies. This simple procedure leads to

Γ ¼ 2μ0ω
2
eg

ℏ
jpegj2 Im u �GE rs; rs;ωeg

� �
u

� 	 ð19Þ

where rs is the position of the emitter.
It is striking to note that this result coincides exactly with that

obtained from the quantum electrodynamics calculation based
on perturbation theory [3,22,23]. In terms of the projected
LDOS ρe;u, it can also be rewritten as

Γ ¼ πωeg

ℏϵ0
jpegj2ρe;u r;ωeg

� � ð20Þ

which takes the form of Fermi's golden rule. In the particular
case of free space, the projected LDOS is given in Eq. (17) and
the spontaneous decay rate reads

Γ0 ¼
ω3
eg

3πℏϵ0c3
jpegj2 ð21Þ
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which is the known result for the spontaneous decay rate of a
two-level system in vacuum.
3.3. Purcell factor

The change in the spontaneous decay rate Γ=Γ0 due to a
structured environment was computed by Purcell long ago in
the case of a single mode cavity [25]. We show that the
formalism introduced above includes Purcell's expression of
Γ=Γ0 as a particular case.

To proceed, we start from the expression of the Green
function equation (7) for a perfect lossless cavity. In the
presence of dissipation, mode attenuation can be accounted
for using a phenomenological approach [26]. One introduces a
mode damping rate γn and modifies Eq. (7) in the following
way:

GE r; r
0
;ω

� �¼X
n

c2
ennðr

0 ÞenðrÞ
ω2
n�ω2� iωγn

: ð22Þ

Following the initial formulation by Purcell, we assume that the
emitter is resonant with one of the eigenmodes (ωeg ¼ωn), so
that the Green function is dominated by the contribution of this
specific eigenmode. From Eqs. (19) and (22) we obtain

Γ ¼ 2
ϵ0ℏ

jpegj2Qjen rsð Þ � uj2 ð23Þ

the factor Q ¼ ωeg=γn being the quality factor associated to
mode n. One can also define the mode volume seen by the
emitter at point rs by the relation

1
V
¼ jen rsð Þ � uj2 ð24Þ

recalling that jenðrsÞj2 has the unit of a volume due to the
orthogonality condition equation (2). Using the expression (21)
for the spontaneous decay rate in vacuum, the normalized
decay rate can finally be written as

Γ

Γ0
¼ 3

4π2
λ3eg

Q

V
ð25Þ

where λeg ¼ 2πc=ωeg. This is the result given by Purcell [25],
and the right-hand side is usually referred to as the Purcell
factor. Note that in the original formulation by Purcell,
the emitter is supposed to stand at the point rmax coinciding
with the maximum of amplitude of the mode, so that V �1 ¼
jenðrmax;ωegÞ � uj2 (this maximizes the Purcell factor).

Although the definition of the mode volume is clear in the
case of a system for which a discrete basis of eigenmodes can
be defined, its expression in the general case of an open and
absorbing medium has been the subject of recent discussions in
plasmonics [15,27,28]. It is useful to note that the splitting of
Γ=Γ0 into a contribution from a quality factor Q and a mode
volume V is somewhat arbitrary, since there is no reason for
these two parameters to be independent (even for the simplest
example of a Fabry–Pérot cavity). Actually, the relevant
parameter for the change in the decay rate is the LDOS
(including radiative and non-radiative contributions), that in
the particular case of a single mode cavity is proportional to the
ratio Q=V .
A general expression of the normalized decay rate Γ=Γ0 can

be obtained from Eqs. (19) and (21), and reads as

Γ

Γ0
¼ 6πc

ωeg
Im u �GE rs; rs;ωeg

� �
u

� 	
: ð26Þ

The right-hand side can be understood as a generalized Purcell
factor. This expression applies for any system, including open
absorbing media that are usually encountered in plasmonics.
It leads to the historical Purcell factor in the particular case of a
single mode cavity. It is also interesting to note that from
the power emitted by a classical dipole, the same result is
obtained. Using Eqs. (12) and (18), the normalized emitted
power P=P0 is readily obtained:

P

P0
¼ 6πc

ω
Im u �GE rs; rs;ωð Þu� 	

: ð27Þ

The generalized Purcell factor also shows up in the expression
of the normalized power emitted by a classical dipole antenna.
In the usual antenna formalism, this factor can be understood as
a change in the impedance of the medium. This connects the
change in the spontaneous decay rate of a quantum emitter to
the change in the impedance seen by a classical dipole antenna,
as pointed out in Ref. [29].
3.4. Strong coupling regime

Beyond the weak-coupling regime that is at the center of this
review, the strong coupling regime also attracts attention in
nanophotonics and plasmonics. Strong coupling between a
quantum emitter and the electromagnetic field is characterized
by Rabi oscillations of the excited-state population, or a
splitting in the frequency spectrum of the emitted light.
Reaching this regime with solid-state cavities is a crucial issue
for, e.g. quantum information processing. Nanophotonics
provides new ways of reaching the strong coupling regime,
by using integrated photonic cavities (microcavities or photonic
crystal cavities) [30–32], or surface-plasmon modes on metallic
nanoparticles or substrates [33–37]. Surface plasmons are
appealing since they provide subwavelength light confinement
without a physical cavity, a price to pay being the large
absorption losses that reduce the Q factor. Another approach is
to use light confinement in disordered media induced by the
process of Anderson localization, which is established for light
at least in 1D and 2D geometries [38–40]. It is interesting to
note that a criterion for strong coupling amounts to comparing
the coupling strength to the losses of the cavity (either the real
physical cavity or the virtual cavity created by the confined
plasmon or the Anderson localized mode). This criterion
involves the Purcell factor, and creating large Purcell factors
is a key issue in view of reaching the strong coupling regime
[34,40]. Therefore, although the Purcell factor is a weak-
coupling concept, engineering the LDOS to increase its value is
of interest beyond weak-coupling experiments.
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3.5. Radiative and non-radiative decay

The decay rate Γ integrates all possible decay channels
available for spontaneous emission. Radiative channels corre-
spond to far-field emission of a real photon, while non-
radiative channels correspond to absorption (dissipation in
the material degrees of freedom). A measurement of the
lifetime τ of the excited state of a fluorescent emitter provides
a direct measurement of Γ ¼ τ�1. Conversely, the fluores-
cence intensity (photocounts) is controlled by several para-
meters that depend on the environment, such as the excitation
rate and the apparent quantum yield η, that gives the
probability of radiative decay. The apparent quantum yield
(i.e. accounting for both internal non-radiative channels and
non-radiative processes induced by the environment) is defined
as

η ¼ ΓR

ΓRþΓNR
int þΓNR ð28Þ

where ΓR is the radiative decay rate, ΓNR
int is the intrinsic non-

radiative rate, and ΓNR is the non-radiative rate induced by the
environment (e.g. absorption by a metallic structure). In the
case of an emitter with an intrinsic quantum yield close to
unity, the intrinsic non-radiative rate ΓNR

int can be neglected.
The radiative and non-radiative decay rates ΓR and ΓNR can

be defined using the connection with classical theory. For a
classical dipole, one can split the total emitted power P into a
radiative and a non-radiative contribution. The radiative
contribution PR corresponds to the power radiated to the far
field, and reads as

PR ¼
Z
S

ϵ0c

2
jE rð Þj2 d2r ð29Þ

where S is the surface of a sphere with radius R-1 enclosing
the medium. The non-radiative contribution PNR corresponds
to absorption in the environment, and reads

PNR ¼
Z

ωϵ0
2

Im ϵðr;ωÞ½ �jE rð Þj2 d3r ð30Þ

where the integral runs over the entire space. Since from
Eqs. (26) and (27) we have

P

P0
¼ Γ

Γ0
ð31Þ

provided that the classical frequency ω coincides with the Bohr
frequency ωeg, we can define the radiative and non-radiative
Fig. 1. Schematic diagram showing the two contributions involved in the
calculation of the Green function GEðr; r0 ;ωÞ in the presence of a nanoparticle
centered at point rp.
decay rates by their connection with classical quantities:

ΓR

Γ0
¼ PR

P0
and

ΓNR

Γ0
¼ PNR

P0
: ð32Þ

The relative weight of radiative and non-radiative contributions
in the decay rate is a key issue in plasmonics [41].
Since the decay rate is proportional to the LDOS, it is

possible to define a radiative and a non-radiative contributions
to the LDOS:

ρeðr;ωÞ ¼ ρRe ðr;ωÞþρNRe ðr;ωÞ: ð33Þ
A similar splitting can also be used for the projected LDOS
ρe;uðr;ωÞ.
3.6. Dipole–dipole interaction

One of the simplest models in which changes in spontaneous
decay rates induced by the environment can be calculated
analytically is that of a single dipole emitter interacting with a
single nanoparticle, treated itself in the electric-dipole approx-
imation. Provided that the distance between the emitter and
the nanoparticle remains larger than approximately two times its
radius a, this model gives accurate predictions [42]. It is
also useful in providing physical insight and general trends. At
short distances from particles or surfaces, more refined models
are necessary that take into account multipole interactions and/
or microscopic material responses including non-local effects
[42–45].
The computation of the decay rate, or equivalently of the

LDOS, requires the computation of the (electric) Green function
GEðr; r0

;ωÞ in the presence of the nanoparticle. Following a
previous work [20], we describe the nanoparticle response by its
electric polarizability including radiative reaction, that takes the
form

α ωð Þ ¼ α0ðωÞ

1� i
k30
6π

α0 ωð Þ
ð34Þ

where α0ðωÞ is the quasi-static polarizability, that for a spherical
particle with radius a is given by

α0 ωð Þ ¼ 4πa3
ϵðωÞ�1
ϵðωÞþ2

ð35Þ

with ϵðωÞ being the dielectric function describing the material
composing the nanoparticle. This form of the dynamic polariz-
ability αðωÞ is consistent with energy conservation (optical
theorem) [46]. For Re½ϵðωÞ�C�2, the quasi-static polarizability
exhibits a resonance, that for a metal is the plasmon resonance
associated to oscillations of the confined free electron gas. The
radiative correction in the dynamic polarizability slightly changes
both the frequency and the linewidth of the resonance [47].
The Green function accounts for the two contributions

represented diagramatically in Fig. 1. It reads as

GE r; r
0
;ω

� �¼G0 r; r
0
;ω

� �þG0 r; rp;ω
� �

α ωð Þk20 G0 rp; r
0
;ω

� �
ð36Þ
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where G0 is the free-space Green function and rp is the position
of the center of the nanoparticle. The free-space Green function
G0 is given by [19]

G0 r; r
0
;ω

� �¼ PV Iþ 1

k20
∇ � ∇

" #
expðik0RÞ

4πR
� I

3k20
δ Rð Þ ð37Þ

where I is the unit dyadic and R¼ jr�r
0 j.

From Eqs. (13), (36) and (37), the projected LDOS and the
full LDOS can be calculated in the vicinity of the nanoparticle.
Moreover, since the Green function is known for arbitrary
points r and r

0
, the electric field EðrÞ can be calculated

everywhere and the radiative and non-radiative contributions
can be calculated separately using Eqs. (29)–(33). In the
dipole–dipole coupling model, the calculation leads to analy-
tical results [20]. A typical behavior is shown in Fig. 2. The
distance dependence of the projected LDOS, and of its
radiative and non-radiative components, is plotted in the
vicinity of a silver nanoparticle (diameter 10 nm) for a
wavelength off-resonance (a) and for a wavelength coinciding
with the plasmon resonance (b). In Fig. 2(a), the projected
LDOS ρe;u increases at short distance from the nanoparticle.
From the distance dependence of the radiative (ρRe;u) and non-
radiative (ρNRe;u ) LDOS, it is also clear that the increase at short
Fig. 2. Normalized LDOS ρe;u=ρ0, radiative LDOS ρRe;u=ρ0 and non-radiative
LDOS ρNRe;u =ρ0 versus the distance z to a silver nanoparticle with diameter
d¼10 nm. All LDOS are projected LDOS along the direction u¼ ez pointing
towards the nanoparticle. (a) Wavelength λ¼ 612 nm (off resonance).
Dielectric function of silver ϵð612 nmÞ ¼ �15:04þ1:02i. (b) Wavelength
λ¼ 354 nm (plasmon resonance). Dielectric function of silver ϵð354 nmÞ ¼
�2:03þ0:6i. Adapted from Ref. [20].
distance is dominated by non-radiative coupling. The trends
remain identical in Fig. 2(b) where the plasmon resonance of
the nanoparticle is excited, with enhanced modifications of the
LDOS [note the change in scales on both axes compared to
Fig. 2(a)].
The analytical calculation also permits to evaluate the short-

distance dependence of ρRe;u and ρNRe;u in the limit k0z51, where z
is the distance to the center of the nanoparticle. One obtains a
scaling ρNRe;u � z�6, which is typical of non-radiative energy
transfer in dipole–dipole interactions. The scaling of the radiative
LDOS ρRe;u is more subtle since it involves terms with different
power laws from z�6 to z�3, with relative weights that depend on
the proximity to the plasmon resonance [20]. Off resonance, the
radiative LDOS scales as z�3, while on resonance the scaling is
dominated by the z�6 term. This behavior is the result of a
balance between absorption in the particle and interferences
between the two radiative paths shown in Fig. 1.
3.7. Semi-infinite geometry

Another useful geometry in which analytical expressions of
the LDOS can be found is a flat interface separating a vacuum
from a homogeneous material. Taking the Oz-axis normal to
the interface, vacuum is assumed to correspond to the half-
space z40, and the material fills the semi-infinite medium
zo0. The material is described by its frequency dependent
dielectric function ϵðωÞ.
Calculating the LDOS amounts to calculating the imaginary

part of the Green function. Taking the observation point in
vacuum, the Green function GEðr; r0

;ωÞ contains a direct
contribution (free-space propagation from r

0
to r) and a

contribution due to reflection at the interface. An analytical
expression can be given in Fourier space (plane wave expan-
sion). It involves the Fresnel reflection factors for s and p
polarized wave (see e.g. Ref. [48] for the derivation). From the
expression of the Green function, the electric LDOS is deduced
using Eq. (8). One obtains

ρe z;ωð Þ ¼ ρ0 ωð Þ �
Z k0

0

KdK
2k0jq1j

1�jrsj2
� �þ 1�jrpj2

� �� 	


þ
Z 1

k0

K dK
k0jq1j

� Im rsð Þþ 2
K2

k20
�1

 !
Im rp
� �" #

�exp �2Im q1
� �

z
� 	�

: ð38Þ
In this expression, rs(K) and rp(K) are the Fresnel reflection
coefficients for s and p polarization, respectively, k0 ¼ ω=c and
K ¼ jKj is the modulus of the component K of the wavevector
parallel to the interface. q1;2ðKÞ are the components of the
wavevector perpendicular to the interface on the vacuum side,
and on the metal side, respectively. They satisfy K2þq21 ¼ k20
and K2þq22 ¼ ϵðωÞk20, together with the determination
Reðq1;2Þ40 and Imðq1;2Þ40. The Fresnel reflection factors
are given by

rs Kð Þ ¼ q1ðKÞ�q2ðKÞ
q1ðKÞþq2ðKÞ

ð39Þ



Fig. 3. Normalized decay rate in the extreme near-field regime for a flat
surface of silver. Emission wavelength λ¼ 700 nm. Red dotted line: bulk
dielectric function. Blue solid line: non-local model with parameters ϵb ¼ 3:6,
ωp ¼ 1:42� 1016 s�1, ν¼ 8:79� 1013 s�1 [43]. The relevant length scales
are indicated on the horizontal axis. Inset: comparison between the quasi-static
approximation and the full calculation using the non-local model. From Ref.
[42]. (For interpretation of the references to color in this figure caption, the
reader is referred to the online version of this paper.)
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rp Kð Þ ¼ ϵ ωð Þq1 Kð Þ�q2 Kð Þ
ϵ ωð Þq1 Kð Þþq2 Kð Þ : ð40Þ

It is important to note that these coefficients describe the
electrodynamic response of the medium. In particular, surface
plasmons appear as resonances (poles) of the reflection factor
for p polarization. Indeed, the resonance condition
ϵðωÞq1ðKÞþ q2ðKÞ ¼ 0 can be satisfied provided that
Re½ϵðωÞ�o�1, and leads to

K ωð Þ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðωÞ

ϵðωÞþ1

s
ð41Þ

which is the dispersion relation of surface plasmons at a metal–
vacuum interface [1,49]. The measurement of the LDOS on
flat interfaces and the role of surface-plasmon resonances are
discussed in Section 6.

3.8. Extreme near field and non-local effects

At very short distance from a metal surface, the macroscopic
description of the electrodynamic response of the metal breaks
down. This regime is expected when the distance to the surface
is on the order of the microscopic length scales driving the
electron dynamics. In this case, the metal has to be described
using a spatially non-local dielectric function. This issue has
been described by Ford and Weber [43] in the context of
molecular fluorescence. Microscopic interactions are expected
to substantially enhance the non-radiative decay rate of
emitters placed at short distance from a metal surface [44] or
adsorbed on nanoparticles [50]. The full crossover between the
far-field regime and the extreme near-field regime (below
1 nm) has been studied by Castanié et al. [42]. Here we
summarize the approach and the main results.

