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Photon echoes in strongly scattering media: A diagrammatic approach
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We study photon echo generation in disordered media with the help of multiple scattering theory based on
diagrammatic approach and numerical simulations. We show that a strong correlation exists between the driving
fields at the origin of the echo and the echo beam. Opening the way to a better understanding of nonlinear
wave propagation in complex materials, this work supports recent experimental results with applications to the
measurement of the optical dipole lifetime T2 in powders.
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I. INTRODUCTION

Wave scattering in disordered media has attracted consider-
able attention for decades. First undertaken within the general
scope of the multiple scattering theory, in close connection
with quantum mechanics [1–3], investigations later focused on
classical waves and optical processes, revealing features such
as the backscattering peak [4,5] or random lasing (see Ref. [6]
and references therein). Wave propagation in complex media
can also be combined with nonlinear optics [7,8]. In the specific
framework of four-wave mixing (FWM), it was recognized
quite early that coherent anti-Stokes Raman scattering (CARS)
can take place in polycrystalline and opaque media [9]. The
observation of wave localization, whether reduced, enhanced,
or simply tested by nonlinear processes, definitely opens new
perspectives [10–14].

The temporal dimension is generally absent from these
works. Indeed, the scattered light emerges from the sample
in close synchrony with the incoming field, either because one
operates far from the absorption lines, or because the lifetime
of the material resonances does not exceed the driving pulse
duration, such as in CARS. The signature of the investigated
signal is obtained either in the angular scattering pattern or in
the emission spectrum, the latter applying to nondegenerate
wave-mixing processes.

Instead, we now consider a nonlinear signal that emerges
from the sample long after the extinction of the driving
pulses. That time-domain discrimination may prove helpful
in situations where neither the direction nor the wavelength
would enable us to select the relevant scattered emission. This
time-delayed signal is produced by photon echo [15,16], a
nonlinear process that belongs to the same four-wave mixing
(FWM) class as CARS [17]. Photon echo results from the
resonant excitation of an absorbing line. The available time
delay is only limited by the optical dipole lifetime T2 and may
outdo the driving pulse duration by orders of magnitude.

Routinely used for T2 measurement, a photon echo experi-
ment is usually performed in samples of high optical quality.
However, there is considerable practical interest to substitute
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a cheap and easily produced rough powder to a high-quality
monocrystal since interesting chemical solids are often difficult
to crystallize [18]. Such a simplified access to T2 may expedite
new compound selection in the prospect of classical and
quantum processing [19–22].

The experimental observation of photon echo in rare-earth-
ion–doped polycrystalline powders at liquid helium tempera-
ture [23], and the successful demonstration of new compound
testing [24], call for a better understanding of the scattered
signal generation in such unusual conditions. In these studies,
the echo is efficiently detected by heterodyne mixing with a
replica of one driving field. Hence, quite unexpectedly, two
distinct fields are able to preserve a strong correlation after
erratic propagation through a disordered material although the
corresponding speckle patterns look very different. The origin
of such a disturbing and nonintuitive feature must be clarified.
The present paper extends the well-established linear multiple
scattering theory to the nonlinear, photon echo process. Special
attention is paid to explaining the strong correlation of the echo
with the driving field.

The manuscript is organized as follows: in Sec. II we sum-
marize the main characteristics of photon echoes. In Sec. III
we consider the case of a strongly disordered powder and we
derive a physical model to take into account photon echoes
in such a material. In Sec. IV theoretical expressions for the
average driving fields and intensities are obtained. The theory
is then expanded for the echo signal (average field, average
intensity, and correlation with a driving field) in Sec. V. Then
we compare the analytical results with numerical simulations
in Sec. VI before concluding in Sec. VII.

II. PHOTON ECHO FEATURES

Photon echo [15,16] refers to the time-delayed nonlinear
coherent optical response to resonant excitation by a specific
sequence of light pulses.

In absorbing materials, T2, the optical dipole lifetime, may
be much larger than the inverse absorption bandwidth. Indeed,
that bandwidth may reflect the Doppler shift, in gases, or a
nonuniform transition frequency shift, caused by interaction
with the environment, in condensed matter, rather than the
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homogeneous linewidth. This quasistatic effect is known as
inhomogeneous broadening. When resonantly excited by a
light pulse much shorter than T2, the optical dipole radiates
a free-induction decay (FID) signal. However this emission
rapidly fades out because of inhomogeneous phase shift,
although optical dipoles keep on oscillating in the medium.
The photon echo process, closely related to spin echo in
nuclear magnetic resonance (NMR), is used to cancel the
inhomogeneous phase shift and to recover a radiative signature
of the surviving dipoles.