In Ref. [42], an emitter with an electric transition dipole
oriented along the normal to the surface (z direction) is
considered. The change in the decay rate Γz is therefore due
to the change in the projected electric LDOS ρe;z ¼ 2ω=ðπc2Þ
Im½uz �Gðr; r;ωÞuz�, where uz is the unit vector along the
z-axis. The normalized decay rate Γz=Γ0 ¼ ρe;z=ρ0 for an
emitter placed in vacuum at a distance z from the surface is

Γz

Γ0
¼ 1þ 3

2k20
Re
Z 1

0

K3

q1ðKÞ
rp Kð Þexp 2iq1 Kð Þz� 	

dK ð42Þ

where rp(K) is the Fresnel reflection factor in p polarization, that
is the only polarization involved for a dipole emitter oriented
along the z direction. When the distance z becomes comparable
to (or smaller than) the microscopic length scales describing the
electron dynamics, the response of the metal differs from that of
the bulk material, and the dielectric function becomes spatially
non-local. For a medium with translational symmetry (i.e. for
which the non-locality is not due to spatial confinement), the
dielectric function becomes wavevector dependent. A widely
used model for the non-local response of the electron gas in a
metal is the Lindhardt–Mermin model, described in Ref. [43].
This model has also been used to describe nanoscale radiative
heat transfer at short distance [51]. Using this model, the Fresnel
reflection factor can be calculated. This requires to model the
electron gas at the interface. In the infinite barrier model, in
which electrons at the surface undergo specular reflection, the
Fresnel reflection factor can be written in terms of a surface
impedance Z(K) as [43]

rp Kð Þ ¼ q1 Kð Þ= ω ϵ1ð Þ�Z Kð Þ
q1 Kð Þ= ω ϵ1ð ÞþZ Kð Þ : ð43Þ

The surface impedance depends on the transverse and long-
itudinal components of the non-local dielectric function of the
metal:

Z Kð Þ ¼ 2i
πω

Z 1

0

q2

ϵtðk;ωÞ�ðk=k0Þ2
þ K2

ϵlðk;ωÞ

� �
dq

k2
ð44Þ

with k2 ¼ K2þq2. In the Lindhardt–Mermin model, the long-
itudinal and transverse dielectric functions read as

ϵl k;ωð Þ ¼ ϵbþ
3ω2

p

ωþ iν

u2f lða; uÞ
ωþ iν f lða; uÞ=f lða; 0Þ

ð45Þ

ϵt k;ωð Þ ¼ ϵb �
ω2
p

ω2 ωþ iνð Þ ω f t a; uð Þ � 3a2f l a; uð Þ� 	
þ iν f t a; 0ð Þ � 3a2f l a; 0ð Þ� 	� ð46Þ

where ωp is the plasma frequency and ν is the electron collision
rate. The constant ϵb is an effective parameter accounting for
interband transitions. In the large scales limit (small k), this
expression simplifies and the classical Drude model is recov-
ered. The arguments a¼ k=ð2kFÞ and u¼ ðωþ iνÞ=ðkvFÞ, with
kF and vF being the Fermi wavevector and velocity, contain the
relevant microscopic length scales: the electron mean free path
ℓ¼ vF=ν, the distance δ¼ vF=ω travelled by an electron during
one period of the electromagnetic field and the Fermi wave-
length λF ¼ 2π=kF . The functions f lða; uÞ and f tða; uÞ read as
f lða; uÞ ¼ 1=2þ ½1�ða�uÞ2�=ð8aÞ ln½ða�uþ1Þ=ða�u�1Þ�
þ½1�ðaþuÞ2�=ð8aÞln½ðaþuþ1Þ=ðaþu�1Þ� and f tða; uÞ ¼
3ða2þ3u2þ1Þ=8�3½1�ða�uÞ2�2=ð32aÞ ln½ða�uþ1Þ= ða�
u�1Þ��3½1�ðaþuÞ2�2=ð32aÞln½ðaþuþ1Þ=ðaþu�1Þ�. The
limit u-0 has to be taken with a positive imaginary part so
that ln½ða7uþ1Þ=ða7u�1Þ� � lnjðaþ1Þ=ða�1Þj. The model



Fig. 4. (a) Fluorescence decay histogram measured for a polystyrene bead filled with dye molecules (diameter 25 nm). (b) Fluorescence intensity of the same bead
as a function of time.
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includes the mechanism of Landau damping (strong absorption
of photons by accelerated free electrons in the regime kδ41)
that was described previously in Ref. [44].

The result of the model is presented in Fig. 3 that shows the
dependence of the normalized decay rate on the distance z to a
flat surface of silver, computed using the local model (red
dotted line) and the non-local model (blue solid line) at a
wavelength λ¼ 700 nm. At short distance, the decay rate
increases in both cases due to an increase in the non-
radiative LDOS (the radiative LDOS is negligible at short
distance). In the non-local model, the slope is larger than that
predicted by the macroscopic theory, due to non-radiative
coupling to free electrons on scales smaller than the mean free
path. The deviation starts for z ≲ ℓ (ℓ¼ vF=ν¼ 16 nm for
silver), which sets the onset of the breakdown of the macro-
scopic approach. The macroscopic approach predicts Γz � z�3.
In the regime z� δ5ℓ where Landau damping is expected to
dominate, the microscopic approach predicts Γz � z�4 [44], in
good agreement with the slope given by the full calculation in
Fig. 3. Finally, we note that for z ≲ 0:5 nm, the onset of a
saturation of the decay rate is observed. Indeed, for wavevec-
tors k4kF , the model predicts a reduced absorption due to a
sharp cut-off in the imaginary part of the dielectric function
[51]. Although this saturation is expected physically at some
point, a precise computation in this region would require a
more refined model, including an atomic description of the
interface. The study of plasmonics at sub-nanometer scales, in
which quantum confinement and tunneling effects become
substantial, has been emerging as a critical and challenging
issue, both from the theoretical and the experimental points of
view [52,53].

4. Probing and mapping the LDOS in plasmonics

In the preceding section, we have shown that the LDOS is
proportional to the spontaneous decay rate Γ of the excited
state of a fluorescent emitter, a feature of the weak-coupling
regime. The fluorescence lifetime τ ¼ 1=Γ being a measurable
quantity, it is straightforward to experimentally probe the
LDOS at the position of the emitter and at the fluorescent
emission wavelength in a given environment by measuring the
fluorescence lifetime. For lifetimes going from a few hundreds
of ns to a few tens of ps this can be done by exciting the
fluorescent emitter with a pulsed laser and by collecting its
fluorescence on an avalanche photodiode. The arrival time of
the photons is then recorded with a time resolved single photon
counting system which allows us to measure the delay between
the detection of the fluorescence photon and the laser pulse that
has excited the emitter. This time interval is reported on
a histogram which exactly reproduces the probability for a
photon to be emitted within a given delay from the excitation
pulse. An example of such histogram, obtained for a poly-
styrene bead (diameter 25 nm) filled with dye molecules, is
shown in Fig. 4(a). For an ideal two-level emitter the
fluorescence decay is an exponential function and the lifetime
of the excited state can be easily measured by fitting the delay
histogram with a decreasing exponential. However, in the real
world, the scenario is often different and the fluorescence decay
can be fitted by a more complex function such as a
bi-exponential or log-normal distribution. For the sake of
completeness, Fig. 4(b) shows the fluorescence intensity as a
function of time for the same fluorescent bead.
Two different experimental approaches for measuring the

LDOS by all-optical means are reported in the literature. The
first one consists in spreading the fluorescent emitters either
inside or on the surface of the sample. The emitters are then
addressed individually and the decay rate Γ ¼ 1=τpρeðr;ωÞ is
measured, where r is the position of the emitter and ω the
emission frequency (we assume electric-dipole transitions in
the emitter so that the electric LDOS ρe is actually measured).
A review of recent works using this approach is presented in
Section 4.1. This approach gives access only to statistical
quantities, such as the LDOS distribution overall the sample. A
crucial aspect when using this technique is the averaging over
dipole orientation, because the LDOS strongly depends on it
(see the discussion on projected and full LDOS in Section 3.1).
The second approach consists in grafting the fluorescent

emitter at the extremity of an atomic force microscope (AFM)
tip and by scanning it in the near field of the sample surface.
This method allows us to access more exhaustive information
since it allows us to simultaneously acquire the topography of
the sample, the map of the fluorescence decay rate and of the



R. Carminati et al. / Surface Science Reports 70 (2015) 1–4110
fluorescence intensity in a deterministic way with a resolution
of the nanometer. However, this technique can only be used to
retrieve informations regarding the influence of the surface of
the sample on the emitter. In order to retrieve volume
information it will be necessary to use the first technique.
A review of experimental works using this method is given in
Section 4.2.

The LDOS can also be probed by methods based on electron
microscopy, such as electron energy loss spectroscopy (EELS)
and cathodoluminescence (CL). The clear advantage of these
techniques with respect to all-optical techniques can be found
in the very good spatial resolution. However, the physical
interpretation of the measured signals is often challenging and
not as direct as for all-optical methods. A review on these
techniques will be given in Section 4.3.
4.1. Far-field detection techniques (fluorescence microscopy)

Statistical measurements of the LDOS have been done in
different kinds of systems, going from plasmonic samples to
dielectric samples, either ordered or disordered. The statistical
behavior of LDOS fluctuations have been studied for fluor-
escent emitters located inside or on the surface of three-
dimensional random arrangements of dielectric particles
[54–56]. Measurements on ordered dielectric structures such
as photonic crystals [57] or opals have also been reported (see
for example Ref. [58]). Interesting studies on disordered
photonics crystal membranes have been reported. Disorder
here is introduced by randomly changing the position of the
holes of the photonic crystal with respect to the standard
ordered arrangement. The Anderson localization regime has
been reached in these systems and LDOS fluctuations have
been monitored by measuring the decay rate of quantum dots
epitaxially grown below the photonic crystal membrane
[38,59].

Statistical fluctuations of the LDOS can also be studied on
plasmonic samples. Here we focus on random metallic thin
films, which have very interesting optical properties that will
be described in detail in Section 8. LDOS fluctuations on
random gold films have been studied by dispersing polystyrene
fluorescent nanobeads [60,47] or colloidal quantum dots on the
surface of the film [61,62]. Purcell factors on the order of 10
have been reported and the observed LDOS fluctuations have
been related to the spatial extent of the surface plasmon modes
[60].
4.2. Scanning fluorescent-probe techniques

As pointed out in the introduction to this section, a thorough
characterization of the LDOS, with a resolution in the
1–100 nm range, can be realized by using fluorescent near-
field scanning probes. Three approaches are reported in the
literature: (i) A fluorescent nanoemitter is grafted on the AFM
tip and is then scanned in the near field of a nanostructured
sample. (ii) Fluorescent emitters are spread on a glass cover
slip and the sample of interest is located on the AFM tip. (iii)
The AFM tip is used to push the fluorescent emitter towards
the sample or vice versa.
The first method is the most versatile in terms of the large

variety of samples and fluorescent emitters that can be used.
Experimental demonstrations have been reported by several
groups by grafting NV centers in diamond nanocrystals
[63–65], polystyrene fluorescent nanobeads [66,67] or terry-
lene molecules in microcrystals [68] to the AFM tip. Samples
under study were simple plasmonic nanowires or nanostruc-
tured plasmonic samples such as nanoantennas, triangular
metallic islands or nanoholes in metallic films. As an example,
the experimental results reported by some of the authors in
Ref. [67] will be described in detail in Section 4.4. An
interesting original approach has been described in Ref. [69],
where a single-crystalline diamond nanopillar AFM probe has
been fabricated with an individual NV center artificially
created within 10 nm of the pillar tip through ion implantation.
Such a probe has been used to measure the magnetic field at
the nanometer scale.
The second method can be used with a limited number of

samples, such as metallic mirrors directly deposited on the
AFM tip [70,71] or nanoantennas which can be etched on the
extremity of the AFM tip [72,73]. This requires clean-room
facilities and mastering of highly technological methods for
nanofabrication.
The third method allows the deterministic positioning of

fluorescent nanoparticles [74], but it is hardly usable for mapping
the photonic properties of a nanostructured sample. This method
has allowed the coupling of photonic crystal cavities with single
NV centers in diamond nanocrystals [75,76] and the coupling of
single NV centers in diamond nanocrystals with pairs of silver
nanowires with different gaps [77].
4.3. Probing the photonic LDOS with electron microscopy

The response of a nanostructured medium to an external
excitation can also be probed with electron microscopy
techniques, such as electron energy loss spectroscopy (EELS)
or cathodoluminescence (CL). The aim of this section is to
briefly describe each technique, as well as the connection
between the measured quantities and the photonic LDOS. The
advantage of these techniques with respect to all-optical
techniques resides in the very high resolution that can be
achieved, which can go down to the nanometer scale because
of the small wavelength of the electron beam. EELS and CL
are scanning transmission electron microscopy techniques in
which an electron beam is focused, by a set of magnetic lenses,
on a small area of a sample. Electrons can then undergo either
elastic or inelastic scattering. Elastically scattered electrons are
collected and used to image the morphology of the sample,
while inelastically scattered electrons can be studied with
different spectroscopic techniques. For example, EELS is
performed by measuring the energy lost by the electrons that
are inelastically scattered at small angles after having been
transmitted by the sample. CL is done by studying the
electromagnetic radiation coming from the sample due to the



Fig. 5. Sketch of the experimental setup. An AFM system is combined with a
confocal microscope and a time-resolved single photon counting system
(TCSPC). Photons can be detected either on a CCD camera or on an avalanche
photodiode (SPAD).
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interaction with the electronic beam. Electrons transfer to the
sample a given amount of energy which is then released in the
form of visible photons allowing the sample to come back to
equilibrium via a radiative decay channel. While EELS can be
used for the study of sub-wavelength objects such as individual
nanoparticles, CL is usually more appropriate for the study of
large and/or thick nanostructures exhibiting a large radiation
probability. For reviews of these two methods and their
applications to LDOS measurement, see Refs. [78–81].

Quantitatively, EELS characterizes the probability for an
electron to loose a given amount of energy, referred to as the
EEL probability. It can be shown theoretically [80] that this
probability is related to the LDOS, in the real space on the xy
plane (the sample plane), and in the Fourier space along the z
direction. The different behavior along the z-axis can be
inferred from the fact that electrons are only affected by the
electric field components which are parallel to its propagation
direction (here the z direction, orthogonal to the sample plane).
An example of the application of the EELS technique to the
study of plasmonic systems such as random metallic films can
be found in Ref. [82].

CL is based on the fact that the interaction of an electron
with a medium can be represented by a transient dipole aligned
along the trajectory of the electron and placed either at the
position of the impact or along the electron path. For a given
material, this dipole has a constant amplitude, but the radiated
power depends on the optical properties of the surrounding
medium. Therefore the signal measured by CL is related to the
LDOS at the impact location. It can be shown [83] that the
observed light emission is a measure of the radiative compo-
nent of the LDOS projected on the direction of propagation of
the electron, which coincides with the direction of the transient
dipole. Therefore CL allows us to probe a pure vectorial
component of the radiative LDOS. For these reasons, CL
allows us to probe the LDOS only in polarizable media laying
on weakly conducting substrates to allow charge dissipation.
A recent work [84] has demonstrated the use of this technique
to probe and image the Bloch modes in photonic crystals and in
photonics crystal cavities. The presence of localized modes has
been demonstrated and a thorough study of the LDOS in these
systems has been performed [84].
4.4. Towards a full characterization of a plasmonic
nanostructure

In a recent work, some of the authors have demonstrated that
the fluorescent scanning near-field probe technique can be used
to characterize the electromagnetic field at the surface
of a plasmonic nanoantenna [67]. The experimental setup is
sketched in Fig. 5.

A home-made atomic force microscope (AFM), presenting a
fluorescent nanoemitter grafted at the apex of its tip, is coupled
with a confocal microscope. The fluorescent emitter, which is a
polystyrene bead (diameter 100 nm) filled with dye molecules
(Invitrogen Red Fluosphere), is excited via an oil immersion
microscope objective (NA¼1.3), by a super continuous pulsed
laser (Fianium SC450) filtered at a wavelength of 560 nm.
Fluorescence photons (λ4594 nm) are then collected by the
same objective and are detected either by an EM-CCD camera
or by an avalanche photodiode coupled with a single photon
time-resolved counting system, using PMD-series MPD ava-
lanche photodiodes and an acquisition board PicoQuant
HydraHarp400. This system allows the simultaneous acquisi-
tion of the topography of the sample, the map of the
fluorescence intensity and that of the decay rate of the emitter,
with a spatial resolution of a few tens of nanometers. The AFM
is based on the use of a quartz tuning fork and works in shear
force mode in order to keep the distance between the
nanoemitter and the sample constant during the scan. This is
particularly relevant for the LDOS map which is strongly
dependent on the distance between the bead and the sample
[47,67]. The AFM tip is a tapered optical fiber and the
amplitude oscillation is of the order of 10 nm. Details on the
method used to graft the fluorescent bead on the tip can be
found in Ref. [67].
A first proof of the operation of the experimental setup has

been realized on an optical nanoantenna formed by three gold
nanodiscs, 30 nm thick, having a diameter of 150 nm and
separated by 50 nm. Fig. 6 shows, from top to bottom, the
topography of the sample, the map of the fluorescence intensity
and the map of the decay rate. As one can notice, the measured
topography presents three zones of a height of about 30 nm
which are elongated in one direction rather than circularly
shaped as one could expect. This is due to the fact that the
fluorescent bead, which has a size comparable with the tip
apex, is grafted on the side of the tip. Therefore, the antenna is
scanned twice, first by the silica tip and then by the fluorescent
bead. This results in a doubled topographic image of each disc.
This artifact is not observed in the fluorescence intensity and in
the decay rate maps. This is easily understood since only the
fluorescent bead contributes to the optical signal. In order to
guide the eye, the real position of each disc is drawn in dashed



R. Carminati et al. / Surface Science Reports 70 (2015) 1–4112
line. The fluorescence intensity map shows a minimum when
the bead is on the top of each gold disc, due to the presence of
gold. The fluorescence decay rate map shows three regions
Fig. 6. Topography (a), fluorescence intensity (b) and fluorescence decay rate
(c) maps obtained with a polystyrene fluorescent sphere grafted to the
extremity of the AFM tip and scanned in the near field of a plasmonic
nanoantenna. From Ref. [67].

Fig. 7. Numerical simulations. (a) Top view of the topography of the simulated struc
in vacuum. (d)–(f) LDOS maps calculated for a bead either completely filled with d
right side of the figure. All the simulations have been done for a distance between
where the decay rate is enhanced, two of those located in the
gap regions, the third one located on the side of the antenna.
We may note that the spatial extension of the decay rate (or
LDOS) enhanced region is on the order of 50 nm, proving that
the resolution of the active probe is of this order of magnitude.
In order to have a better insight in the experimental results

we performed numerical calculations of fluorescence intensity
and decay rate maps. Numerical simulations are done in the
same geometry as in the experiment, by considering an
ensemble of dye molecules randomly oriented and distributed
inside a sphere of diameter equal to 100 nm. The nanoantenna
is floating in vacuum and is discretized in cubes of 5 nm side.
In order to calculate the electric field on the top of the
nanoantenna, we solve the Lippman–Schwinger equation for
both the excitation and emission fields. Once the electric field
is known, the Green function in the presence of the nanoan-
tenna GE is deduced from EðrÞ ¼ μ0ω

2GEðr; r0;ωÞp and the
LDOS and the fluorescence intensity can be calculated. The
numerical method is described more precisely in Section 8.2.2.
The results of the numerical simulations are displayed in
Fig. 7. Experimental and simulated LDOS and fluorescence
intensity maps present an almost quantitative agreement. Both
numerical simulations and experiments show the same general
trends, i.e. a decrease of the fluorescence intensity in coin-
cidence of the gold discs and an enhancement of the LDOS in
the gaps. A contrast of about a factor 3 of the fluorescence
intensity is observed on both the numerical and the experi-
mental maps. The experimental LDOS map shows a contrast
reduced with respect to the numerical map. This is due to the
absence of the substrate in the numerical simulation and to the
fact that the height of the fluorescent bead with respect to the
sample is not exactly known. Numerical simulations have been
performed for a distance between the bead and the sample of
20 nm. Moreover, the numerical map shows four regions
ture. (b), (c) Fluorescence intensity map and LDOS map normalized to its value
ye molecules or filled only on the top or bottom hemisphere, as sketched on the
the bottom of the sphere and the sample of 20 nm. Adapted from Ref. [67].
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where the LDOS is enhanced, while the experimental data
show only three of them. This can be explained either by a
fabrication defect of the real antenna or by the asymmetry of
the active probe. Since the bead is grafted on the side of the
silica tip, the trajectory followed by the bead can be different
when the probe climbs up or down the nanostructure, introdu-
cing an asymmetry in the images.