Let us focus on stimulated echoes [25], generated by a
sequence of three successive pulses that resonantly excite an
ensemble of two-level atoms. The pulses are labeled 1, 2, and 3,
according to their time order. By reducing the level population
difference, resonant excitation partially bleaches the material
over the pulse bandwidth. However, bleaching caused by time-
separated pulses is not uniform over the excitation bandwidth.
In the same way as, in the space domain, two angled beams
can imprint a diffraction grating on a photographic plate, a
pair of time-separated pulses spectrally modulates the level
population difference. Hence, pulses 1 and 2, separated by time
interval t12, modulate the bleaching with period 1/t12. Then,
in the same way as a spatial grating deflects a probe beam at
an angle determined by the inverse ridge spacing, the spectral
grating delays the response to pulse 3, acting as a probe. The
response delay equals t12, the inverse period of the bleaching
spectral modulation.

To express an oscillating dipole in terms of the driving
pulses, let us define the positive and negative frequency
components of the i-labeled driving field Ei(r,t), centered at
time ti , as

Ei(r,t) = 1
2 [Ai(r,t) exp(iωLt) + c.c.] (1)

= 1
2 [Ei(r,t − ti) + c.c.], (2)

where ωL represents the pulse central frequency. Interaction
with an optical dipole is characterized by the Rabi frequency,

�i(r,t) = μabEi(r,t)
h̄

, (3)

where μab stands for the transition dipole moment. We also
need the time-to-frequency Fourier transform of the Rabi
frequency, defined as

�̃i(r,ω) =
∫

�i(r,t) exp [−iωt]dt. (4)

This quantity is a dimensionless number and |�̃∗
i (r,ωL)|

represents the pulse area. Since, according to Eq. (1), �i(r,t)
is centered at t = 0, �̃i(r,ω) is a slowly varying function of ω

over the pulse bandwidth.
In the weak-field limit, when |�̃∗

i (r,ωL)| � 1, the dipole
d(r,ωab,t), oscillating at position r at frequency ωab, can be
expressed to lowest order in the three driving fields as [17]

d(r,ωab,t) = i
μab

4
exp

[
− t − t3 + t12

T2
− t23

T1

]
×{�̃∗

1(r,ωab)�̃2(r,ωab)�̃3(r,ωab)

× exp [iωab(t − t3 − t12)] − c.c.}, (5)
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FIG. 1. (a) Sketch of experimentally investigated system, com-
posed of assembled crystalline grains. (b) Model used in theoretical
and numerical studies. In the echo-generating continuous homoge-
neous medium, point scatterers are immersed at random, which gives
rise to the multiple scattering effect. The particles are lying in a slab
geometry of size L which is convenient to derive simple analytical
expressions.

where T1 represents the upper level lifetime. At time t = t3 +
t12 all the dipoles, irrespective of the transition frequency value,
are phased back together since ωab(t − t3 − t12) vanishes,
which results in the photon echo emission. Since the oscillating
dipole at r is expressed in terms of the fields at the same
position, with no additional space dependence, this description
applies not only to transparent, high-optical-quality media, but
also to scattering materials.

Similar expressions describe the various optical four-wave
mixing processes. An important difference deserves to be
noticed, which is the absence of contribution proportional to
�̃1(r,ωab)�̃∗

2(r,ωab)�̃3(r,ωab). The extinction of this term is
not related to any spatial phase-matching condition but instead
reflects causality [17].

III. PHYSICAL MODEL FOR PHOTON ECHOES
IN DISORDERED MATERIALS

A. Structure of the medium

The polycrystalline powder in which photon echo has been
observed [23] can be sketched as an ensemble of contiguous,
disorderly distributed, microscopic grains that contain the ac-
tive echo-generating material [Fig. 1(a)]. Successive reflection
and refraction processes at the grain walls result in the observed
multiple scattering effect.

Such a disordered succession of index steps is difficult
to model. Instead, we propose a much simpler scheme that
preserves the two leading features; namely, echo generation
and multiple scattering. We replace the original structure by
(1) an echo-generating continuous and homogeneous active
medium, with (2) randomly embedded point scatterers. This
model is illustrated in Fig. 1(b). One can switch from the
disordered sample to the corresponding homogeneous slab by
just removing the scatterers. This offers an easy way to compare
the signals in these two situations.