The size of the regions where the LDOS is enhanced is of the
order of 50 nm. At a first thought it can be surprising to see that
we can achieve such a small resolution with an active AFM
probe composed of a 100 nm fluorescent bead. In order to
clarify this point we calculated the LDOS map by using, as a
fluorescent emitter, a 100 nm bead filled by dye molecules
located either only in the bottom hemisphere or only in the top
hemisphere and we compared the results with the simulation
obtained with a sphere completely filled by dye molecules.
The results are reported in Fig. 7(d)–(f). The vertical distance
between the bead and the sample is fixed again at 20 nm.
As one can see, the high spatial frequency details are present in
the LDOS map obtained using only the bottom of the sphere
and they are conserved in the map obtained using a completely
filled sphere (with a smaller contrast). However, they
are washed out in the maps obtained using the dyes
located on the top of the bead, due to a spatial filtering effect
which is common in near-field measurements. Therefore we
can conclude that dye molecules located in the bottom
part of the sphere are responsible for the resolution of these
details and consequently, the effective resolution is not limited
by the size of the bead, but in the present case is on the order of
50 nm.
5. Equilibrium radiation. Electric and magnetic LDOS

In Section 3, the concept of LDOS has been introduced in
the context of spontaneous emission by a dipole emitter. The
LDOS also enters the description of equilibrium (or blackbody)
radiation, and therefore plays a key role in the description of
thermal fluctuations and heat transfer. This issue has been
discussed extensively in another review [49]. Here we will
focus on two specific aspects of relevance for plasmonics. We
will put forward the existence of both an electric and a
magnetic contributions to the LDOS, as initially derived in
Ref. [21]. Although light–matter interaction is often dominated
by the coupling of the electromagnetic field to electric dipoles,
the importance of magnetic interactions in nanophotonics and
plasmonics has increased due to the development of metama-
terials [85–87] or antennas coupling electric and magnetic
responses [88–92], and to the possibility to use fluorophores
with efficient magnetic dipole transitions [93–97]. We will also
introduce the basic quantities allowing us to describe the
measurement of thermal near fields using the thermal radiation
scanning tunneling microscopy (TRSTM) technique [98]. This
technique provides a direct measurement of the LDOS, and is
particularly interesting in plasmonics. It is described in Section
6 in this review.
5.1. Blackbody spectrum

Blackbody radiation is the electromagnetic radiation at
thermodynamic equilibrium with matter. In this situation, the
field is described statistically, and considered to be generated
by a stationary stochastic process. The description of obser-
vables, such as energy density or optical forces, requires the
computation of field–field correlation functions [22]. Black-
body radiation is also the starting point for the study of
radiation transfer in non-equilibrium situations [49,99]. Linear
response theory provides a powerful method to compute
field–field correlation functions, through the use of the fluctua-
tion–dissipation theorem [100]. We shall briefly review the
important steps in this approach.
The electromagnetic energy density at a point r located in

vacuum, but in an arbitrary environment, is defined as

〈U rð Þ〉¼ ϵ0
2
〈jE r; tð Þj2〉þ μ0

2
〈jH r; tð Þj2〉 ð47Þ

where the brackets stands for averaging over the fluctuations of
the field. We consider an observation point in vacuum,
although it can be located at an arbitrarily small distance from
a material surface, in order to get an unambiguous definition of
the field energy (for a point lying inside a material, the
definition of the field energy at the macroscopic level is a
complex issue, due to the coupling to material degrees of
freedom). A spectral energy density Uðr;ωÞ is introduced as

〈U rð Þ〉¼
Z 1

0
U r;ωð Þ dω

2π
: ð48Þ

Its computation requires the knowledge of the cross spectral
densities WE;H

jk ðr; r0
;ωÞ of the electric and of the magnetic field,

that are defined by

〈Ej r; tð ÞEk r
0
; tþτ

� �
〉¼ Re

Z 1

0
WE

jk r; r
0
;ω

� �
exp � iωτð Þ dω

2π

ð49Þ
and

〈Hj r; tð ÞHk r
0
; tþτ

� �
〉¼Re

Z 1

0
WH

jk r; r
0
;ω

� �
exp � iωτð Þ dω

2π
:

ð50Þ
In the quantum theory of radiation, the field–field correlation
functions have to be understood as correlation functions of quantum
operators, and ordering has to be handled with care. This point has
been discussed precisely in Ref. [22], and summarized in Ref. [49].
Here normally ordered correlation functions are assumed, and the
fluctuation–dissipation theorem leads to the following expressions
of the cross spectral densities at equilibrium:

WE
jkðr; r

0
;ωÞ ¼ 4μ0ω Im GE

jkðr; r
0
;ωÞ

h i
Θðω;TÞ ð51Þ

WH
jkðr; r

0
;ωÞ ¼ 4ϵ0ω Im GH

jkðr; r
0
;ωÞ

h i
Θðω;TÞ ð52Þ

where Θðω; TÞ ¼ ℏω=½expðℏω=kBTÞ�1�, T being the temperature
and kB the Boltzmann constant. In these equations, two different
Green functions are used. The electric Green function GEðr; r0

;ωÞ
connects a point electric dipole source at position r

0
to the electric
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field radiated at point r. The magnetic Green function GHðr; r0
;ωÞ

connects a point magnetic dipole source at position r
0
to the

magnetic field radiated at point r. Note that cross Green functions
GEHðr; r0

;ωÞ and GHEðr; r0
;ωÞ also exist, that couple a magnetic

dipole to the electric field and an electric dipole to the magnetic
field, respectively. They can be relevant for the description of
nano-antennas or metamaterials generating coupled electric and
magnetic responses [91,92], but they do not enter the description of
the equilibrium energy density.

From Eqs. (47) to (52), one derives the following expression
of the spectral equilibrium energy density

U r;ωð Þ ¼ ω

πc2
Im Tr GEðr; r;ωÞ� 	

þ Im Tr GHðr; r;ωÞ� 	� ℏω

exp ℏω=kBT
� �� 1

ð53Þ

that explicitly contains an electric and a magnetic contribution.
From a statistical physics point of view, one can also write the
spectral energy density as the product of the local density of
states, the averaged number of excitations (photons) per mode
(Bose–Einstein statistics) and the energy of one photon, so that

U r;ωð Þ ¼ ρ r;ωð Þ ℏω
expðℏω=kBTÞ�1

: ð54Þ

This relation can be considered as an alternative definition of
the LDOS [21]. By identification with Eq. (53), we obtain

ρ r;ωð Þ ¼ ω

πc2
Im Tr GEðr; r;ωÞþGHðr; r;ωÞ� 	 � ð55Þ

which is the full LDOS entering the expression of the energy
density spectrum of blackbody radiation. This approach
naturally leads to the introduction of an electric and a
magnetic LDOS.

5.2. Electric and magnetic LDOS

We can define the electric and magnetic contributions to the
LDOS in the following way:

ρe r;ωð Þ ¼ 2ω
πc2

Im Tr GE r; r;ωð Þ� 	 ð56Þ

ρm r;ωð Þ ¼ 2ω
πc2

Im Tr GH r; r;ωð Þ� 	
: ð57Þ

With this definition, the full electromagnetic LDOS that enters
the expression of the energy density spectrum of blackbody
radiation is simply

ρ r;ωð Þ ¼ 1
2 ρe r;ωð Þþρm r;ωð Þ� 	

: ð58Þ
The definitions of the electric and magnetic LDOS used here
differ by a factor of 2 from that introduced in Refs. [21,49].
This choice is made for consistency with the definition of
electric and magnetic LDOS in the context of spontaneous
emission by dipole emitters, in which a prefactor of 2 is used,
as in Eq. (8) [3]. It is also important that in the far field
asymptotic limit, the electric and magnetic Green functions
coincide, so that the distinction between electric and magnetic
LDOS becomes meaningless when near-field interactions can
be ignored. With the definition used here, in the far-field limit
one simply has ρðr;ωÞ ¼ ρeðr;ωÞ ¼ ρmðr;ωÞ.

5.3. Electric and magnetic LDOS in semi-infinite geometry

The expression of the electric LDOS above a flat interface
separating a vacuum from a semi-infinite medium has been
introduced in Section 3.7. The magnetic Green function and
the magnetic LDOS can be calculated along the same line [49].
It turns out that the expression of the magnetic Green function
is obtained from that of the electric Green function by simply
interchanging the Fresnel reflection factors rs(K) and rp(K).
The same holds for the LDOS, so that the magnetic LDOS
reads as

ρm z;ωð Þ ¼ ρ0 ωð Þ

�
Z k0

0

K dK
2k0jq1j

1�jrsj2
� �þ 1�jrpj2

� �� 	þ Z 1

k0

K dK
k0jq1j




� 2
K2

k20
�1

 !
Im rsð Þþ Im rp

� �" #
exp �2Im q1

� �
z

� 	)
: ð59Þ

The full LDOS ρðr;ωÞ ¼ ½ρeðr;ωÞþρmðr;ωÞ�=2 is readily
obtained from Eqs. (38) and (59):

ρ z;ωð Þ ¼ ρ0 ωð Þ
2

�
Z k0

0

K dK
k0jq1j

1� jrsj2
� �þ 1� jrpj2

� �� 	


þ
Z 1

k0

2K3 dK

k30jq1j
� Im rsð Þþ Im rp

� �� 	
exp �2Im q1

� �
z

� 	)
:

ð60Þ

5.4. Measurement of electric and magnetic LDOS in the near
field

The influence of both the electric and the magnetic
contributions to the LDOS can be probed using fluorophores
exhibiting both electric-dipole (ED) and magnetic-dipole (MD)
transitions in the same frequency range, and with oscillator
strengths on the same order of magnitude. Rare earth doped
crystals fill these requirements, and can be used to probe the
electric and magnetic near field LDOS, as initially demon-
strated by Karaveli and Zia [93,94]. More recently, Aigouy
and co-workers have used a Eu3þ nanocrystal grafted at the
apex of the tip of a near-field scanning optical microscope
(NSOM), providing the first example of a fluorescent NSOM
using simultaneously ED and MD emission [97]. Fluorescent
scanning-probe techniques are discussed in Section 4.2 in this
review. Here we describe specifically the measurement of ED
and MD emission.
The setup developed by Aigouy et al. is represented in

Fig. 8(a). Illumination is made at oblique incidence
(λ¼ 532 nm) and luminescence is collected with a high numer-
ical aperture objective (NA¼0.8), situated above the tip and the
sample. The fluorescent nanocrystal (typically 100–200 nm in
size) is scanned in the near field of a sample, while recording
spectra of the fluorescence intensity. A fluorescence spectrum
recorded when the tip is located in front of a flat gold mirror is



Fig. 8. (a) Experimental setup. The Eu3þ -doped nanocrystal is attached to the
tungsten NSOM tip and can be scanned across the sample. Crystal size
C200 nm. (b) Luminescence spectrum of the Eu3þ -doped nanocrystal at
several distances from a gold mirror. The spectral peaks corresponding to one
magnetic-dipole transition (1) and two electric-dipole transitions (2 and 3) are
indicated. Adapted from Ref. [97].

Fig. 9. (a) Topography of a gold stripe on a glass substrate and images of
branching ratios of transitions MD1 and ED2 in the x–y plane. Image size
3� 4:8 μm2. (b) Branching ratios of transitions MD1 and ED2 in the y–z
plane. Image size 4� 1 μm2. (c) Relative radiative electric ~ρe and magnetic ~ρm
LDOS versus the distance to a gold mirror. Analytical calculation (full lines)
and measurements (red dots and blue circles). Adapted from Ref. [97]. (For
interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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shown in Fig. 8(b). In the spectral range of interest, three
luminescence peaks are identified [93]. The peak located between
580 nm and 600 nm corresponds to one MD transition
(5D0-

7F1 labelled as transition 1), and the peaks in the spectral
ranges 600–630 nm and 685–705 nm correspond to two ED
transitions (5D0-

7F2 and 5D0-
7F4 labelled as transitions 2

and 3).
As a measure of the relative contribution of each transition, a

branching ratio is defined as

βj rð Þ ¼ Ifluoj ðrÞ
IfluototalðrÞ

ð61Þ

where r is the position of the nanocrystal (emitter). In this
expression, Ifluoj ðrÞ is the fluorescence intensity emitted in the
spectral peak corresponding to transition number j, and IfluototalðrÞ
is the fluorescence intensity detected over the full spectral
detection range. The fluorescence intensity of a given transition
is Ifluoj ðrÞ ¼ Nð5D0ÞΓR

j , where ΓR
j is the radiative spontaneous

decay rate and Nð5D0Þ is the population of the excited state that
can be calculated using a four-level model [93,97]. Considering
that the fluorescence intensity is chiefly given by the three
transitions, the branching ratio can be rewritten as

βj rð Þ ¼ Ifluoj ðrÞP
jI
fluo
j ðrÞ ¼

ΓR
jP
jΓ

R
j

ð62Þ

which is independent of the excitation intensity. This result is a
key point, since it permits to extract information on the radiative
electric and magnetic LDOS from the measurement of the
fluorescence intensity (and not of the fluorescence lifetime)
[94]. For each transition, one can write ΓR

j p f jρe;mðr;ωjÞ, where
fj is the oscillator strength of the transition and ρRe;mðr;ωjÞ is the
electric (for ED transition) or magnetic (for MD transition)
radiative LDOS at the emission frequency of the transition (taken
as the maximum frequency of each peak), 3� 4:8 μm2 and
4� 1 μm2. Experimental near-field maps of the branching ratios
β1ðrÞ (MD transition) and β2ðrÞ (ED transition) are shown in
Fig. 9(a), on a sample made of a gold stripe on a glass substrate.
Maps recorded by scanning the fluorescent nanocrystal in a
horizontal plane parallel to the sample, and in a vertical plane on
top of the sample, are displayed. The signal due to MD and ED
transitions exhibits different variations, with opposite contrast at
short distance.
Following a method initially proposed by Taminiau et al.

[95], it is possible to deduce the relative electric and magnetic
radiative LDOS from the branching ratios (for the detailed
theory and processing of the data see Ref. [97]). The relative
electric radiative LDOS is defined by

~ρRe rð Þ ¼ ρRe ðr;ω2Þ
ρRe ðr;ω2ÞþρRmðr;ω1Þ

ð63Þ
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where ω1 and ω2 are the peak frequency of two nearby MD
and ED transitions. The relative magnetic radiative LDOS is
defined by ~ρRmðrÞ ¼ 1� ~ρRe ðrÞ. The distance dependence of the
relative radiative LDOS measured in front of a gold surface is
shown in Fig. 9(b). The solid lines are calculations obtained
using the expressions of the electric and magnetic LDOS in
front of a flat surface, Eqs. (38) and (59). The agreement
between theory and experiment is very good, especially at
short distances from the mirror. This result demonstrates the
relevance of this fluorescent NSOM technique to measure the
relative contribution of the electric and magnetic radiative
LDOS in the near field of nanostructured materials.

6. Thermal radiation scanning tunneling microscopy

We have shown that the photonic LDOS enters the descrip-
tion of equilibrium thermal radiation (also known as blackbody
radiation). The purpose of the present section is to describe
near-field LDOS measurements based on the detection of
infrared thermal radiation in the near field.

Thermal emission finds its origin in fluctuating thermal
currents, and gives the possibility to excite both propagating
and evanescent modes in a wide range of frequencies. We have
shown in Section 5.1 that the spectrum of the energy density of
thermal radiation Uðr;ωÞ is governed by the LDOS. Indeed,
for a system at equilibrium at temperature T, Uðr;ωÞ is the
product of the LDOS ρðr;ωÞ and the mean energy of a
quantum oscillator Θðω;TÞ ¼ ℏω=½expðℏω=kBTÞ�1�. In the
particular case of an infinite plane interface separating vacuum
from a material with dielectric function ϵðωÞ ¼ ϵ

0 ðωÞþ iϵ
00 ðωÞ,

the evolution of the thermal emission spectrum with the
distance z to the surface is driven by the LDOS ρðz;ωÞ given
in Eq. (60). The behavior of Uðz;ωÞ in the presence of an
interface supporting surface polaritons (surface plasmons on
metals or surface phonons on polar materials) has been studied
theoretically in Refs. [49,101].

In the near field, a simplified expression of the LDOS can be
derived using the quasi-static approximation, valid in the
regime z5λ, where λ ¼ 2πc=ω is the observation wavelength.
The leading term at short distance reads as [21,49,101]

ρ z;ωð Þ ¼ ϵ
00 ðωÞ

j1þϵðωÞj2
1

16π2ωz3
ð64Þ

where the 1=z3 dependence is a feature of the quasi-static
regime. Note that the leading term in the regime considered
here (z5λ and mid IR frequencies) is due to the electric
component of the LDOS ρeðz;ωÞ. This expression shows that
at the frequency ωmax such that ϵ

0 ðωmaxÞ ¼ �1, the LDOS
exhibits a resonance producing a peak in its spectrum that is
also expected in the thermal energy density Uðz;ωÞ. The
resonance is sharp provided that the imaginary part of the
dielectric function ϵ

00 ðωmaxÞ is not too large. The frequency
ωmax corresponds to the surface (plasmon or phonon) polariton
resonance frequency. At this frequency, a large number of
surface modes with large in plane wave vector components K
exist within a narrow range of frequencies [49]. These surface
modes are at the origin of the peak in the LDOS. Since these
surface modes are such that Kck0, with K being the
component of the wavevector along the interface, the wave-
vector component perpendicular to the interface on the vacuum

side is q1ðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�K2

q
C iK, showing that the surface

modes are highly confined near the interface.
This has important consequences regarding the spectral

properties of thermal radiation as a function of the distance
from the surface of materials. In the far field, the emitted
spectrum is the product of the free-space blackbody spectrum
UBBðωÞ (Planck's function) and the emissivity (a number smaller
than unity). The blackbody envelop of far-field thermal emission
has a broadband spectrum given by Planck's curve, which
according to Wien's displacement law has a maximum at a
wavelength λmax ¼KW=T , with T being the material's tempera-
ture, and Wien's constant KW ¼ 2:898� 10�3 mK. The near-
field regime coincides with distances z5λ. In this regime,
according to Eq. (64), the spectrum of Uðz;ωÞ is expected to
increase by orders of magnitude beyond the universal Planck's
envelop of the far-field thermal emission, and to become quasi-
monochromatic for materials supporting surface polaritons. The
energy emitted by the surface of such materials is thus much
larger close to the surface than in the far field, and is partially
temporally coherent due to the contribution of the thermally
excited surface modes, in contrast with the temporal incoherence
of the far-field black-body emission [101].
Similarly, it was also predicted that the partial spatial coherence

of surface polaritons should be preserved in the thermal near field,
leading to coherence lengths on the order of the surface polariton
propagation length LsppðωÞ that can be much larger than the
vacuum wavelength λ, while no spatial coherence beyond λ=2 is
expected in far-field thermal radiation [102]. These exciting
properties, which were initially theoretical predictions [102,101],
have all been verified since then in experiments aimed either at
studying the spatial coherence of the thermal emission contribution
from thermally excited surface waves which were diffracted in the
far-field [103–105] or at directly probing the LDOS in the near-
field at the surface of materials [98,106–111]. While at visible
frequencies, the latter can be achieved by measuring the decay rate
of a fluorescent nano-object as discussed in Section 4.4, we show
below that in the infrared spectral range, the use of a sub-
wavelength probe which scatters the near-field thermal emission is
a convenient way to access both the spatial distribution and the
spectrum of the LDOS at the surface of materials [98,106–111].

6.1. Probing the LDOS through the near-field thermal
emission

The thermal radiation scanning tunneling microscope
(TRSTM) is the first instrument which has been capable to
directly probe the LDOS through measurements of the infrared
near-field thermal emission at the surface of a sample [98]. Its
principle is sketched in Fig. 10. It relies on the strong analogy
which has been demonstrated on theoretical grounds between
the scanning tunneling microscope (STM) and the near-field
scanning optical microscope (NSOM). If weak coupling is
assumed between the tip and the sample, both instruments can
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be treated using the same unified formalism to relate the
detected signal (the electronic current for the STM, and the
scattered intensity or photonic current for the NSOM) to the
electronic LDOS for the STM or to the LDOS for the NSOM
[112]. Charge currents due to thermal fluctuations excite every
possible electromagnetic mode in a body at an equilibrium
temperature T according to photon statistics. This is responsible
for the radiation of a thermal emission with a local density of
electromagnetic energy Uðr;ωÞ from its surface.
A point-like isotropic dipole placed in the near-field near the
body's surface can then in principle be used to scatter the near-
field thermal emission at the dipole's position rd to the far-field.
Using a detector sensitive to the energy flux at frequency ω
would in that case produce a signal proportional to Uðrd;ωÞ,
and hence to the LDOS. Measurements of this signal
while scanning the point-like dipole at the body's surface are
Fig. 10. Sketch illustrating the principle of the TRSTM. The electromagnetic
modes are thermally excited at the surface of a body, and scattered by a point
dipole placed in the near-field towards a detector located in the far-field. The
signal at the detector is ideally proportional to Uðrd ;ω; TÞ, and hence to the
LDOS. In practice, this is only an approximation since the tip is not a passive
point detector.

Fig. 11. (a) Experimental set-up of the thermal radiation scanning tunneling microsc
field thermal emission scattered by an AFM tip. Inset (b) simplified view of the T
AFM tip used to scatter the near-field thermal emission at the sample surface tow
expected to produce a map of the LDOS in the near-field. Note
that this description is simplified because it neglects polariza-
tion issues at the detection, the interaction between the
scattering dipole and the sample surface, specular reflections,
and the contribution to the signal from the thermal emission of
the scattering dipole itself. More detailed descriptions can be
found in Refs. [21,49,113].
According to Wien's law, Planck's curve has a maximum at a

wavelength λmax that is typically in the mid-infrared range for a
body near room-temperature (λmax � 10 μm at T ¼ 300 K).
Given this length scale, probing the LDOS through the near-
field thermal emission at the surface of a sample, near room
temperature and with subwavelength spatial resolution, requires
the use of a scanning scattering probe with nanosized dimen-
sions, which can be brought at nanometer distance from the
sample surface. This is achieved in the TRSTM. The instru-
ment is essentially a scattering-type NSOM operating in the
mid-infrared without any external source. It uses as a source of
signal the sole near-field thermal emission radiated by the
surface of the sample, which is placed on a hot sample holder
[98,108,113,110]. It can therefore be considered as the near-
field equivalent of a night vision camera with superresolved
imaging capabilities [98]. The invention of the TRSTM led to
the development of other probes based on the same principle
[106,107]. In particular, it was shown that instead of heating
the entire sample to produce an isothermal surface, a heated tip
could also be used both to locally heat the sample near the tip,
and to scatter the near-field thermal emission excited in this
way [107].
A schematic view of the TRSTM is given in Fig. 11, in a

configuration intended to image the LDOS in the near field of a
ope (TRSTM) used for mapping the LDOS by measuring the mid-infrared near-
RSTM illustrating its basic principle. Inset (c) SEM image of the tungsten (W)
ards the HgCdTe detector which is located in the far field.



Fig. 12. (a) TRSTM map of the near-field thermal emission taken at Ω at the rectangular extremity of a gold (Au) stripe (width¼ 30 μm) on a silicon carbide (SiC)
substrate using a bandpass filter at λn ¼ 10:9 μm (width 1 μm) in front of the HgCdTe detector. The figure shows the typical structure of the LDOS in a cavity, with
two perpendicular sets of fringes which are parallel to the edges of the gold pattern. The gold rectangle constitutes a cavity of thermally excited surface plasmons.
(b) Image of the topography (AFM) acquired at the same time as (a) showing the rectangular gold pattern. (c) TRSTM image taken at Ω with the same bandpass
filter of gold stripes of width 12 μm, 16 μm, and 25 μm on SiC, showing parallel fringes due to the cavity modes of the structure. (d) Profiles of the LDOS projected
normal to the sample surface calculated for the structures investigated in (c) at two different heights: 3 μm and 200 nm. The same structure of fringes as in the
experimental TRSTM images (c) is found in the projected LDOS calculated at 3 μm. This shows that when demodulating the TRSTM signal at Ω a field which
extends over several micrometers above the sample is probed. This contribution comes predominantly from the surface plasmon polaritons on gold which are
weakly confined in the infrared. However, the theoretical curves computed at a height of 200 nm reveal an enhanced LDOS on SiC with respect to gold, which is
associated to highly confined surface phonon polariton modes on SiC. In all the experiments shown in this figure, the sample is at an isothermal temperature
T ¼ 440 K, but TRSTM measurements down to room temperature have also been performed. Adapted from Ref. [98]. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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sample. It is based on an atomic force microscope (AFM) with
a hot sample holder, operating in intermittent contact mode
under a reflecting microscope objective combined with a single
channel mid-infrared mercury–cadmium–telluride (HgCdTe)
detector. The AFM uses an electrochemically etched tungsten
(W) tip mounted on a quartz tuning fork. The latter is excited
by means of a vibrating piezoelectric ceramic, in such a way
that the tip oscillate perpendicularly to the sample surface.
The tip hits periodically the sample surface at a frequency Ω,
while its oscillation amplitude is stabilized around a preset
value of � 100 nm by an electronic feedback which dynami-
cally controls the average height of the tip. Measurements of
the feedback voltage while scanning the sample under the tip
provide the topographic AFM image of the scanned area.
The sample holder consists of a planar resistor mounted on a
ceramic plate. It allows us to raise the sample temperature up
to approximately 470 K. The extremity of the tip has a conical
geometry and is terminated by a rounded apex whose radius of
curvature is in the range of tens to hundreds of nanometers.
When it is placed near the sample surface, it acts as a
subwavelength scattering object and radiates in the far-field a
signal linearly related to the infrared near-field thermal
emission. This signal is collected by the reflecting objective,
and directed towards the HgCdTe detector whose wavelengths
range (detectivity larger than half its maximum value) extends
between 7 μm and 12 μm. The selection of the energy of the
scattered photons which contribute to the detected signal is
performed by means of a narrowband filter placed before the
detector, which performs band-pass filtering on the wavelength
λ of the incoming radiation. The infrared thermal radiation
from parts of the set-up other than the tip also contributes as a
far-field continuous background on the detector signal. As the
tip oscillates at the sample surface, it produces a small
oscillatory component on the detector signal due to the
scattered near-field thermal emission. The latter is demodulated
at the frequency Ω and 2Ω using a lock-in amplifier, which
allows one to efficiently suppress the far-field background
contribution.
The TRSTM has been used to image the near-field thermal

emission on 80 nm thick gold (Au) microstructures patterned
on a silicon carbide (SiC) substrate [98]. With the set-up, two
images are simultaneously recorded during each scan of the
sample under the tip. The first one is the AFM topography
obtained by measuring the feedback voltage which controls the
average tip height as a function of its position. The second one
is the corresponding image of near-field thermal emission
scattered by the tip, measured at the demodulation frequency Ω
or 2Ω at the output of the lock-in amplifier connected to the
HgCdTe infrared detector. Fig. 12(a) and (b) presents the result
of a recording obtained on the rectangular extremity of a gold
stripe when the sample is at T ¼ 440 K, with a filter centered at
λn ¼ 10:9 μm placed in front of the detector. The resolution in
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both images is determined by the size of the tip apex. It is thus
approximately two orders of magnitude beyond the diffraction
limit as far as the mid-infrared near-field thermal emission
image is concerned, which is a result expected for a near-field
microscopy probe. Remarkably, the effect of the narrowband
filter which selects the wavelengths of the detected photons is
the appearance of two perpendicular sets of fringes on the gold
rectangular structure in the near-field thermal emission image.
The pattern is ascribed to surface plasmon polaritons on gold.

The surface plasmon polariton propagation length at the
interface between a metal with dielectric function ϵðωÞ ¼
ϵ0ðωÞþ iϵ″ðωÞ and a dielectric medium with dielectric function
ϵm is given by

Lspp ¼
c

ω

ϵ0 þϵm
ϵ0ϵm

� �3=2 ϵ
02

ϵ″
ð65Þ

where c is the speed of light. The dielectric function of an
evaporated gold film at mid-infrared wavelength (λ� 10 μm)
which has been precisely measured by spectroscopic ellipso-
metry [114] is typically ϵAu ¼ �4100þ i1350. Based on Eq.
(65), Lspp is in the range of millimeters in the mid-infrared
(Lspp ¼ 19 mm at λ¼ 10 μm), which has been verified experi-
mentally [115]. Due to this large value of Lspp, the extremity of
the gold stripe constitutes a cavity for the thermally excited
surface plasmons. As the experiment probes the spatial varia-
tion of U r;ωð Þ, Fig. 12(b) shows the typical structure of the
LDOS associated to the surface plasmons at the central
frequency ωn ¼ 2πc=λn which are confined in the cavity. Note
that it was experimentally verified with the same sample that
the pattern of the near-field thermal emission image shown in
Fig. 12(b) can in no instance be obtained using an external laser
illumination of the tip as it is done in a scattering-type NSOM.
This is because the laser produces an anisotropic excitation of
the modes, regardless of the illumination configuration.

To further confirm that the TRSTM produces images of the
LDOS, a comparison of experimental images of the near-field
thermal emission recorded at Ω on Au stripes of different
widths on SiC with theoretical calculations of the LDOS on the
same structures is presented in Fig. 12(c) and (d). The quantity
calculated theoretically and represented in Fig. 12(d) is the
electric component of the projected LDOS ρe;uðr;ωÞ, where u
is the direction perpendicular to the sample surface that
coincides with the tip axis (in the regime considered here the
LDOS is dominated by the electric contribution [21]). Theore-
tical curves of ρe;uðr;ωÞ across the Au stripe are represented for
two heights above the surface, 200 nm and 3 μm. A good
qualitative agreement is found between the experimental
images and the calculated curves of the projected LDOS
3 μm above the surface. While the number of fringes observed
experimentally is in good agreement with the theory, the
agreement regarding the contrast is only qualitative. The
difference owes to the fact that the calculation neglects several
aspects: (a) by considering only one projection of the LDOS,
the tip is implicitly assumed to be a vertical electric dipole,
while in reality it has both an electric and a magnetic response,
which should be described by polarizability tensors
[116,113,117]. (b) The tip is only assumed to be a point-like
scatterer which passively “reads” the local electromagnetic field
due to the near-field thermal emission. In reality, the detection
process is complexified by the multiple scattering of the EM-
field between the tip and the surface [113]. (c) The tip is
assumed to be a simple point dipole, while in reality its
elongated conical geometry is such that it rather corresponds to
a distribution of scatterers along the direction perpendicular to
the sample surface.
The qualitative agreement found between the experimental

images and the profiles of the projected LDOS calculated 3 μm
above the sample surface indicates that these distributed
scatterers globally have the same effect as a point-like dipole
that would scatter the local electromagnetic field at that height
without modifying it. This result clearly points to an averaging
process of the electromagnetic field scattered by the tip along
the normal axis of the sample. Moreover, the surface plasmon
polaritons on Au decay in air over several tens of μm at mid
infrared wavelengths [4]. Considering this averaging process, it
is thus not surprising that the signal demodulated at Ω
coincides with the LDOS calculated a few μm above the Au
surface.

6.2. Blackbody spectrum in the near field

While surface plasmon polaritons are excited on gold (Au) in
Fig. 12, the interface between air and the SiC substrate supports
surface phonon polaritons. Such surface waves are generally
expected to occur at the interface between vacuum and polar
materials. They correspond to lattice vibrations coupled to the
electromagnetic field, which propagate parallel to the interface.
Hence, their dispersion relation is expected to exhibit the
asymptotic behavior which characterizes surface polaritons
(when ϵ0 ¼ �1) in the mid-infrared region of the electromag-
netic spectrum, against the visible region for surface plasmon
polaritons in metals. We show in this section that
the TRSTM allows one to measure the near-field spectrum of
the thermally excited surface waves, which is associated to the
LDOS [107,108]. This issue is addressed by discussing in
detail the case of surface phonon polaritons at the surface
of SiC.
Infrared frequencies are generally expressed in wavenumbers

σ ¼ 1=λ using reciprocal centimeters (cm�1) as units. The
wavenumber dependence of the SiC dielectric function is well
described by an oscillator model in the mid-infrared: ϵSiCðσÞ ¼
ϵ1½1þðσ2L�σ2T Þ=ðσ2T�σ2� iΓσÞ�, where ϵ1 ¼ 6:7 is the high
frequency dielectric function of SiC, σL ¼ 969 cm�1, σT ¼
793 cm�1 are the natural vibrational wavenumbers of the long-
itudinal (L) and transverse (T) optical modes, and Γ ¼ 4:76 cm�1

is a damping term [118]. The region between σT and σL is the
restrahlen band of the material. An external light illumination
within this band cannot propagate in the material. This results in a
reflectivity close to 1 in the restrahlen band, and therefore an
absorptivity close to 0. The directional-spectral emissivity of an
object being equal to its directional spectral absorptivity according
to Kirchhoff's law, the radiation of thermal emission from a SiC
surface is expected to be low in the restrahlen band in comparison



Fig. 13. Spectrum of the local density of electromagnetic energy (thermal
emission spectrum) of a semi-infinite sample of SiC at 300 K calculated at two
different heights above its surface. (a) At 100 μm (far field) the blackbody-like
envelop and the restrahlen band are observed. (b) At 10 nm (near field) a quasi-
monochromatic peak is predicted at 948 cm�1 with an intensity much larger
than the far-field intensity [101].

Fig. 14. Dispersion curve for surface phonon polaritons at a SiC/vacuum
interface.
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to a perfect black-body radiator. Eq. (60) has been used to calculate
the spectrum of the local density of electromagnetic energy Uðz;ωÞ
in the far field (z¼ 100 μm) above a surface of SiC at 300 K. It is
shown in Fig. 13(a).

The far-field spectrum exhibits indeed a blackbody like
envelop and the expected broad minimum in the restrahlen
band. As Eq. (60) is valid in any regime, the spectrum of
Uðz;ωÞ has also been calculated at shorter distances from the
SiC surface [101]. A striking new feature appears within
subwavelength distance from the material, i.e. for values of
zoλmax � 10 μm. It consists of a sharp peak superimposed on
the far-field broadband spectrum. Calculations based on Eq. (60)
show that the peak intensity increases dramatically as the height
above the SiC surface is further reduced. In the near field at a
height z¼ 10 nm, the calculated spectrum of Uðz;ωÞ shown in
Fig. 13(b) indicates that the intensity of this peak is several
orders of magnitudes larger than the maximum of the far-field
thermal emission spectrum. Such a short distance from the
interface coincides with the quasielectrostatic limit in which Eq.
(60) reduces to Eq. (64). The latter gives a better insight about
the origin of the peak. The theoretical value of the peak position
σmax ¼ 948 cm�1 satisfies the condition ϵ0SiCðσmaxÞ ¼ �1.
At this value, the denominator in Eq. (64) is minimum for a
given value of z, which produces a sharp maximum in the
LDOS. The dispersion relation of the surface phonon polaritons
at the interface between vacuum and SiC satisfies

K2 ¼ 2πσ2
ϵSiCðσÞ

ϵSiCðσÞþ1
ð66Þ

Its representation is shown in Fig. 14. As expected, the peak of
the LDOS at σmax coincides with modes with large values of K
located near the asymptote. Such modes have K4k0 and
therefore correspond to surface waves. In other words, a SiC
surface acts as a nonradiating source for wavenumber values
σ � σmax. Due to the large value of jKj of the modes near σmax

with respect to plane propagating waves in free space [49],
detecting their contribution to the local electromagnetic energy
density requires a probe which can be approached at a distance
smaller than λmax from the SiC surface. Such a probe
would detect a quasi-monochromatic thermal emission in the
near-field due to the dominating contribution of surface modes
to Uðz;ωÞ. This behavior strongly contrasts with the far-field
thermal emission of SiC which spans over a broad energy
range [101].
High harmonic demodulation of the signal is a known

method in scattering NSOM microscopy to extract non-linear
variations of the electromagnetic field from regions nearest the
sample surface. The signal S modulated by a small oscillation
of the tip position of maximum amplitude a normal to the
sample surface Δz¼ a cos ðΩtÞ around its average height z0
can be approximated by an expression of the form

S z0þΔzð Þ ¼ AþB
dS
dz

z0ð Þ cos Ωtð ÞþC
d2S
dz2

z0ð Þ cos 2Ωtð Þþ⋯

ð67Þ

where A, B, C are constants [119]. This method was used in
TRSTM imaging on samples made of gold patterns on SiC to
enhance the contribution from the surface phonon polaritons at
the surface of SiC in the measured signal. Fig. 15(b) and (c)
compares two TRSTM images obtained on a square region of
SiC surrounded by 100 nm thick gold, whose topography is
shown in Fig. 15(a), when demodulating the signal at 2Ω with
a lock-in amplifier. Fig. 15(b) was obtained with a bandpass
filter (bandwidth� 100 cm�1) detuned by 250 cm�1 above
the LDOS peak in SiC, while Fig. 15(c) was obtained with a
filter overlapping the LDOS peak. A higher TRSTM signal at
2Ω is clearly observed in Fig. 15(c) on the SiC square area
with respect to the surrounding gold. It is due to the
contribution of the surface phonon polaritons within the peak
which are highly confined near the SiC surface, producing a
higher TRSTM signal taken at 2Ω than the surrounding gold
film where surface plasmon polaritons exist but are poorly
confined. A lower signal at 2Ω is observed on SiC in Fig. 15
(b) because in that situation the filter selects a wavenumber
above the asymptote of the dispersion curve. The LDOS is
thus close to 0 and no thermal emission due to surface phonon



Fig. 15. (a) Topographic AFM image of a square of SiC in a 100 nm thick gold film. (b) Corresponding near-field thermal emission image taken at 2Ω when a
bandpass filter detuned by 250 cm�1 above the peak in the LDOS is placed in front of the detector, and (c) when a bandpass filter which overlaps the peak in the
LDOS is used. At 2Ω, the components of the TRSTM signal which are non-linear are enhanced. The highly confined modes of surface phonon polaritons within the
peak of the LDOS of SiC then produce a higher TRSTM signal than the surface plasmon polaritons on gold when a filter which overlaps the SiC resonance is used.
With a filter out of resonance, a higher signal is found on gold as the LDOS of the surface phonon polaritons on SiC is close to zero. These experimental
observations are consistent with the theoretical predictions made in Fig. 12 which show that around the peak, the LDOS at nanometer distance from the sample is
higher on SiC than on gold. Due to their large wavevector, the surface phonon polaritons on SiC at the resonance peak are highly confined, and the non-linear
TRSTM signal components at 2Ω are in this case more important when the tip is on SiC than when it is on gold. Scale bar¼ 5 μm. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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polaritons is detected. It is not the case for the surface plasmon
polaritons on Au which exist up to the visible range and
therefore have a non-zero LDOS even at the wavenumber set
by the filter in Fig. 15(b).