Moreover, to achieve large optical thickness numerically,
we consider a two dimensional system and scalar waves (i.e.,
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the electric field is oriented along the translational invariant
direction y) embedded in a slab geometry with size L along z

and infinite along x as shown in Fig. 1. Translational invariance
along y results in substituting the point scatterers with Ns

rectilinear, infinitely long, thin rods, randomly placed inside
the system at positions rj . With transverse size much smaller
than the optical wavelength, the rods are assumed to behave
as isotropic scatterers. In addition, light is scattered elastically,
without absorption in the rods. This simplified model does
not permit a quantitative comparison with the experiment of
Ref. [23] but contains all physical ingredients (scattering and
echo production) required to give physical insights into the
existence of the strong correlation between the driving fields
and the echo beam.

B. Coupled wave equations

Let E(1,2,3)(r,ω) denote the three driving field spectral
amplitudes at position r and frequency ω. One also defines
the exciting field E(1,2,3)

exc (r i ,ω) at rod position r i . The latter
corresponds to the field illuminating the scatterer and is
obtained by subtracting the scatterer emission from the total
field. The wave equation reads [3]

E(1,2,3)
exc (r i ,ω) = E0(r i ,ω) + k2

0α

Ns∑
j=1
j �=i

G0(r i − rj ,ω)

×E(1,2,3)
exc (rj ,ω), (6)

where k0 = ω/c is the wave vector in vacuum, α represents
the scatterer polarizability, and G0 is the free space Green’s
function, connecting the field E at any position inside the
system to an electric-dipole point source p lying at position
r0 by

E(r,ω) = μ0ω
2G0(r − r0,ω)p. (7)

In a two-dimensional (2D) scalar problem, G0 is given by the
isotropic function

G0(r − r0,ω) = i

4
H

(1)
0 (k0|r − r0|), (8)

where H
(1)
0 denotes the Hankel function of first kind and zeroth

order.
In elastic, isotropic, scattering conditions, energy conserva-

tion leads to

k0 Im α = k3
0

4
|α|2, (9)

where the left-hand and right-hand sides respectively represent
the extinction and scattering cross sections [1–3]. Therefore,
the cross section cannot exceed 4/k0, which corresponds to

α = αmax = 4i

k2
0

. (10)

For the sake of simplicity, one derives the three driving
fields from identical incident fields, denoted as E0, and given
by plane waves at normal incidence,

E0(r,ω) = E0 exp [ik0z]. (11)

Once the exciting fields are known, the electric driving fields
can be calculated at any position inside or outside the medium

thanks to the relation

E(1,2,3)(r,ω) = E0(r,ω) + k2
0α

Ns∑
j=1

G0(r − rj ,ω)

×E(1,2,3)
exc (rj ,ω). (12)

The echo is created by active atoms placed inside the host
medium. In the previous section, we established that the source
of the echo beam is given by �̃∗

1(r,ωab)�̃2(r,ωab)�̃3(r,ωab).
Thus, the electric field of the echo signal can be cast in the
form

E(4)
exc(r i ,ω) = k2

0χ

∫
G0(r i − r ′,ω)E(1)∗(r ′,ω)

×E(2)(r ′,ω)E(3)(r ′,ω)d r ′

+ k2
0α

Ns∑
j = 1
j �= i

G0(r i − rj ,ω)E(4)
exc(rj ,ω), (13)

where χ is a constant describing the coupling between the
driving fields and the echo beam. Exactly as for the driving
fields, the electric field of the echo at any position can be
deduced from the relation

E(4)(r,ω) = k2
0χ

∫
G0(r − r ′,ω)E(1)∗(r ′,ω)

×E(2)(r ′,ω)E(3)(r ′,ω)d r ′

+ k2
0α

Ns∑
j=1

G0(r − rj ,ω)E(4)
exc(rj ,ω). (14)

This set of equations is overall reminiscent of previous
descriptions of nonlinearities in complex systems [7,13,26,27],
and similarities with these works will be found all along the
following theory.

For a given spatial distribution of the Ns scatterers, referred
to as a configuration, one has to solve the Ns-linear-equation-
set represented by Eq. (6). Then, with the help of Eq. (12),
one can calculate the source term in Eq. (13), which leads to
the Ns values of the exciting echo field E(4)

exc(rj ,ω). Finally,
substitution of E(4)

exc(rj ,ω) into Eq. (14) determines the echo
field anywhere, inside or outside the sample. The large size
of the system linear equations can be handled only through
numerical computation.

C. Configurational average

The available experimental data are generally insufficient to
define a specific configuration. Conversely, the detailed field
structure, as provided by the numerical solution, often exceeds
the detector spatial, angular, or temporal resolution. Therefore,
the experimentally accessible data, averaged over space and
angle (in a rigid sample), or time (in a fluid), are expected to
coincide with statistical averages over all possible disordered
configurations. Of course, averaging washes out fine details,
such as the speckle pattern of a fluctuating intensity emerging
from a disordered medium.

One can approach the statistical average numerically, by
averaging the solutions over a set of different configurations.
More interestingly, in contrast with the single configuration
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problem, statistical average is accessible analytically. As will
become clear in the following, the analytical solution not only
saves computation time, but also brings physical insight into
the observable quantities.

In the next two sections we shall adapt the available tools to
echo generation in disordered media. The numerical solution,
discussed in Sec. VI, will serve to validate the analytical
procedure.

IV. MULTIPLE SCATTERING THEORY FOR THE
DRIVING FIELDS

In this section, we derive the average amplitude and inten-
sity of the driving fields, as well as another quantity called the
ladder operator, in order to get the necessary building blocks
to obtain the echo signal. Since this is a textbook formalism,
we only summarize the key steps. The interested reader may
refer to Refs. [28,29] to find more details.

A. Average field

Let us first compute the average field. For that purpose, we
combine Eqs. (6) and (12) to obtain a cluster expansion of the
driving fields. Omitting the exponents (1,2,3) and the frequency
ω related to the driving fields for the sake of simplicity, we get
[30]

E(r) = E0(r) + k2
0α

Ns∑
i=1

G0(r − r i)E0(r i)

+ k2
0α

Ns∑
i=1

G0(r − r i)k
2
0α

Ns∑
j = 1
j �= i

G0(r i − rj )

×E0(rj ) + · · · . (15)

Averaging Eq. (15) over the configurations of the disorder
leads to a closed and exact equation called the Dyson equation
[31,32]. In the following, the discussion is restricted to the
independent scattering approximation (ISA), where all the
scattering events along a scattering sequence are statistically
independent. The ISA is valid in a dilute medium, and the
corresponding condition will be elucidated soon. In this limit,
the Dyson equation reads

〈E(r)〉 = E0(r) + ρsk
2
0α

∫
G0(r − r ′)〈E(r ′)〉d r ′, (16)

where the brackets 〈. . .〉 denote the statistical average and ρs

is the density of scatterers.
The formal iterative solution of Eq. (16) leads to

〈E(r)〉 = E0(r) + ρsk
2
0α

∫
〈G(r − r ′)〉E0(r ′)d r ′, (17)

where

〈G(r − r0)〉 = G0(r − r0) + ρsk
2
0α

×
∫

G0(r − r ′)〈G(r ′ − r0)〉d r ′. (18)

Hence, Eq. (17) expresses 〈E(r)〉 in terms of E0 and of
the average Green’s function 〈G〉, which can be obtained by
solving Eq. (18). Actually, Eq. (18) is the Dyson equation for

the average Green’s function 〈G(r − r0)〉, the average field
radiated at position r by a point source, located at r0.

To solve Eq. (18) we assume a bulk geometry, ignoring
the finite size of the actual slab. In this framework, Fourier
transforming Eq. (18) leads to:

〈G(k)〉 = G0(k) + G0(k)ρsk
2
0α〈G(k)〉. (19)

Substituting the Fourier transform of the free-space Green’s
function

G0(k) = (
k2 − k2

0

)−1
(20)

into Eq. (19), we readily get

〈G(k)〉 = (
k2 − k2

eff

)−1
. (21)

where

keff = k0

√
1 + ρsα. (22)

Except for the substitution of k0 with keff, G0(k) and 〈G(k)〉
are expressed in the same way. As a consequence, inverse
Fourier transform of Eq. (21) leads to

〈G(r − r0)〉 = i

4
H

(1)
0 (keff|r − r0|), (23)

which can be compared with the vacuum counterpart given by
Eq. (8). The average field propagates in an effective system
with an effective permittivity, the imaginary part of which
describes the attenuation due to scattering (loss by scattering).
Indeed,

keff ∼ k0 + i

2�
, (24)

where the scattering mean-free path � (average distance be-
tween two consecutive scattering events) is given by

1/� = ρsk0 Im α. (25)

At this stage we are able to explicitly give the ISA condition
in a dilute system as k0� 	 1.