The measurement of TRSTM images with bandpass filters
have first provided a qualitative evidence of the sensitivity of
TRSTM probes to the LDOS spectrum [98]. Scanning probes
combining the capability of the TRSTM to image the LDOS
with sub-wavelength resolution with local near-field spectro-
scopy measurements have subsequently been developed
[107,108,110]. Fig. 16(a) shows a scanning probe allowing
us to perform thermal infrared near-field spectroscopy (TINS)
on a hot sample surface in TRSTM mode [98], or reversely,
using a hot AFM tip as a local heater of the sample [107]. In
the latter configuration, specially designed AFM probes allow
for resistive tip heating. Nominal tip temperature of up to
T tip ¼ 700 K can be achieved, producing a heating of the
sample surface near the tip, experimentally estimated to be at
least T sample ¼ 550 K. Once the temperature of the sample is
raised, the AFM tip is used to scatter the near-field thermal
emission to the far-field in order to perform its spectral
analysis. Fig. 16(b) shows the same TRSTM instrument as in
Fig. 11 adapted for point spectroscopy measurements [108] and
superresolved hyperspectral measurements [110].

As for TRSTM, it uses a tungsten AFM tip to scatter the
near-field thermal emission. The sample is placed on a flat
resistor and isothermally heated up to 450 K typically, but
operation at even lower temperature was also demonstrated
[98,108]. Except for differences regarding the method used for
the sample heating in order to populate the modes by thermal
excitation, the two instruments shown in Fig. 16 operate
according to the same principle as far as measuring the
spectrum of the local energy density associated to the LDOS
is concerned. The AFM tip, which oscillates at frequency Ω
acts as a scatterer coupling the near field to the far field. The
scattered near-field thermal emission is collected and guided
towards a HgCdTe infrared detector through a Fourier trans-
form infrared spectrometer (FTIR). A lock-in amplifier con-
nected to the output of the detector allows one to measure the
signal at Ω or, if possible, at a higher harmonic. The latter is
crucial to validate unambiguously the near-field origin of the
signal [108]. The FTIR includes a Michelson interferometer
with variable path difference. Such a set-up is appropriate to
investigate the temporal coherence of the scattered near-field
signal both in the frequency [107,108,110] or in the time [111]
domain.
Near-field thermal emission spectroscopy has been per-

formed with the instruments shown in Fig. 16 to probe
the LDOS on materials supporting surface wave excitations
[107–111] or molecular resonances [107,109]. The expression
of the LDOS in the near-field limit given in Eq. (64) strongly
suggests the existence of a close relation between the near-field
thermal emission spectrum which is the quantity experimen-
tally measured and the dielectric function of the material
located under the scattering tip. Besides probing the LDOS,
this opens novel perspectives for the infrared spectroscopy of
materials with subwavelength spatial resolution. This aspect is
illustrated in the example of Fig. 17 which compares an
experimental TINS spectrum obtained on a polytetrafluoroethy-
lene (PTFE) surface, and a calculated LDOS spectrum on the
same material [107]. The two spectra are clearly very similar.
In Fig. 18(a) and (b), we compare near-field thermal emission

spectra obtained with a TRSTM on two polar materials supporting
surface phonon polaritons, silicon carbide (SiC) and silicon
dioxide (SiO2), with calculated spectra of the LDOS based on
Eq. (64) [108,113]. For both materials a peak in the LDOS spectra
is expected at σmax ¼ 948 cm�1 for SiC and at σmax ¼
1156 cm�1 for SiO2. A large damping term in the expression
of the dielectric function of SiO2 is responsible for the rather large
broadening of the LDOS, in comparison with SiC for which the



Fig. 16. (a) Near-field probe allowing to perform thermal infrared near-field spectroscopy of the spectral energy density associated with the LDOS. The probe
utilizes a heated sample holder, or reversely a hot AFM tip to perform a thermal excitation of the modes at the sample surface. The tip scatters the near-field thermal
emission which is analyzed by means of a FTIR spectrometer. Adapted from Ref. [107]. (b) Thermal radiation scanning tunnelling microscope (TRSTM) combined
with a FTIR spectrometer to perform near-field spectroscopy of the LDOS by measurements of the spectral energy density. The set-up utilizes an oscillating
tungsten AFM tip to scatter the near-field thermal emission on an isothermal sample whose temperature is below 470 K [108,110].

Fig. 17. Experimental thermal infrared near-field spectrum (TINS) obtained on
a polytetrafluoroethylene (PTFE) sample (red curve) compared with the
spectral energy density associated with the LDOS (black curve). From Ref.
[107]. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 18. (a) Experimental spectra of the near-field thermal emission associated with
the LDOS of SiC measured with a TRSTM at three temperatures of the sample:
471 K (dark blue curve), 410 K (light blue curve), and 320 K (green). A single
quasi-monochromatic peak is observed in the near-field thermal emission reflecting
its partial temporal coherence associated to surface phonon polariton modes, as
expected from calculations of the LDOS (red curve). The LDOS peak is only
expected in the near-field at σmax ¼ 948 cm�1, but it is slightly red-shifted and
broadened in the experimental spectra due to the near-field interaction between the
tip and the sample, as discussed in the text. (b) Comparison of the experimental
spectrum of the near-field thermal emission of SiO2 showing a quasi-monochromatic
peak as well (black curve) which is slightly red shifted from the LDOS peak (red
curve) of this material [108,110]. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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peak is much sharper. Fig. 18(a) shows that near-field thermal
emission spectra measured at various temperatures of the SiC
sample all exhibit a peak at σSiCexp ¼ 913 cm�1. The peak intensity
decreases with the temperature, as expected for electromagnetic
surface modes which are thermally excited. A single peak was
also reported in TINS experiments performed on SiC using a
heated tip [107,111]. This quasi-monochromatic peak is the
signature of the partial temporal coherence of the near field
thermal emission induced by the surface phonon polaritons.

The calculated LDOS peak of SiC at σmax ¼ 948 cm�1 is also
represented in Fig. 18(a) (red curve). A red shift and a broadening
of the near-field thermal emission peaks measured with TRSTM
and TINS is observed with respect to the LDOS peak, whose
values seem to strongly depend on the characteristics (shape,
material) of the tip used to scatter the near-field thermal emission
in the spectroscopy measurement [108,107,111]. A similar effect
is also observed on SiO2 in Fig. 18(b), but the broadening is less
visible due to the intrinsic broadening of the LDOS of SiO2. The
discrepancy between the measured near-field thermal emission
spectra using a scattering probe and the LDOS finds its origin in
the near-field interaction between the tip and the sample material
under it [108,113], and in a possible effective change of the



Fig. 19. (a) Illustration of the full dipole model discussed in Refs. [108,113],
used to calculate the effect of the tip on the near-field thermal emission spectra.
The electromagnetic field of the thermally emitted photons scattered by the tip
(assumed to be a spherical dipole) can reach the detector either being before
reflected on the sample or not. The local field at the tip position depends on
multiple reflections on the sample, leading to an effective (or dressed)
polarizability of the tip. Only an electric dipole is considered here, for a full
description see Ref. [113]. (b) and (c) Simulations of the near-field thermal
emission spectra based on the model for SiC and SiO2 (purple curves),
showing a good agreement with the experimental curves (black curves). Both
the red-shift and broadening observed in the experiments with respect to the
LDOS are reproduced by the model. Adapted from Ref. [108]. (For
interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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dielectric environment altering the surface phonon polariton
resonance condition [111].

The assumption that the tip of a TRSTM is an ideal probe
which only “reads” the near-field thermal emission, and hence
the LDOS at its position is not valid. In fact, the sole presence
of the tip at the sample surface modifies the field which would
be there if the tip was absent. Fig. 19(a) gives a sketch of a
theoretical model detailed in Ref. [113] which gives a full
description of the interaction between a dipolar tip and the
sample. This full dipole model goes beyond the quasi-
electrostatic approximation by taking account of the phase
acquired by the field scattered by the tip dipole and reflected on
the sample. In reality, an infinite number of reflections of the
field scattered by the dipolar tip occur between the latter and
the sample surface. The multiple reflections are described in the
model by means of a dressed polarizability tensor which
depends on the reflected Green tensor giving the field at the
tip position from an elementary dipole at the tip position. The
components of this dressed polarizability tensor multiply
various projections of the LDOS, including square terms and
crossed products of electric and magnetic components. The
signal at the detector also results from both the direct
propagation of the scattered field to the detector, and from
the indirect propagation after one reflection on the sample. The
latter is described by its Fresnel coefficients [108]. Fig. 19(b)
and (c) presents the comparison between the peaks experimen-
tally observed in TRSTM measurements of near-field thermal
emission spectra on SiC and SiO2 and theoretical spectra based
on the full dipole model. The latter was computed using the tip
and the sample dielectric function, and assuming that the
scattering dipole which mimics the elongated tungsten tip
geometry is located 1:6 μm above the sample. The good
agreement found in both cases between the experimental and
the theoretical curves clearly indicates that the full dipole
model grasps the essential parameters which characterize the
coupling between the tip and the sample [108,110].

The full dipolar tip model sketched in Fig. 19(a) indicates
that the near-field thermal emission signal from a scattering
TRSTM tip can in general not be assumed to be simply
proportional to the LDOS because it also depends on other
terms which are functions of the dielectric properties of the
sample and/or the tip. Nevertheless, the signal in the TRSTM
and related techniques [98,106–108] and the LDOS are closely
related and the theory allows one to evaluate the intrinsic
instrumental response of the probe [108,113]. This is the usual
requirement for most imaging and spectroscopy techniques. On
the other hand, TRSTM and TINS probes still have the unique
ability to measure both the spatial and the spectral variations of
the near-field thermal emission in the mid-infrared region with
subwavelength resolution. Regarding near-field FTIR spectro-
scopy, the major advantage of TINS and TRSTM is that the
probes do not require any external sources, while they
intrinsically operate over the full spectral range required to
characterize the sample [107,108]. Until recently, the near-field
thermal emission spectroscopy probes had only been used to
record spectra at single locations and on homogeneous
samples. Important progresses have been accomplished with
the TRSTM to combine its subwavelength imaging capabilities
with near-field thermal emission spectroscopy [110]. This has
allowed for the first time the measurement of hyperspectral
images on heterogeneous samples supporting surface plasmon
polaritons in some area, and surface phonon polaritons in some
others. The probe could be used to investigate the spatial
evolution of the LDOS at a boundary where the two kinds of
thermally excited surface waves meet. As an example, Fig. 20
shows the result of an hyperspectral line scan in which a near-
field thermal emission FTIR spectrum has been acquired every
1 μm [Fig. 20(a)] and every 100 nm [Fig. 20(b), (c)] along a
line crossing the boundary between a SiC substrate and a Au
film [110]. The recording of the second harmonic demodulated
signal on the smaller hyperspectral line scan allows one to
improve even further the spatial resolution.



Fig. 20. (a) Experimental spectra of the near-field thermal emission associated to the LDOS taken at Ω every 1 μm along a 21 μm straight line crossing a SiC/Au
boundary. (b) Experimental spectra of the near-field thermal emission associated to the LDOS taken at 2Ω every 100 nm along a 2 μm straight line crossing a
SiC/Au boundary. The second harmonic demodulation of the signal (2Ω signal) is used to improve the spatial resolution. (c) The image is a hyperspectral representation
of the measurements, showing at the same time the AFM topography of the boundary between the SiC substrate and a gold (Au) film (horizontal plane) and the spectra
measured along the line (vertical plane). A quasi-monochromatic peak is clearly observed when the tip is on SiC. (d) TRSTM signal at the peak as a function of the
position along the line, showing that this spectral feature disappears within less than 300 nm. Besides probing the LDOS, the results demonstrate that TRSTM allows us
to perform a novel type of FTIR spectroscopy of materials, with a resolution which is well beyond the diffraction limit. Adapted from Ref. [110].

R. Carminati et al. / Surface Science Reports 70 (2015) 1–4124
The TRSTM spectra on SiC exhibit the sharp quasimono-
chromatic peak at � 915 cm�1 due to surface phonon
polaritons, which disappears within less than 300 nm on the
Au film. The measurements provide an estimate of the spatial
resolution of the TRSTM for near-field FTIR spectroscopy
[110]. While classical far-field FTIR spectroscopy has a
resolution of tens of micrometers due to the diffraction limit,
the TRSTM allows one to beat this limit by nearly two orders
of magnitude, and to detect the contribution of surface waves
in the near-field thermal emission spectrum, which would not
be accessible otherwise. Near-field thermal emission imaging
and spectroscopy should find useful applications not only in
the field of plasmonics, but also as new tools to characterize
the infrared dielectric properties of nanomaterials.
7. Spatial coherence and cross density of states

7.1. Field–field correlation and Green's function

In the description of blackbody radiation in Section 5.1, we
have introduced the cross spectral density WE

jkðr; r
0
;ωÞ as a

measure of the spectral correlation of the components j and k
of the electric field at two different points. Since j; kA ðx; y; zÞ,
it defines a cross spectral density matrix that is the basic
quantity in the theory of spatial coherence [120]. Indeed, for a
statistically stationary field, the cross spectral density can be
represented as a field–field correlation function in the
frequency domain by the relation

〈Ejðr;ωÞEn

k ðr
0
;ω

0 Þ〉¼ 2πWE
jkðr; r

0
;ωÞδðω�ω

0 Þ: ð68Þ
The delta function shows that for a stationary field two
different frequencies are uncorrelated.
From the fluctuation–dissipation relation (51), an interesting

connection is established between the spectral field–field
correlation function at two different points and the imaginary
part of the Green function connecting these two points. Indeed,
we have

〈Ejðr;ωÞEn

k ðr
0
;ω

0 Þ〉¼ 8πμ0ω Im½GE
jkðr; r

0
;ωÞ�

�Θðω;TÞδðω�ω
0 Þ ð69Þ

where GE is the electric Green function. The connection
between spatial field–field correlations and the imaginary part
of the Green function is a well-known result in the study of
equilibrium electromagnetic radiation [22,49,99,100]. The
imaginary part of the Green function at two different points
also appears in a number of situations where the spatial
coherence of random fields produced by random noise
[121,122], partially coherent sources [123], or multiple scatter-
ing [124–127] needs to be characterized. It turns out that the
imaginary part of the Green function at two different points
plays for the field–field correlation function a role that is
similar to that played by the LDOS for the energy density.
Indeed, for a random excitation of the medium, the remaining
spatial correlation (spatial coherence) is given by the
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imaginary part of the Green function that can be understood as
the quantity describing the intrinsic spatial coherence of the
medium sustained by the underlying eigenmodes, as initially
put forward in Ref. [128]. This leads to the introduction of the
concept of cross density of states (CDOS) that will be
examined in detail in the next section.
7.2. Cross density of states

7.2.1. Definition
The cross density of states (CDOS) has been introduced as a

quantity that characterizes quantitatively the spatial coherence
of light in or out of any photonic and plasmonic structure [128].
Say differently, this quantity is an accurate indicator to describe
the overall spatial extent of the eigenmodes of the structure. In
particular, we will refer to it to address the spatial localization
of light at the near-field of disordered fractal metallic films. We
have seen previously that the imaginary part of the Green
function taken at two different points plays a crucial role in
many situations where field–field correlations are addressed
[49,121,122,124,129]. Based on this observation and on the
LDOS expression, we define a two-points quantity that we will
refer to as CDOS by [128]

ρe r; r
0;ωð Þ ¼ 2ω

πc2
Im TrGE r; r0;ωð Þ� 	

: ð70Þ

Although we define here a CDOS based on the electric Green
function, the same can be done using the magnetic Green
function. The choice made here amounts to considering spatial
coherence in terms of spatial correlations of the electric field.

The prefactor in Eq. (70) has been chosen such that the
CDOS coincides with the LDOS when r¼ r0. The physical
picture of the LDOS is the counting of all eigenmodes of the
structure crossing the point considered. In the same way,
the CDOS can be interpreted as a quantity describing
the counting of all eigenmodes connecting two different points.
For example, a large CDOS (larger than the vacuum
CDOS) would allow two quantum emitters at r and r0 to
couple efficiently. It would also ensure coherent (correlated)
fluctuations of the light fields at r and r0 under thermal
excitation [49].
7.2.2. Non-absorbing closed cavity
This simple picture can be expanded on a more rigorous

basis in the case of a non-absorbing medium placed in a closed
cavity. As for the LDOS, the mode expansion of the Green
function equation (6) can be used to rewrite the CDOS in the
form

ρe r; r
0;ωð Þ ¼

X
n

δ ω�ωnð ÞRe enn r0ð Þ � en rð Þ� 	

þ 2ω
π

X
n

PV
1

ω2
n�ω2

� �
Im enn r0ð Þ � en rð Þ� 	

: ð71Þ

This expression can be simplified by using the reciprocity
theorem which reads as GE

ij ðr; r0;ωÞ ¼GE
ji ðr0; r;ωÞ, where GE

ij is
any matrix element of the tensor Green function. From the
mode expansion equation (6), the reciprocity theorem becomes

X
n

PV
1

ω2
n�ω2

� �
þ iπ

2ωn
δ ω�ωnð Þ


 �

� ½ennðr0Þ � enðrÞ�enðr0Þ � ennðrÞ� ¼ 0: ð72Þ
Since ennðr0Þ � enðrÞ�enðr0Þ � ennðrÞ ¼ 2iIm½ennðr0Þ � enðrÞ�,
the imaginary part of Eq. (72) is

X
n

PV
1

ω2
n�ω2

� �
Im enn r0ð Þ � en rð Þ� 	¼ 0 ð73Þ

showing that the last term in Eq. (71) vanishes. This implies
that the expression of the CDOS for a non-lossy system
embedded in a close cavity reduces to

ρeðr; r0;ωÞ ¼
X
n

δðω�ωnÞRe½ennðr0Þ � enðrÞ�: ð74Þ

This expression explicitly shows that the CDOS sums up all
eigenmodes connecting r to r0 at frequency ω, weighted by
their strength at both points r and r0.
7.2.3. Phenomenological theory for weak losses
In the case of an open and/or absorbing medium, the

rigorous introduction of a basis of eigenmodes is more
complex. Approaches have been developed in the quasi-static
limit [130], or based on the introduction of quasi-normal modes
in the fully retarded regime [15], or using statistical properties
of the spectral expansion of non-Hermitian matrices [131].
Recently the quasi-normal approach has been used to provide a
rigorous expansion of the CDOS in open and absorbing
systems [16]. Here, we restrict ourselves to the phenomenolo-
gical approach already used in Section 3.3. Assuming weak
leakage, the expansion of the Green function equation (22) can
be used to rewrite the CDOS in the form

ρe r; r
0;ωð Þ ¼

X
n

γn
2π

Re½ennðr0Þ � enðrÞ�
ðω�ωnÞ2þðγn=2Þ2

ð75Þ

where γn is the damping rate of mode n. Eq. (75) generalizes
the expansion of the CDOS in the case of weakly lossy
systems. Essentially this procedure amounts to replacing the
Dirac delta function in Eq. (74) by a Lorentzian lineshape. Both
expressions (Eqs. (74) and (75)) can be connected in the limit
of vanishing losses using the identity

lim
γn-0þ

1
π

γn=2

ðω�ωnÞ2þðγn=2Þ2
¼ δ ω�ωnð Þ: ð76Þ
7.2.4. Spatial coherence and polarization
The trace operator in the definition of the CDOS given by

Eq. (70) has been introduced to restrict the CDOS as a concept
characterizing spatial coherence by washing out the polariza-
tion degrees of freedom. This trace operator enters the
definition of the degree of spatial coherence known in
coherence theory [120]. In order to describe the coherence
and polarization properties, a CDOS tensor can be defined that
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takes into account cross-polarized components:

ρe r; r
0;ωð Þ ¼ 2ω

πc2
Im GE r; r0;ωð Þ� 	

: ð77Þ

This tensor shows that spatial coherence and polarization are
intrinsically linked, a well-known issue in coherence theory
[132]. Referring again for the sake of physical insight to the
canonical situation in which a set of discrete eigenmodes can
be defined, the CDOS tensor reduces to

ρeðr; r0;ωÞ ¼
X
n

δðω�ωnÞRe½ennðr0Þ � enðrÞ�: ð78Þ

This expression leads to a general term of the CDOS tensor
given by

ρe;ijðr; r0;ωÞ ¼
X
n

δðω�ωnÞRe½enn;iðr0Þen;jðrÞ� ð79Þ

where en;i is the component of eigenmode en along the unit
vector ui defining the direction i. Eq. (79) shows that the
co-polarized components along the direction ui are described
by the diagonal matrix elements ρe;ii of the CDOS tensor,
while the cross-polarized components between directions ui
and uj are described by the non-diagonal elements ρe;ij. The
scalar CDOS as defined in Eq. (70) only involves the co-
polarized components of the CDOS tensor.

8. LDOS and CDOS on disordered plasmonic films

The LDOS and CDOS are fundamental concepts in the
description of the photonic properties of complex samples.
Their relevance for plasmonics is illustrated by the study of
semicontinuous metallic films made of noble metals that are
outstanding examples of complex systems in plasmonics.
Around the percolation threshold, these plasmonic films are
known to present unusual optical properties due to the strongly
disordered and multiscale geometry of percolation clusters.
These optical properties cannot be explained by using a mere
effective medium theory, and extrapolated from either the
dilute or continuous side. A picture of such samples is shown
in Fig. 21. Thin gold films are obtained by depositing gold
onto a glass cover slip. In the experiments described below,
gold has been deposited by using e-beam evaporation. The
massive thickness of the film can be monitored with a quartz
microbalance located inside the vacuum deposition chamber.
Films shown in Fig. 21 have a thickness going from 1.5 nm to
20 nm, obtained with a deposit speed of about 1 Å/s. The
variation of the color of the samples with increasing thickness
is a clear indicator of the rich optical properties. An explana-
tion of such variation can be found by looking at the
transmission electron microscope (TEM) images of the sam-
ples which are reported in the second row of Fig. 21. The
morphology of the films exhibits a clear variation with the film
thickness. For small quantities of deposited gold, the film is
composed of regularly shaped clusters exhibiting independent
plasmon resonances that are responsible for the pink color of
the film, as it is confirmed by far field spectral measurements.
Large quantities of deposited gold bring towards continuous
films, which have optical properties similar to bulk gold. For a
massive thickness of the order of 10 nm, the film is formed by
an arrangement of large disordered clusters, connecting two
opposite sides of the sample (the sample is said to be
percolating), which are responsible for the blue color of the
film. Indeed, far field spectra show a plateau extending from a
wavelength of 600 nm to the infrared region of the spectrum
[133]. By measuring the perimeter and the surface of the
clusters on TEM images, one can demonstrate that clusters
appearing for such massive thicknesses have a fractal dimen-
sion and therefore exhibit scale invariance.
An example of the perimeter versus surface plot is shown in

Fig. 22, together with the corresponding TEM image, which is
shown in the inset. Perimeter and surface are expected to
follow the relation PpSD=2 where D¼1 for Euclidian clusters
and D¼1.88 for fractal clusters. As an example an Euclidian
(fractal) cluster is colored in blue (red) on the TEM image and
the corresponding point is highlighted in the same color in the
perimeter versus surface plot. Fig. 22 clearly shows two
different populations of clusters. By increasing the quantity
of gold that is deposited, the number of fractal clusters
increases. The amount of fractal clusters present in the sample
can be quantified by calculating the ratio between the surface
occupied by fractal clusters and the surface occupied by
Euclidian clusters.
The unusual optical properties of fractal gold films have

been studied theoretically and experimentally both in the far
field and in the near field. These studies showed that the
interplay between intrinsic material excitations (surface plas-
mons) and random scattering by multiscale (fractal) metallic
clusters leads to spatial localization of the electromagnetic field
in subwavelength areas (hot spots) [134–136]. At a given
frequency, surface-plasmon modes consist of one or several
hot spots, and can be localized (i.e., insensitive to the sample
boundaries) or delocalized (spread over the entire system). The
coexistence of both types of modes results from the self-
similarity of the structure, and is referred to as inhomogeneous
localization [134,137,138]. We have demonstrated the locali-
zation of surface plasmon modes on disordered metallic films
with LDOS measurements, as it will be shown in detail in the
following section. An advantage of our direct measurement of
the LDOS is that the local intensity of both radiative and non-
radiative (dark) modes is probed with the same weight. In an
NSOM experiment, that is able to probe the intensity of both
types of modes, scattering is necessary in order to couple
external radiation to non-radiative modes, whereas radiative
modes can be directly excited. This asymmetry is avoided by
direct LDOS measurements.

8.1. Probing localized plasmons on disordered metallic films

In order to probe the LDOS in the near field of semi-
continuous gold films we randomly spread some fluorescent
beads on top of the films. The density of the beads (Invitrogen
Red Fluosphere, diameter of 25 nm) was set such that the
average distance between two beads was of the order of several
microns. Therefore, we were able to address single beads by
exciting them and collecting their fluorescence through a high



Fig. 21. First row: transmission image of thin gold films of different thicknesses deposited on a glass cover slip. The thickness of the film ranges from 1.5 nm to
20 nm. Second row: TEM images of the films, showing the appearance of fractal clusters. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

Fig. 22. Plot of the perimeter versus surface for the clusters in the TEM image
shown in inset. The cluster colored in red has a fractal dimension while the
cluster colored in blue is Euclidian. The corresponding points in the plot are
highlighted in red and blue respectively. Adapted from Ref. [60]. (For
interpretation of the references to color in this figure caption, the reader is
referred to the online version of this paper.)

Fig. 23. Decay rate distributions measured at different distances d between
the gold film and the fluorescent beads. The inset shows a sketch of the
experimental setup. From Ref. [47].
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numerical aperture objective (oil immersion objective, NA=
1.3). The excitation is performed by using a super-continuum
laser (Fianium SC450) filtered at 560 nm. Fluorescence filters
centered at 607 nm with a bandwidth of 70 nm are used to
separate fluorescence photons from excitation photons. Fluor-
escence photons are detected by an avalanche photodiode
(Perkin Elmer SPCM-AQR-15). Lifetime measurements are
performed by time-correlated single photon counting (Pico-
Quant TimeHarp200). The samples are fabricated as follows.
First, a gold layer with a given thickness is deposited by
e-beam evaporation on a glass cover-slip. Second, a silica
spacer with a thickness d varying from 20 to 80 nm is
deposited on the top of the gold layer. Third, fluorescent beads
are spin-coated on the top of the silica layer. The decay rate of
about 30 nanobeads located in different regions of the sample
has been measured for each samples. Fig. 23 shows the
obtained distributions, for a film close to the percolation
threshold, as well as a sketch of the experimental setup (in
the inset). The decay rate distribution measured for the beads
spread on glass is also reported for the sake of completeness
and can be interpreted as the measure obtained for an infinite
distance between the beads and the metallic film. As one can
see, the proximity of gold has a clear effect on both the mean
value and the variance of the distribution. The mean value
increases as the distance to the gold layer decreases, due to the
fact that the beads feel a large number of non-radiative
channels available for their decay, as also observed for a
fluorescent emitter approaching a continuous metallic film. The
variance of the distribution decreases when the spacer thickness
increases. This effect would not occur on a continuous gold
film and is intrinsically related to the presence of disorder. The
trend observed on the variance of the decay rate distribution is
due to spatial filtering of optical modes laterally confined on
scales below the wavelength. Indeed, the field distribution in a
plane at a distance d is exponentially filtered in Fourier space
by a factor expð�KdÞ compared to the distribution at d¼0 nm,
with K being the spatial frequency in the transverse direction
(parallel to the film plane). This is a feature of near-field optics.
The study of the variance as a function of the distance to the
film allows us to have an estimate of the spatial extension
of the modes in the near field of the sample which is of the
order of 60 nm [47]. In order to have a better insight in the
experimental results we performed numerical simulations that
are reported in Section 8.3.2.
The distributions of the LDOS in the near field of gold films

have also been studied as a function of the gold layer thickness,
for a fixed distance between the fluorescent beads and the gold
layer. In this study we expect to observe the influence of the
appearance of fractal clusters on the LDOS distribution. In this
part of the experimental investigation, the thickness of the SiO2
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layer has been fixed at 20 nm and the massive thickness of the
gold films has been varied between 1.5 and 20 nm. The
acquisition of TEM images for each film allows us to introduce
another quantity that better characterizes the quantity of gold
on the sample: the gold filling fraction, which is the fraction of
the surface occupied by gold over the total surface of the
sample. For the samples under study, the gold filling fraction
ranges from 0 (a bare glass coverslip, without gold) to 99%
(corresponding to a massive thickness of 20 nm). In the
following discussion, we will always refer to the quantity of
gold deposited on the sample in terms of the filling fraction
which is a more relevant quantity. The decay rate distribution
measured for two gold films showing a completely different
topology is shown in Fig. 24. The TEM images of the films, in
the insets, show that the first film is formed by well separated
clusters showing independent plasmonic resonances, while the
second one is formed by fractal clusters.

As one can observe, the two distributions are completely
different. As expected, the mean of the distribution is shifted
towards large values of Γ as the quantity of deposited gold
increases. The width of the distribution experiences an
enhancement as the quantity of gold on the sample increases.
This is due to the presence of disordered clusters on the
sample. The scale-invariant nature of the fractal clusters is
responsible for collective resonant plasmon excitations at any
wavelength [139]. As a result, the amplitude of the plasmon
modes exhibits large spatial fluctuations which are confined in
a sub-wavelength region [135]. Furthermore, fractal films are
characterized by the coexistence of spatially localized and
delocalized modes, a phenomenon referred to as inhomoge-
neous localization in Ref. [137]. Delocalized modes are formed
by a number of separated hot spots that are distributed in a
region with size comparable to the sample size. The spatial
fluctuations of the LDOS observed in this regime reflect the
spatial fluctuations of the amplitude of individual modes, and
therefore the nature of the modes.

In order to have a thorough understanding of the behavior of
the LDOS on thin gold films, we measured the decay rate
Fig. 24. Decay rate distributions measured for two different samples. The
corresponding TEM images are shown in the inset. (a) f¼30% (independent
clusters). (b) f ¼ 82% (fractal clusters). From Ref. [60].
distribution for several films with gold filling fractions ranging
from 0 to 99% and we characterized the distributions by
measuring the mean value and the variance. Fig. 25(a) reports
the normalized variance, σ2ðΓÞ=〈Γ2〉, as a function of the filling
fraction f.
As the filling fraction goes above 60%, an asymmetric

double peak structure appears in the normalized variance of the
LDOS, with a sharp peak occurring at f¼82%. Since huge
fluctuations of the LDOS are expected to appear in correspon-
dence with the onset of fractal clusters on the films, we plotted
in Fig. 25(b) the ratio of the surface occupied by fractal
clusters divided by the surface occupied by Euclidean clusters,
which gives a measurement of the fractal character of a
sample. This ratio grows very rapidly for f 465%, confirming
the fact that huge LDOS fluctuations, and therefore plasmon
localized modes, are strictly related to the presence of fractal
clusters.
The correlation between huge LDOS fluctuations and the

presence of localized modes is corroborated by a theoretical
model built on the inverse participation ratio. The inverse
participation ratio RIP is a quantity used in the theory of
Anderson localization to measure the spatial extent of wave-
functions [140] and it is defined by

RIP ¼
R jEðrÞj4 d2r

ðR jEðrÞj2 d2rÞ2 ð80Þ

where in our case the integrals are performed along a plane
Fig. 25. (a) Normalized variance of the LDOS distributions measured in the
near-field of several thin gold films. Data are shown as a function of the gold
filling fraction measured from the TEM image of each sample. (b) Ratio
between the surface of the sample occupied by fractal clusters and the surface
occupied by Euclidian clusters as a function of the gold filling fraction. The
dotted line is a guide for the eye. Adapted from Ref. [60].
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parallel to the sample surface. For spatially localized modes,
RIP is independent of the sample size L, whereas for extended
modes, RIP scales as L�2 [141].

To get some insight, let us assume that the field is a pattern
of Nh hot spots with intensity I0 and extension ξ (each spot
covers a surface ξ2). Then RIP ¼ ðNhξ

2Þ�1 and gives the
surface occupied by this pattern.

In order to connect the LDOS fluctuations to RIP, we can
make the following hypothesis. Since the hot-spot modes in the
fractal clusters regime are known to have a chaotic behavior
[134], the probability of having more than one mode giving a
high electric field at a given point and given frequency is very
small. Therefore, we can assume that at a given point r and at a
given frequency ω, the electric field is dominated by one mode.
In this case, the LDOS is essentially [see Eq. (4)]

ρe ω; rð Þp
X
n

jEn rð Þj2δ ω�ωnð ÞC 1
Δω

jE rð Þj2 ð81Þ

where Δω is the spectral width of the mode and jEðrÞj2 ¼ IðrÞ
its local intensity. The approximation leading to the result in
Eq. (81) is supported by the similarity between the double-peak
structure of the normalized variance of the LDOS and the
relative variance of the near-field intensity pattern measured by
NSOM on similar samples [138].

Under the approximation in Eq. (81), the inverse participa-
tion ratio reads as

RIP ¼
R jIðrÞj2 d2r
ðR IðrÞ d2rÞ2 ¼ 〈ρ2e〉

S〈ρe〉2
ð82Þ

where S is the sample surface. In the last equality, we have
assumed ergodicity so that spatial and statistical averaging have
been considered as equal [142]. This expression shows that
measuring the LDOS fluctuations provides a direct measure-
ment of RIP. As a result, we can infer the increase of LDOS
fluctuations as a signature of an increased contribution of
localized modes. Indeed, for delocalized modes, one has Nh hot
spots (Nhb1), each of them with typical extent ξ [137]. The
inverse participation is RIP � ðNhξ

2Þ�1. For localized modes,
one has Nh � 1, with a localization length ξl≲ξ, so that
RIP � ξ�2

l b ðNhξ
2Þ�1. This simple analysis shows that the

peak in the LDOS fluctuations observed in Fig. 25(a) is the
signature of an increased number of localized surface-plasmon
modes in the regime where the disordered film contains a
substantial fraction of fractal clusters.
8.2. Modelling plasmon excitations on disordered metallic
films

In this section, we describe the numerical study of the near-
field optical properties of disordered metallic films. The
numerical method is implemented in two steps. Firstly, we
use a Monte-Carlo algorithm to simulate the growth of a gold
film during an evaporation/deposition process, and check that
the geometrical properties of the film near the percolation
threshold are in agreement with measurements. Secondly, we
solve Maxwell's equations in 3D, taking into account
polarization and retardation effects, in order to compute the
LDOS and the CDOS. The computations are compared to the
experimental results described in the previous section.

8.2.1. Simulation of the film growth process
Our first goal is to generate numerically disordered metallic

films with the same geometrical features as the real films.
The algorithm is based on a kinetic Monte-Carlo scheme as
suggested in Ref. [144] and detailed in Ref. [143]. The idea is
to randomly deposit 5 nm gold nanoparticles on a square grid
via an iterative algorithm, and let the particles diffuse under the
influence of an interaction potential until a stable geometry is
reached. At every iteration of the algorithm, one randomly
chooses either to deposit a new particle (probability p0) or to
make a particle on the grid jump to a more stable neighbor site
(probability pi-j to scatter from site i to site j). These
probabilities are respectively given by

p0 ¼ aNF

pi-j ¼ a exp �ΔEi-j

kBT

� �
;

8><
>: ð83Þ

where a is a constant determined by the normalization
condition

p0þ
X
i;ja i

pi-j ¼ 1: ð84Þ

To determine the relative weight of each process, one needs to
pick a random number in the range ½0; 1�. N is the number of
particles that remains to be deposited in order to reach
the prescribed filling fraction, and F is a constant modelling
the experimental deposition rate. kB is the Boltzmann constant,
T the temperature of the surface and ΔEi-j the activation
energy barrier. Computing ΔEi-j is a complex issue for atoms
[145,146], and is not possible from first principles for
nanometer sized particles. To proceed, we have chosen to deal
with a rescaled atomic potential that renormalizes the energy
barrier in order to apply to a nanoparticle. We assume that
ΔEi-j ¼ αðEi�EjÞ, where α is a positive dimensionless
adjustable parameter taking into account the influence of the
substrate and the scaling. Ei is the rescaled “atomic” potential
of a particle located on site i, which is allowed to jump to the
neighbor site j if Ei4Ej. This potential is given by the
following expression based on a tight-binding second moment
method [147]:

Ei ¼ A
X
ia j

exp �p
rij
r0

�1

� �� �

�B
X
ia j

exp �2q
rij
r0

�1

� �� �( )1=2

: ð85Þ

In this expression, r0 is the size of one nanoparticle, rij the
distance between two sites i and j and A, B, p and q are
constants that were tabulated for atoms [147]. The iterative
deposition process is stopped when all particles have been
deposited (so that the prescribed filling fraction has been
reached) and no particle can move to a more stable site. Three



Fig. 26. Numerically generated gold films for three different filling fractions f (gold is represented in dark). The parameters for the computation are T ¼ 300 K,
α¼ 2:58� 10�2, F ¼ 1014 , A¼ 0:2061 eV, B¼ 1:79 eV, p¼10.229, q¼4.036. From Ref. [143].