In the slab geometry, under illumination by a plane wave
E0(z) at normal incidence to the interfaces, Eq. (17) reduces
to

〈E(z)〉 = E0(z) + (
k2

eff − k2
0

) ∫ L

0
〈G(z − z′)〉E0(z′)dz′,

(26)
where

〈G(z)〉 = i

4

∫ ∞

−∞
H

(1)
0 (keff

√
x2 + z2)dx (27)

= i

2keff
exp [ikeff|z|] (28)

is the one-dimensional (1D) average Green’s function.
Substituting E0(z) given by Eq. (11) into Eq. (26), one

readily obtains:

〈E(z)〉 = E0 exp [ikeffz] (29)

in the ISA conditions.
The corresponding intensity (often called ballistic or coher-

ent intensity) is given by

IB(z) = |〈E(z)〉|2 = I0 exp
[
−z

�

]
. (30)
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From this, one can define the optical thickness as the ratio
b = L/�, in terms of which the relative power, ballistically
transmitted by the system, can be expressed as TB = exp(−b).

It is usual in the multiple scattering theory to have a simple
representation of iterative equations in terms of diagrams. For
Eq. (18), it reads

(31)

where circles and solid lines denote scattering events and free-
space Green’s functions G0, respectively.

B. Average intensity

The same work can be carried out to compute the average in-
tensity. The field correlation 〈E(r)E∗(ρ)〉, coinciding with the
average intensity when r = ρ, is driven by the Bethe–Salpeter
equation [33,34], which, in the dilute-system approximation,
reduces to

〈I (r)〉 = |〈E(r)〉|2 + 4k0

�

∫
|〈G(r − r ′)〉|2〈I (r ′)〉d r ′. (32)

The iterative solution to that equation can be expanded as a
series of diagrams:

(33)

where the upper (lower) line corresponds to the field (its conju-
gate) respectively. Thick solid lines correspond to the average
Green’s functions and thick dashed lines denote average fields.
The circles represent the scattering events, which are joined
by vertical lines since they occur at the same position, in the
same order, for both fields. The resulting characteristic shape
is known as a ladder diagram.

Not only does that diagram expansion represent a conve-
nient mathematical tool, but it also conveys a physical picture
for the averaged intensity propagation through a disordered
medium. Indeed, as illustrated by this diagram, statistical
average washes out most of the contributions to 〈I 〉 at position
r—those affected by the erratic spatial phase factors that build
up when E and E∗ follow different paths, and strongly depend
on the path details. Only survive the scattering sequences where
both fields E and E∗ follow the same path, with the same
scatterers located at the same positions. As will soon become
clear, that drastic selection results in speckle-structure erasure.
Averaging over a spatial region, with volume larger than λ3, for
a given and fixed scatterer distribution, is expected to achieve
the same scattering path selection as statistical averaging over
scatterer distributions.

With the help of the ballistic intensity defined in Eq. (30),
one readily casts Eq. (32) in the form

ID(r) − 4k0

�

∫
|〈G(r − r ′)〉|2ID(r ′)d r ′

= 4k0

�

∫
|〈G(r − r ′)〉|2IB(r ′)d r ′, (34)

where ID(r) = 〈I (r)〉 − IB(r) represents the diffuse intensity.
Deep inside the medium, at distances 	� from the interfaces,
|〈G(r − r ′)〉|2 is given by Eq. (23). In this region, one may
simplify the left-hand side of Eq. (34), observing that the
spatial frequency spectrum of ID(r) is much narrower than that
of |〈G(r − r ′)〉|2. Hence one may replace the latter function
Fourier transform by its second-order Taylor expansion, which
leads to

ID(r) − 4k0

�

∫
|〈G(r − r ′)〉|2ID(r ′)d r ′ = −�2

2
	ID(r).

(35)

The right-hand side in Eq. (34), operating as a source term,
vanishes far from the interfaces, in the region where Eq. (23)
is valid. Hence, according to Eq. (35), Eq. (34) reduces to
	ID(r) = 0, which conveys no information on ID(r) buildup
from ballistic intensity. Closer to the input interface, the source
term no longer vanishes but the bulk approximation, ignoring
the finite size of the slab, no longer applies. However, numerical
simulations appear to be consistent with Eq. (34), provided the
right-hand side of this equation is replaced with IB(r).

The resulting diffusion equation [29], now considered to be
valid throughout the medium, reads

−�2

2
	ID(r) = IB(r). (36)

That equation is complemented by two boundary condi-
tions, assessing the absence of incoming diffuse intensity
through both interfaces:

ID(z = 0) − z0
∂ID(z)

∂z

∣∣∣∣
z=0

= 0, (37)

ID(z = L) + z0
∂ID(z)

∂z

∣∣∣∣
z=L

= 0, (38)

where z0, the so-called extrapolation length [35], is on the order
of �. Let F (z) represent any solution of the equation

�2

2
F ′′(z) = I0 exp

[
−z

�

]
. (39)

Then, the solution of the diffusion equation, consistent with
the boundary conditions, reads

ID(z) = (z + z0)F (L) + (L + z0 − z)F (0)

L + 2z0

+z0(z + z0)F ′(L) − z0(L + z0 − z)F ′(0)

L + 2z0
− F (z).