Fig. 27. Disordered films generated numerically for four filling fractions between f ¼ 30% and f ¼ 60%. Clusters have been labelled using the Hoshen–Kopelman
algorithm, a given color identifying a single cluster. The films with filling fractions f ¼ 50% and f ¼ 60% are percolated. (For interpretation of the references to
color in this figure caption, the reader is referred to the online version of this paper.)
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examples of films with size 375� 375 nm2 generated using
this algorithm are shown in Fig. 26, for three different surface
filling fractions f.

When the filling fraction is large enough, a continuous
metallic path appears between two sides of the sample,
showing the onset of the percolation phenomenon. The critical
filling fraction is called the percolation threshold. It is possible
to determine roughly the percolation threshold on the numer-
ical films by using the Hoshen–Kopelman algorithm [148].
This algorithm is designed to label all continuous clusters of
the films. Four films generated with different filling fractions
are shown in Fig. 27 in which each cluster has been identified
by a given color. We observe that the percolation threshold is
close to f¼50%.

As seen in Fig. 27, at filling fractions f C50%, clusters with
complex shapes appear. Percolation clusters are known to exhibit
a fractal structure that confers a multiscale geometry to the
disordered metallic films [149,139]. The perimeter P of a cluster
is said to be fractal when PpSD=2, where S is the cluster surface
and D is a non-integer number called fractal dimension [150]. On
the other hand, usual Euclidian 2D surfaces have a perimeter
satisfying PpS1=2. It has been shown experimentally that on
disordered metallic films, the fractal dimension is D¼1.88 [151],
a feature that can be checked by generating 100 films numeri-
cally the filling fraction of which is f¼20% and f¼50%. For
each film the use of the Hoshen–Kopelman algorithm allows the
extraction of the perimeter and surface of all clusters. The surface
is defined as the number of pixels and the perimeter as the
number of empty neighbor pixels. The location of each cluster in
a perimeter/surface diagram in log–log scale and for both filling
fractions is shown in Fig. 28. For low filling fractions, every
cluster has an Euclidian perimeter (i.e. D¼1) while for a filling
fraction close to f¼50%, we clearly see the existence of fractal
clusters with D� 1:88 [144,143]. This value is consistent with
experimental observations [149,152] and is a strong evidence
that the geometrical features of a real film are well described by
the numerical generation method. The contour fractal dimension
satisfies the relation 1rDr2 because of the fundamentally
two-dimensional approach used for its characterization. Experi-
mental studies of the surface/volume relation taking into account
the three-dimensional roughness of the films exist. A fractal
dimension D=2.26, satisfying 2rDr3, has been reported
[153]. Although this approach is more complete, it does not
contradict the method used here. The very good results obtained
in the 2D analysis seem to indicate that the most important
physical features are a consequence of the 2D geometrical
properties of the film. The ability to reproduce the fractal
geometry in the simulations is a key point since the appearance
of fractal clusters has been correlated experimentally to the
existence of spatially localized modes probed from LDOS
fluctuations [60].

8.2.2. Numerical solution of Maxwell's equations in the near
field of disordered metallic films
In order to compute the LDOS and the CDOS in the near

field of disordered metallic films, one has to solve numerically



Fig. 28. Distribution in a perimeter/surface diagram of the clusters taken out from 100 numerically generated films. Left: filling fraction f ¼ 20%. Right: filling
fraction f ¼ 50%. The red solid line and green dotted line are guides for the eye, corresponding to P¼ 7S1=2 and P¼ 0:28S1:88=2, respectively. From Ref. [143]. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Maxwell's equations in a complex geometry. The numerical
algorithm presented in the following is based on the solution of
a volume integral equation for the electric field obtained from a
moments method [154]. This method allows one to solve
Maxwell's equations in 3D in systems with low symmetry,
taking into account polarization and retardation effects. The
convergence of the algorithm is only limited by the size of the
discretization cells. The electric field in the harmonic regime is
solution of the vector Helmholtz equation

∇� ∇� Eðr;ωÞ�k20ϵðr;ωÞEðr;ωÞ ¼ iωμ0jðr;ωÞ ð86Þ
where ϵðr;ωÞ is the space and frequency-dependent dielectric
function that equals the bulk dielectric function of gold when r
coincides with the gold structure, and the dielectric function of
the reference background medium otherwise. jðr;ωÞ is an
external current source that generates the incident field. As
shown in Appendix A.2, the solution of Eq. (86) can be written
using the Green tensor in the reference background medium
GE

refðr; r0;ωÞ in the form

Eðr;ωÞ ¼ Erefðr;ωÞþk20

Z
½ϵðr;ωÞ

�ϵrefðr;ωÞ�GE
refðr; r0;ωÞEðr0;ωÞ d3r0: ð87Þ

This volume integral equation is often denoted as the Lipp-
mann–Schwinger equation. Erefðr;ωÞ is the reference field
given by

Erefðr;ωÞ ¼ iωμ0

Z
GE

refðr; r0;ωÞjðr0;ωÞ d3r0: ð88Þ

Eq. (87) is an exact integral equation, from which the moments
method has been developed [154]. In the following, we
consider that the metallic disordered films generated using
the kinetic Monte-Carlo algorithm are 5 nm thick and are lying
in a reference background medium assumed to be a vacuum.
In that case, Eq. (87) reduces to

Eðr;ωÞ ¼ E0ðr;ωÞþk20

Z
V
½ϵðωÞ�1�G0ðr�r0;ωÞEðr0;ωÞ d3r0

ð89Þ
where ϵðωÞ is the bulk dielectric function of gold (tabulated in
Ref. [155]), V is the volume occupied by the metal and E0ðr;ωÞ
is the reference field in vacuum (incident field). G0ðr�r0;ωÞ is
the dyadic Green function in free space given in Eq. (37). In
order to solve numerically Eq. (89), we divide the volume V
into cubic cells with lateral size Δ¼ 2:5 nm.
On each cell, the field is considered constant, but the Green
tensor G0 is integrated to improve convergence. Note that this
integration makes the difference between the moments method
and the so-called Discrete Dipole Approximation (DDA), this
integration being necessary in order to properly deal with near
fields in the presence of resonances, a situation often encoun-
tered in plasmonics. Beyond the discretization procedure, this
numerical approach is free of any approximation. Denoting the
volume of cell number j by Vj, the Green function integrated
over the cell reads as

Gint
ij ¼

Z
Vj

G0ðri�r0;ωÞ d3r0 ð90Þ

and the discrete form of Eq. (89) leads to the following linear
system equations:

Ei�k20½ϵðωÞ�1�
X
j

Gint
ij Ej ¼ E0ðriÞ ð91Þ

where Ei is the electric field in the cell number i. The
computation of the electric field inside the structure thus
amounts to solving a linear system of coupled equations. The
computation of Gint

ii has to be performed with care, due to the
singularity of the dyadic Green function G0 at the origin. This
can be done quasi-analytically in Fourier space using
a Weyl expansion, as described in Ref. [156] and detailed
in Appendix A.3. The computation of Gint

ij for ja i is done
numerically. Once Ei is known, it is straightforward to compute
the electric field at any position outside the metal using once
again the discrete form of Eq. (89).

8.3. LDOS calculations on disordered plasmonic films

In order to compute the LDOS in the vicinity of the
disordered metallic films, we use the numerical algorithm
described above in the particular case of an external excitation
generated by a point electric-dipole source pðωÞ placed at
position r0 [i.e. j r0;ωð Þ ¼ � iωp ωð Þδ r0 �r0ð Þ]. Computing the



Fig. 29. Histograms of the total (ρe), non-radiative (ρNRe ) and radiative LDOS
(ρRe ) normalized by the LDOS in vacuum (ρ0) at 40 nm distance above two
series of films of the same filling fraction (red: f ¼ 20%; blue: f ¼ 50%). Every
generated film has a lateral size of 375 nm. From Ref. [143]. (For interpretation
of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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total electric field Eðr;ωÞ resulting from the scattering process
leads to a computation of the full Green tensor in the presence
of the metallic film thanks to the relation

Eðr;ωÞ ¼ μ0ω
2GEðr; r0;ωÞpðωÞ: ð92Þ

From the Green function, the full or projected LDOS can be
computed using Eq. (8) or (13). The radiative and non-
radiative components of the LDOS defined in Section 3.5
can also be deduced from the calculation of the radiated and
absorbed powers.

8.3.1. Radiative and non-radiative LDOS
We first compute the LDOS at a distance of 40 nm above

the film. The calculation is performed for 60 films and for two
filling fractions and the results are gathered in a histogram
[143]. This specific distance has been chosen since it provides
substantial near-field effects and remains compatible with
standard computational resources (handling small distances
require small cell sizes, thus increasing the size of the linear
system to solve numerically). Note that our purpose here is not
to describe quantitatively the experiment, but to reproduce and
understand the general trends. The results are shown in Fig. 29.
The calculated histograms of the total (radiative þ non-
radiative) LDOS ρe=ρ0 have to be compared to the experi-
mental results presented in Fig. 24 and taken from Ref. [60].
The qualitative agreement is very good. Two major differences
are observed as one goes from low to intermediate filling
fractions close to the percolation threshold: (1) The mean value
of the LDOS increases and (2) the fluctuations of the LDOS
are enhanced. In particular, very high values of the LDOS are
observed, which is a direct signature of spatially localized
modes as discussed in Section 8.1. It is known that the
appearance of fractal clusters is correlated to enhanced
fluctuations of the near-field intensity and of the LDOS
[60,135]. Let us comment on the difference between the
experimental and numerical parameters. In the simulations,
λ ¼ 780 nm, a wavelength chosen because fluctuations are
known to be stronger in this regime. The filling fractions are
also different but correspond to identical regimes (i.e. Eucli-
dian for f ¼ 20% and fractal for f ¼ 50%). A detailed study of
the dependence of the optical properties on the filling fraction
would require a more refined algorithm to simulate the growth
of the films. Let us stress also that neither the size of the
fluorescent beads nor the presence of the substrate is accounted
for in the simulation described here.

Looking at the other histograms in Fig. 29 that correspond
to the fluctuations of the radiative and non-radiative contribu-
tions to the LDOS, we clearly see that at a distance of 40 nm
from the surface, LDOS fluctuations are mainly driven by non-
radiative channels. To get more insights about this feature, we
have plotted in Fig. 30 maps of the total, radiative and non-
radiative LDOS. Near the percolation threshold, complicated
LDOS structures appear, with local enhancements on sub-
wavelength areas confirming the presence of spatially localized
modes. Moreover, the similarity between the full LDOS and
non-radiative LDOS maps shows that the spatial fluctuations
of the LDOS are mainly due to non-radiative channels.
Finally, let us stress that the computations are performed on
samples with lateral size on the order of λ=2, so that the LDOS
spatial distributions and maps might be affected by finite-size
effects. Although not shown for brevity, we have performed
computations with sample sizes from 150 nm to 375 nm.
These computations have shown that although the statistical
distribution of ρRe is size-dependent, the distributions of ρe and
ρNRe are quite robust.

8.3.2. Distance dependence of the LDOS
We have also performed simulations of LDOS maps at

different distances from the film, in the range d� 30–90 nm



Fig. 30. Maps of the total (ρe), non-radiative (ρNRe ) and radiative LDOS (ρRe ) normalized by the LDOS in vacuum (ρ0) at 40 nm distance above two films with filling
fractions f ¼ 20% and f ¼ 50%. The wavelength is λ¼ 780 nm. Note that the color scale is different for every map. From Ref. [143]. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 31. Calculated distributions of the normalized LDOS ρe=ρ0 for different
distances d corresponding to the spacer thickness þ 12.5 nm (bead radius).
λ¼ 605 nm. Inset: Film used in the simulation (black color corresponds to
gold). From Ref. [47].
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[47]. The results are shown in Fig. 31. In this case, the
nanosources (beads) are modelled by orientationally averaged
electric dipoles distributed inside a sphere of diameter 25 nm,
in order to account for the spatial extent of the beads. The metal
film and the nanosources are immersed in a homogeneous glass
background that models the glass substrate and the silica
spacer. Experimental and numerical data show a very good
qualitative agreement for the trends of both the mean and the
width of the distributions. The behavior of the mean value can
be qualitatively understood replacing the disordered film by an
effective homogeneous film. The averaged LDOS close to this
absorbing effective homogeneous film is expected to be larger
than that on the glass cover slide (the reference) due to an
increase of the non-radiative LDOS at short distance, a known
behavior close to homogeneous metal surfaces [20,157]. The
broadening of the decay rate distribution when the distance to
the film decreases is more interesting. As shown above, close to
the film, high fluctuations of the LDOS are induced by the
disorder of the surface. In particular, substantial changes in the
width of the statistical distribution are visible, when moving
from short to larger distances from the film. This is due to
spatial filtering of optical modes laterally confined on scales
below the wavelength. Indeed, the field distribution in a plane
at a distance d is exponentially filtered in Fourier space by a
factor exp½�Kd� compared to the distribution at d ¼ 0 nm, K
being the spatial frequency in the transverse direction (parallel
to the film place) [3]. From this simple observation, an order of
magnitude of the lateral confinement ξ of the
field can be extracted. Since field variations giving rise to
substantial fluctuations of the LDOS strongly attenuate
between d¼32.5 nm and d¼52.5 nm, the attenuation length
can be estimated to be 1=K ¼ 10 nm. One can deduce
ξ� 2π=K � 60 nm as a typical size of hot spots. This is in
agreement with orders of magnitude found by near-field optical
microscopy [135,158].
To get more physical insight, we have also computed the
mean value and the variance of the distributions of ρe=ρ0,
ρRe =ρ0 and ρNRe =ρ0 versus the distance d to the film. Results are
shown in Fig. 32. The increase of the averaged value 〈ρ〉 at
short distance is mainly due to the increase of 〈ρNRe 〉. This can
be understood recalling the effective homogeneous film
approach. Indeed, one does not expect significant variations
of 〈ρRe 〉 on such a distance range, since variations in the
radiative rate are due to interference effects that build up on
a length scale on the order of λ=2 that remains large compared
to the distance d. Interestingly, the broadening at short distance
is also driven by non-radiative decay channels. The confined
near-field variations responsible for large near-field fluctuations
of the LDOS are chiefly generated by non-radiative modes.
8.4. CDOS and spatial coherence on disordered plasmonic
films

Experiments and theory show that disordered fractal metallic
films exhibit optical properties that strongly differ from



Fig. 32. Mean value (left) and variance (right) of the distribution of ρe=ρ0 (black solid line), ρNRe =ρ0 (blue dotted line) and ρRe =ρ0 (red dashed line) versus the
distance d. Adapted from Ref. [47]. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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wthose of bulk metals or ensembles of isolated nanoparticles.
In particular, spatial localization of light in subwavelength
areas, initially demonstrated using near-field optical micro-
scopy techniques [135,139,158], is an interesting feature,
since it provides an efficient way to concentrate visible or
near IR light at the nanoscale, and also allows one to strongly
modify the absorption of noble metal layers. Spatial localiza-
tion results from the interplay between surface-plasmon
resonances and multiple scattering by fractal percolation
clusters. In such a multiscale geometry, that exhibits long-
range correlation, simple models as white-noise potentials or
effective medium theory are invalid, and apart from direct
numerical simulations, it is difficult to develop a multiple
scattering theory.

Using a scaling theory in the quasi-static limit, a mechanism
based on Anderson localization has been put forward [159].
In the context of electronic transport on percolated systems,
Anderson localization has been studied [160,161] and a theory
of localization of electromagnetic waves could be developed
by mapping the electronic picture. Nevertheless, electromag-
netic waves have the possibility to interact with matter both
through near-field and far-field interactions, which certainly
makes the mechanism different from that put forward for scalar
electron waves. Indeed, numerical simulations of light scatter-
ing on percolating metallic systems (also called planar random
composites) have shown that localized and delocalized plas-
monic eigenmodes could coexist [137]. This new picture has
been confirmed by computations and measurements of inten-
sity fluctuations in the near field [142,138]. Moreover, a
theoretical model has proved the existence of localized modes
characterized by algebraic rather than exponential spatial
confinement [131]. These results show that the mechanism
of spatial localization differs in some essential features from
that of Anderson localization of electrons. Measurements of
near-field LDOS statistics, described in previous sections, also
confirmed the existence of spatially localized modes in the
regime dominated by fractal clusters [60].

As far as the spatial extent of the eigenmodes of a complex
plasmonic system is concerned, the concept of CDOS appears
as a natural tool since it measures the intrinsic spatial
coherence of the system. In the following, we present
numerical maps of the CDOS in the vicinity of disordered
metallic films, and we demonstrate unambiguously an overall
spatial squeezing of the optical modes near the percolation
threshold, as initially reported in Ref. [128]. To be more
quantitative, we introduce the intrinsic coherence length ℓcoh

as a measure of this overall spatial extent, and study its
dependence on the metal surface filling fraction. Numerically,
the computation of the CDOS is not more challenging than the
computation of the LDOS. The simulation is performed using
the same algorithm (see Section 8.2.2) except that the
imaginary part of the Green function GEðr; r0

;ωÞ is computed
for rar

0
.

Results for two different films corresponding to a regime far
from percolation (f ¼ 20%) and a second one close to
percolation (f ¼ 50%) are shown in Fig. 33. First, as a
reminder, we have plotted LDOS maps (middle column)
calculated in a plane at a distance z¼ 40 nm above the films.
For low filling fractions (top row), LDOS peaks are observed
on top of isolated nanoparticles that are resonant at the
observation wavelength. A correspondence between LDOS
peaks and the position of one or several nanoparticles is easily
made. We have checked that for a different observation
wavelength, particles can switch on or off resonance and the
position of the LDOS peaks changes, remaining attached to
individual particles. The sample behaves as a collection of
individual nanoparticles with well identified surface plasmon
resonances (since the size and shape of the particles are
different, their resonance frequencies do not coincide). In the
multiscale resonant regime (bottom row), the LDOS structure
is more complex and there is no obvious correspondence
between the film topography (composed of fractal clusters in
which the concept of individual nanoparticles becomes mean-
ingless) and the localized field enhancements responsible for
LDOS fluctuations. This is a known feature of fractal metallic
films that has been observed using different kinds of near-field
microscopy techniques [135,137,158,162].
Second, we have plotted CDOS maps (right column). The

position r0 is fixed and chosen at the center of the sample while
the position r describes a square above the films, and the maps
display the CDOS versus r. We recall that the CDOS
implicitly sums up the spatial extent of the full set of
eigenmodes. Thus it quantifies the ability of a point r to be
connected to the center point r0 through the underlying
structure of the optical eigenmodes. In that way, the CDOS
allows one to discriminate between two hot spots at r and r0



Fig. 33. Left column: geometry of the disordered films generated numerically (with gold in black color). Top: f ¼ 20%, Bottom: f ¼ 50%. Middle column: maps of
the normalized LDOS ρeðr;ωÞ=ρ0ðωÞ calculated in a plane at a distance z¼40 nm above the film surface, ρ0ðωÞ being the LDOS in vacuum. Right column: maps of
the normalized CDOS ρeðr; r0;ωÞ=ρ0ðωÞ with r0 fixed at the center of the sample. λ¼ 780 nm. Adapted from Ref. [128].
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that belong, or not, to at least one identical eigenmode. It is also
a natural tool to describe the overall spatial localization in the
multiscale resonant regime. In Fig. 33, we clearly see that the
extent of the CDOS in the multiscale resonant regime is
reduced to a smaller range compared to the case of a film
composed of isolated nanoparticles. The reduction of the extent
of the CDOS clearly demonstrates an overall spatial squeezing
of the eigenmodes close to the percolation threshold. Let us
stress that the approach based on the CDOS gives a non-
ambiguous description of this overall spatial squeezing, what-
ever the underlying mechanism. It is based on a concept
implicitly related to field–field spatial correlations as in
classical spatial coherence theory that seems to carry sufficient
information to describe one of the most striking features in the
optics of disordered fractal metallic films.

In order to study quantitatively the overall reduction of the
spatial extent of eigenmodes in the multiscale resonant regime,
we introduce an intrinsic coherence length ℓcoh, defined from
the width of the CDOS. More precisely, fixing r0 at the center
of the sample, we use polar coordinates in the plane z¼40 nm
parallel to the sample mean surface to write ρeðr; r0;ωÞ ¼
ρeðR; θ;ωÞ with R¼ jr�r0j and define an angularly averaged
CDOS by

ρe R;ωð Þ ¼ 1
2π

Z 2π

0
ρe R; θ;ωð Þ dθ: ð93Þ

The intrinsic coherence length ℓcoh is defined as the half width
at half maximum of ρeðR;ωÞ considered as a function of R. It is
important to note that ℓcoh is not necessarily the size of the hot
spots observed on the surface, since a given eigenmode can be
composed of several hot spots. Two different hot spots
separated by a distance smaller than ℓcoh can be intrinsically
connected (meaning that they are connected by at least one
eigenmode). The ability to clarify this distinction between
eigenmodes and hot spots is an essential feature of the CDOS.
We have computed the statistical distribution of ℓcoh by
generating numerically several realizations of disordered films
and by computing the CDOS at the near-field of each film. The
average value of 〈ℓcoh〉 (solid line) and its variance VarðℓcohÞ
(error bars) are shown in Fig. 34 as a function of the film
filling fraction for two different wavelengths λ¼ 650 nm and
λ¼ 780 nm.
For both wavelengths, the average value 〈ℓcoh〉 is signifi-

cantly smaller near the percolation threshold than for lower
filling fractions. This is another way to visualize the overall
spatial squeezing of eigenmodes in the regime dominated by
fractal clusters, with a stronger squeezing at λ¼ 780 nm where
more pronounced resonances occur [139]. The curve for
λ¼ 780 nm even shows a minimum near the percolation
threshold. Our approach provides a theoretical description of
the experimental result presented in Fig. 25. In this figure, a
substantial enhancement of the variance of the LDOS distribu-
tion is observed, that was qualitatively associated to a decrease
of the inverse participation ratio, the latter measuring the spatial
extent of localized modes in the structure. We point out that
only a qualitative comparison between the curve in Fig. 34 and
that in Fig. 25 is possible, since the inverse participation ratio
and the intrinsic coherence length are not the same quantities.
Moreover, the precise shape of the calculated curves in Fig. 34
might also be influenced by finite-size effects inherent to the
numerical simulation, although we have verified that by
increasing the size of the sample generated numerically, the
general shape of the curve is not affected. The behavior of
VarðℓcohÞ, that is indicated by the error bars, is also instructive.
Strong fluctuations are observed in the regime of isolated
nanoparticles. In this regime, both optical modes attached to
isolated particles, and delocalized modes spreading over the
whole sample, are observed. This is a major difference with the
known behavior in quantum electronic transport where only
localized wavefunctions can exist on isolated metallic atoms or



Fig. 34. Averaged value (solid line) and variance (error bars) of the intrinsic
coherence length ℓcoh calculated at a distance z¼40 nm above a disordered
film, versus the gold filling fraction f. The error bars indicate the real variance
of ℓcoh, and not computation errors due to lack of numerical convergence, the
latter being ensured by a sufficiently large set of realizations. Inset: Typical
film geometries (black color corresponds to gold). From Ref. [128].
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clusters [160,161]. The strong fluctuations in ℓcoh reflect the
fluctuations of the relative weight of localized and delocalized
eigenmodes. Conversely, in the multiscale resonant regime, the
reduction of the fluctuations reinforces the assumption of a
mechanism based on collective interactions that involve the
sample as a whole, and that favors the existence of localized
modes. The spatial localization of eigenmodes, and the
reduction of fluctuations of the intrinsic coherence length,
are two features that illustrate the richness of plasmonics on
complex systems.
9. Conclusion

Together with the development of near-field imaging
techniques, the progress in the design and realization of
nanostructures has made possible an engineering approach
towards the control of light emission and absorption at scales
below the vacuum wavelength. Nanophotonics, including
plasmonics, is at a stage where, on the one hand, fundamental
studies of light–matter interaction are possible based on almost
ideal experiments (e.g. a single emitter interacting with single
shaped nano-objects), and on the other hand, the development
of real devices is emerging. The concept of LDOS has become
widely used in this field, either to describe basic experiments
or as a central quantity in the engineering of systems with
targeted functionalities (such as enhanced local or spectral
absorption, or antenna-based coupling of quantum emitters). In
complex system, i.e. exhibiting a large number of degrees of
freedom, the LDOS is also a convenient tool that describes
many observables without accounting explicitly for the
detailed structure of the photonic eigenmodes. The concept
of LDOS does not even require the existence of a basis of
eigenmodes, an appealing property in the study of open and
dissipative systems often encountered in nanophotonics and
plasmonics. Beyond LDOS, the concept of CDOS that we
have introduced permits a description of the intrinsic spatial
coherence sustained by the system itself, independently of the
illumination or excitation conditions. Although the CDOS has
been a natural concept in the field of thermal radiation for a
long time, it is of much broader interest and, as the LDOS,
enters the description of many processes involved in light–
matter interaction. Getting familiar with these concepts, and
understanding their relevance for fundamental and applied
studies in nanophotonics and plasmonics, are the main
objectives of this review.
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Appendix A

A.1. Green function expansion in eigenmodes

In this appendix, we derive the expression of the Green
function as a function of the eigenmodes of a closed non-
absorbing cavity. This derivation was first suggested in
Ref. [14]. Inside the cavity, the permittivity depends on the
position ϵðrÞ, which is supposed to be real (no absorption) and
positive and not depending on the frequency (no dispersion).
In that case, a set of discrete eigenmodes exists. Each
eigenmode denoted by the subscript n is defined by an
eigenvalue ωn and an eigenvector enðrÞ obeying the wave
equation without any source term

∇� ∇� en rð Þ�ϵ rð Þω
2
n

c2
en rð Þ ¼ 0: ð94Þ

Using the change of variable unðrÞ ¼
ffiffiffiffiffiffiffiffi
ϵðrÞ

p
enðrÞ, Eq. (94)

becomes

1ffiffiffiffiffiffiffiffi
ϵðrÞ

p ∇� ∇� 1ffiffiffiffiffiffiffiffi
ϵðrÞ

p
" #

un rð Þ ¼ ω2
n

c2
un rð Þ: ð95Þ

This last expression is interesting because it is an eigenvalue
equation with a Hermitian operator thus admitting a set of
orthogonal solutions (eigenmodes) satisfying the orthogonality
relationshipZ

umðrÞ � un

nðrÞ d3r ¼ δmn ð96Þ

where δ stands for the Kronecker-delta operator. As a result,
the orthogonality condition for the eigenmodes solution of
Eq. (94) reads asZ

ϵðrÞemðrÞ � ennðrÞ d3r¼ δmn: ð97Þ

We now perform the expansion of the Green function on this
basis of eigenmodes in the form

GEðr; r0;ωÞ ¼
X
n

Anðr0;ωÞ � enðr;ωÞ: ð98Þ
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The Green function corresponds to the solution of the wave
equation for a Dirac-delta source term thus satisfying

∇� ∇�GE r; r0;ωð Þ�ϵ rð Þω
2
n

c2
GE r; r0;ωð Þ ¼ δ r�r0ð ÞI: ð99Þ

Inserting Eq. (98) into Eq. (99) yieldsX
n

An r0;ωð Þ

� ∇� ∇� en rð Þ�ϵ rð Þω
2

c2
en rð Þ

� �
¼ δ r�r0ð ÞI ð100Þ

which, using Eq. (94), leads toX
n

Anðr0;ωÞ � ðω2
n�ω2ÞϵðrÞenðrÞ ¼ c2δðr�r0ÞI: ð101Þ

Multiplying both sides of the above equation by enmðrÞ,
integrating over r and using the orthogonality condition given
by Eq. (97) lead to

ðω2
n�ω2ÞAnðr0;ωÞ ¼ c2ennðr0Þ: ð102Þ

In the sense of distributions, the solution of this equation writes

An r0;ωð Þ ¼ c2enn r0ð Þ PV
1

ω2
n�ω2

� �

þϖδðω�ωnÞþϖ0δðωþωnÞ

� ð103Þ
where ϖ and ϖ0 are two complex constants. One way to set ϖ
and ϖ0 is to consider the case of a very slowly damped
harmonic oscillator. Taking the limit when the damping tends
to zero should give the exact physical result of the ideal case of
a non-damped oscillator. Mathematically speaking, we use the
identity

lim
η-0þ

1
xþ iη

¼ PV
1
x

� �
� iπδ xð Þ: ð104Þ

This implies that ϖ ¼ iπ=ð2ωnÞ and ϖ0 ¼ � iπ=ð2ωnÞ. The final
form of Eq. (103) becomes

An r0;ωð Þ ¼ c2enn r0ð Þ PV
1

ω2
n�ω2

� �


þ iπ

2ωn
δ ω�ωnð Þ� iπ

2ωn
δ ωþωnð Þ

�
: ð105Þ

Dropping the term proportional to δðωþωnÞ and corresponding
to a non-physical negative frequency, the Green function reads

GE r; r0;ωð Þ ¼
X
n

c2enn r0ð Þ � en rð Þ PV
1

ω2
n�ω2

� �


þ iπ

2ωn
δ ω�ωnð Þ

�
; ð106Þ

expression usually reduced to

GE r; r0;ωð Þ ¼
X
n

c2ennðr0Þ � enðrÞ
ω2
n�ω2

ð107Þ

for the sake of brevity (in this last expression, the expansion
into the principal value and the Dirac-delta function is implicit).
A.2. Lippmann–Schwinger equation

In this appendix, we derive the Lippmann–Schwinger
equation from the Helmholtz equation. The latter is given by

∇� ∇� Eðr;ωÞ�k20ϵðr;ωÞEðr;ωÞ ¼ iωμ0jðr;ωÞ: ð108Þ
Let us recall that the electric field is related to the Green tensor
of the system by the relation

Eðr;ωÞ ¼ iωμ0

Z
GEðr; r0;ωÞjðr0;ωÞ d3r0: ð109Þ

The main idea is to expand the electric field Eðr;ωÞ into a term
corresponding to an incident field propagating in a reference
medium with the same source term, and a term corresponding
to the field scattered by the inhomogeneities (difference
between the permittivity ϵðr;ωÞ and the permittivity ϵrefðr;ωÞ
in the reference medium). The field Erefðr;ωÞ propagating in
the reference medium satisfies

∇� ∇� Erefðr;ωÞ�k20ϵrefðr;ωÞErefðr;ωÞ ¼ iωμ0jðr;ωÞ:
ð110Þ

Subtracting Eq. (110) from Eq. (108) leads to an equation on
the scattered part of the field Esðr;ωÞ ¼ Eðr;ωÞ�Erefðr;ωÞ
given by

∇� ∇� Esðr;ωÞ�k20ϵrefðr;ωÞEsðr;ωÞ
¼ k20 ϵðr;ωÞ�ϵrefðr;ωÞ½ �Eðr;ω

�
: ð111Þ

This equation shows that the scattered field propagates in the
reference medium and is generated by a source term propor-
tional to the total field. Thus it can be expressed using the
Green tensor in the reference medium GE

refðr; r0;ωÞ as follows:
Esðr;ωÞ ¼ k20

�
Z

GE
refðr; r0;ωÞ½ϵðr0;ωÞ�ϵrefðr0;ωÞ�Eðr0;ωÞ d3r0: ð112Þ

Using the expression of the scattered field as a function of the
total and incident fields, one obtains

Eðr;ωÞ ¼ Erefðr;ωÞþk20

�
Z

GE
refðr; r0;ωÞ½ϵðr0;ωÞ�ϵrefðr0;ωÞ�Eðr0;ωÞ d3r0: ð113Þ

Eq. (113) is the Lippmann–Schwinger equation and shows that
the total electric field is given by the superposition of the
incident field given by

Erefðr;ωÞ ¼ iωμ0

Z
GE

refðr; r0;ωÞjðr0;ωÞ d3r0 ð114Þ

and the scattered field itself depending on the total field
(multiple scattering).

A.3. Green's tensor in the moments method

In this appendix the details of the analytical integration of
the Green tensor in vacuum G0ðri�r0;ωÞ over the cell number
i of volume Vi are presented. This integration is based on a
Weyl expansion of the Green tensor exposed in the following.
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The Green tensor in vacuum satisfies

∇� ∇�G0ðr;ωÞ�k20G0ðr;ωÞ ¼ δðrÞI: ð115Þ
Taking the Fourier transform of Eq. (115) leads to the
expression of the Green tensor in Fourier space as follows:

G0 k;ωð Þ ¼ 1

k2�k20
I� k � k

k20

" #
: ð116Þ

This form allows us to compute the Weyl expansion by
performing the inverse Fourier transform of G0ðk;ωÞ along
the z coordinate which gives

G0 kx; ky; z;ω
� �¼ Z þ1

�1
G0 k;ωð Þ exp ikzzð Þ dkz

2π
: ð117Þ

If we denote by kþ
z the complex number satisfying ðkþ

z Þ2 ¼
k20�k2x�k2y and Im½kþ

z �40, we obtain the following identities
from the residue theorem:Z þ1

�1

expðikzzÞ
k2�k20

dkz
2π

¼ i

2kþ
z

exp ikþ
z jzjÞ;� ð118Þ

Z þ1

�1

kz exp ðikzzÞ
k2�k20

dkz
2π

¼ i sign z

2
exp ikþ

z jzjÞ;� ð119Þ

Z þ1

�1

k2z exp ðikzzÞ
k2�k20

dkz
2π

¼ ikþ
z

2
exp ikþ

z jzjÞþδ zð Þ;� ð120Þ

where sign z denotes the sign of the real z. By using the above
identities, Eq. (117) becomes

G0 kx; ky; z;ω
� �¼ PV

iM

2kþ
z k20

exp ðikþ
z jzjÞ

" #
� δðzÞ

k20
ez � ez

ð121Þ
where the matrix M is given by

M¼
k20�k2x �kxky �kxk

þ
z sign z

�kxky k20�k2y �kyk
þ
z sign z

�kxk
þ
z sign z �kyk

þ
z sign z k2xþk2y

2
664

3
775:

ð122Þ
Finally, the Weyl formula gives the expression of the Green
function in terms of its Fourier transform with respect to x and
y. It reads

G0 r;ωð Þ ¼ i

2k20

Z
M
kþ
z

expðikxxþ ikyyþ ikþ
z jzjÞ dkx

2π
dky
2π

� δðrÞ
k20

ez � ez: ð123Þ

Eq. (123) is convenient for the integration of the Green tensor
G0ðri�r0;ωÞ over the volume Vi. Assuming that a cubic cell of
lateral size Δ yields

Gint
ii ¼ i

8π2k20

ZZZ Δ=2

�Δ=2
d3r∬ dkx dky

M
kþ
z

�exp ikxxþ ikyyþ ikþ
z zjÞ � ez � ez

k20
:

����
 

ð124Þ
In the following, we focus on the computation of Gint
ii;zz as all

diagonal terms are equal and all non-diagonal terms vanish
[156]. To do so, we need again some identities:Z Δ=2

�Δ=2
exp ikxxð Þ dx¼ 2 sin ðkxΔ=2Þ

kx
; ð125Þ

Z Δ=2

�Δ=2
expðikþ

z jzjÞ dz¼ 2

ikþ
z

expðikþ
z Δ=2Þ�1

� 	
; ð126Þ

∬
sin ðkxΔ=2Þ sin ðkyΔ=2Þ

kxky
dkx dky ¼ π2: ð127Þ

We use Eqs. (125) and (126) to perform the spatial integration
in Eq. (124). Then, we reinject the singularity inside the
integral by using Eq. (127) to finally end up with

Gint
ii;zz ¼

1

π2k20
∬

sin kxΔ=2
� �

sin kyΔ=2
� �

kxkyðkþ
z Þ2

� k2xþk2y

� �
exp ikþ

z Δ=2
� ��k20

h i
dkx dky: ð128Þ

We now perform the polar change of variable kx ¼ K cos θ,
ky ¼ K sin θ which leads to

Gint
ii;zz ¼

1

π2k20

Z þ1

K ¼ 0

K2exp½iΔ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�K2

q
��k20

k20�K2

dK
K

�
Z 2π

θ ¼ 0

sin ðKΔ=2 cos θÞ sin ðKΔ=2 sin θÞ
cos θ sin θ

dθ: ð129Þ

Finally, by making the change of variable kþ
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20�K2

q
,

one obtains

Gint
ii;zz ¼

4

π2k20

Z 0

k þ
z ¼ k0

þ
Z þ i1

k þ
z ¼ i0

" #
k20�K2exp ikþ

z Δ=2
� �

K2 kþ
z

dkzþ

�
Z π=2

θ ¼ 0

sin KΔ=2 cos θ
� �

sin KΔ=2 sin θ
� �

cos θ sin θ
dθ: ð130Þ

Going further Eq. (130) analytically is not possible to our
knowledge. Thus, a numerical integration is required and this
form is the most convenient to proceed.
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