(40)

Finally, the solution of Eq. (36) reads

ID(z) = 2I0

[(
1 + z0

�

)L + z0 − z

L + 2z0
− exp

(
−z

�

)]
. (41)
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FIG. 2. Ballistic (IB , black dash-dotted line) and diffuse (ID , blue
dashed line and red solid line) intensity as a function of the depth z

inside the slab for b = 10 and k� = 40.

The factor z0/� in this equation makes ID(z) sensitive to z0 at
any depth in the medium.

The variations of IB and ID with z are plotted in Fig. 2.
We have taken z0 = π�/4, a standard value for a 2D problem
[29]. We may notice the very fast decay of IB on a typical
length given by �, and the slower decay of ID . This plot
represents a stationary state, where the sample, continuously
fed by the incident plane wave, re-emits all that energy through
the interfaces. Although Eq. (41) is valid only within the slab
boundaries, the spatial intensity distribution, as represented in
Fig. 2, suggests that most of the incoming flux is scattered in
the backward direction through the input interface.

According to Eqs. (30) and (41), the average intensity reads

〈I (z)〉 = I0

[
2
(

1 + z0

�

)L + z0 − z

L + 2z0
− exp

(
−z

�

)]
. (42)

C. Ladder operator

In the same way as we have defined the average Green’s
function for the average field, we may define a Green’s function
for the average intensity. Called the ladder operator, this
quantity can be represented by the diagram

(43)

which analytically gives

L(r,r0) = 4k0

�
δ(r − r0) + 4k0

�

∫
|〈G(r − r ′)〉|2L(r ′,r0)d r ′.

(44)
In large systems (L 	 �), Eq. (44) reduces to

−�2

2
	L(r,r0) = 4k0

�
δ(r − r0). (45)

Expressed in terms of |〈G(r − r ′)〉|2, just as Eq. (32), the
ladder operator does not help to handle source terms such as

IB(r), which are strongly confined to the close vicinity of the
interfaces. However, as will be seen soon, it proves helpful to
deal with slowly varying sources terms, spreading all over the
medium.

V. MULTIPLE SCATTERING THEORY FOR THE
ECHO SIGNAL

This section is the original part of the study. We intend to
analytically derive the statistical average of the echo field and
intensity and to express the echo field correlation with one of
the driving fields. According to Ref. [23], the amplitude of this
correlation can be large, even in the multiple scattering regime.
The following derivation will help to understand the origin of
this strong correlation.

A. Average echo field

Along the lines of the above-summarized multiple scatter-
ing theory, we have to identify the most important diagrams
in the context of photon echo physics. Let us focus first on
the average echo field. According to Eqs. (13) and (14), the
echo signal is created at any position in the host medium and
is given by E(1)∗(r ′,ω)E(2)(r ′,ω)E(3)(r ′,ω). To construct the
average echo field, we let the average intensity and the average
field merge at r ′. The resulting signal propagation from r ′ to r
is carried out by the average Green’s function. That scheme is
represented by the following diagram structure:

(46)

where the square represents echo generation; the middle
line corresponds to E(1)∗; the upper and lower lines may
respectively refer to E(2) and E(3), or to E(3) and E(2). All the
significant contributions to 〈E(4)(r)〉 share the same structure,
with different numbers of scattering events on each branch.
Due to the possible permutation of E(2) and E(3), each diagram
should be counted twice.

Finally, in quite the same way as the incident average
field [see Eq. (26)], 〈E(4)(r)〉 can be expressed analytically
as follows:

〈E(4)(z)〉 = 2k2
0χ

∫ L

0
〈G(z − z′)〉〈I (z′)〉〈E(z′)〉dz′, (47)

still in a dilute system with k0� 	 1. In the large optical
thickness limit, with b 	 1, the integral upper bound can be
changed into z, without significant deviations except at the
very beginning of the slab (z < �). Using Eqs. (29) and (42),
we finally get

〈E(4)(z)〉 = ik0�χE0I0 exp [ikeffz]

×
{

2

�

(
1+z0

�

) (L+z0)z − z2/2

L + 2z0
+ exp

[
−z

�

]
−1

}
.

(48)
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FIG. 3. Ballistic intensity of the echo I
(4)
B = |〈E(4)〉|2 as a function

of the depth z/� inside the slab (numerical computation: red solid
line; analytical solution: blue dashed line); echo intensity in a homo-
geneous slab I

(4)
hom (black dash-dotted line); b = 10 and k0� = 40.

In terms of intensity, this gives

I
(4)
B (z) = |〈E(4)(z)〉|2. (49)

These quantities can be compared with their equivalents in a
homogeneous slab with the same active atom concentration. To
deprive the slab from all the scattering centers, we just replace
the average Green’s function, intensity and field in Eq. (47) by
their counterparts for a homogeneous medium, which gives:

E
(4)
hom(z) = k2

0χ

∫ L

0
G0(z − z′)I0(z′)E0(z′)dz′. (50)

Provided k0z 	 1, the corresponding homogeneous echo field
and intensity reduce to

E
(4)
hom(z) = ik0χE0I0z

2
exp [ik0z], (51)

I
(4)
hom(z) = k2

0χ
2I 3

0 z2

4
. (52)

It should be pointed out that the bulk-geometry approximation
we have been using, imposing the large optical depth condition
L 	 �, forbids any continuous transition from a disordered
to a homogeneous medium, for example by continuously
increasing the scattering mean-free path �.

In Fig. 3, we have plotted I
(4)
B (z) and I

(4)
hom(z), both nor-

malized to I
(4)
hom(L), the echo intensity at the exit interface of

a homogeneous slab. Close to the input, I
(4)
B (z) and I

(4)
hom(z)

exhibit the same parabolic variation with z, which is the
signature of the spatial coherence of echo buildup. In that
region, the much faster growth of echo intensity in the dis-
ordered medium reflects the incident energy confinement near
the input side of the slab. However, while the signal intensity
grows quadratically in the homogeneous slab, a maximum is
reached at z � 2� in the disordered medium, followed by a fast
decrease with z. Scattering affects both the echo generation and
propagation. On the one hand, the driving field 〈E(z)〉 drops
with z, reducing contributions to the signal deeper into the

slab. On the other hand, the ballistic component of the echo
is attenuated as it propagates through the medium, feeding its
diffuse part.

B. Correlation of photon echoes with driving fields

We now present a key stage in our investigation; namely,
the calculation of the correlation function

C(4)(r) = 〈E(r)E(4)∗(r)〉, (53)

meaning the correlation of one driving field with the photon
echo signal. This quantity is central in this work, first because
it has been accessed experimentally [23], second because its
observed large amplitude represents a counterintuitive result.
Indeed, the driving fields and the nonlinear signal are expected
to develop very different distorted wavefronts as they travel
through the disordered medium, which should hamper any
correlation buildup.

One easily disposes of the ballistic component C
(4)
B (z) =

〈E(z)〉〈E(4)∗(z)〉, with the help of Eqs. (29) and (48). This
contribution dies out at short distance from the input interface.
Expressing the diffuse component C

(4)
D (z) = C(4)(z) − C

(4)
B (z)

is more challenging. Proceeding along the lines of the cal-
culation of ID(z), we only retain the diagrams where the
two participant fields follow the same sequence, undergoing
scattering events in the same order at the same positions.
More precisely, the propagation path is first followed by two
incoming fields, one acting as a reference, the other as a
driving field. They travel together up to an interaction point
where the driving fields disappear, giving birth to an echo.
From that point on, the echo and the reference field progress
side by side along the same path. At each interaction point,
the material response radiates in all directions, but all these
contributions are expected to be accounted for by summation
over the different paths. In the resulting diagram

(54)

both propagations up to r ′′′ and ρ are described by the average
intensity 〈I 〉, while the side-by-side progression of the echo
and the reference fields from r ′′ to r ′ is conveyed by the
ladder operator L. The box from r ′′′ to r ′′, which contains
the conversion of the driving fields into the echo, is given by

K(r ′′,r ′′′) = k2
0χ

∫
〈G(r ′′ − r ′′′)〉

× 〈G∗(r ′′ − ρ)〉〈I (ρ)〉〈G∗(ρ − r ′′′)〉dρ. (55)

Putting all the pieces together, one gets

C
(4)
D (r) = 8k0

�

∫
|〈G(r − r ′)〉|2L(r ′,r ′′)K(r ′′,r ′′′)

×〈I (r ′′′)〉d r ′d r ′′d r ′′′, (56)
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where a factor of two takes into account the driving field
permutation.

The origin of the correlation strength is all contained in
the diagram (54), and can be realized already, without further
calculation. Actually, the correlation buildup appears to be
exactly as selective as the diffuse intensity propagation scheme,
discussed in Sec. IV B. In both cases one may neglect all the
contributions containing a spatial phase shift, only keeping the
single-path diagrams. Hence both the diffuse correlation and
the diffuse intensity survive in the same way, traveling along
the same paths through the disordered medium.

According to Eq. (42), the average intensity varies slowly
in a large system (i.e., b 	 1), deep inside the medium
(i.e., z 	 �). The same statement can be formulated for the
ladder. As the average Green’s function scales typically with
the scattering mean-free path �, 〈I (ρ)〉 and L(r ′,r ′′) can be
replaced by 〈I (r ′′′)〉 and L(r,r ′′′), respectively, in the above
integrals. Moreover, using the well-known identity [29]

�

k0
Im〈G(r − r ′′)〉 =

∫
〈G(r − r ′)〉〈G∗(r ′ − r ′′)〉d r ′ (57)

for r ′′ = r , we finally obtain

C
(4)
D (r) = 2K

∫
L(r,r ′′′)〈I (r ′′′)〉2d r ′′′, (58)

with

K = k2
0χ

∫
〈G(r ′′ − r ′′′)〉〈G∗(r ′′ − ρ)〉〈G∗(ρ − r ′′′)〉dρd r ′′.

(59)
Making use again of Eq. (57), we can simplify K into

K = k0�χ

∫
Im [〈G(ρ)〉]〈G∗(ρ)〉dρ, (60)

which, for a dilute medium, reduces to

K = k0�χ

2i

∫
|〈G(ρ)〉|2dρ (61)

= �2χ

2i
Im [〈G(0)〉] = �2χ

8i
. (62)

Applying the Laplace operator to Eq. (58), and making use
of Eq. (45), one finally obtains

−�2

2
	C

(4)
D (r) = −ik0�χ〈I (r)〉2. (63)

This equation is the main result from the analytical theory.
It takes a similar form as Eq. (36) obtained above for the
diffuse intensity. However, in sharp contrast to Eq. (36), the
source term in Eq. (63) has significant values at any depth in
the medium, which entails a twofold consequence. First, since
the correlation buildup is not localized near the slab input, the
bulk approximation made for the diffusion equation is justified.
There is no need to try to extrapolate this equation outside its
region of validity. Second, the continuous feeding of C

(4)
D (r)

by 〈I (r)〉2 strongly contributes to enhance the correlation, all
along the progression through the medium.

Provided Eq. (63) is complemented with the boundary
conditions [see Eq. (37)] previously used to solve Eq. (36),
the solution C

(4)
D (z) is also given by Eq. (40), where F (z) now
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FIG. 4. Correlation of the echo signal with one of the driving
fields C(4) = 〈EE(4)∗〉 as a function of the depth z/� inside the slab
(analytical solution: blue dashed line; numerical computation: solid
line); b = 10 and k0� = 40. The correlation is normalized to the
corresponding quantity at the exit of a homogeneous slab.

represents any solution of

F ′′(z) = −2i
k0

�
χ〈I (z)〉2. (64)

We may compare the correlation in a disordered medium
with the corresponding quantity in a homogeneous slab. The
latter reads

C
(4)
hom(z) = Ehom(z)E(4)∗

hom(z) = χI 2
0

4
{−2ik0z − 1

+ exp[−2ik0(L − z)]}, (65)

which, for depths larger than λ = 2π/k0, becomes

C
(4)
hom(z) = −ik0χI 2

0 z

2
= i

√
I0I

(4)
hom(z). (66)

According to Fig. 4 where we have displayed the variations
of |C(4)

D (z)|/|C(4)
hom(L)| with z, the strength of |C(4)

D (z)| largely
exceeds that of |C(4)

hom(L)| at any depth.
Normalization with (〈I 〉〈I (4)〉)1/2, where 〈I (4)〉 stands for

the echo average intensity, helps to reveal the correlation
strength. Indeed, as a consequence of the Cauchy Schwarz
inequality, the variation range of |C(4)

D (z)|/[〈I (z)〉〈I (4)(z)〉]1/2

is limited to interval [0,1], where the upper bound is reached
when the echo is fully correlated with the reference field.
To obtain the normalized correlation, we calculate the echo
average intensity in the next section.

C. Average intensity of echo and normalized correlation

As for the incoming intensity and the calculation of the
correlation function, we expand the echo average intensity into
a ballistic and a diffuse part as follows:

〈I (4)(r)〉 = I
(4)
B (r) + I

(4)
D (r). (67)
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FIG. 5. Echo intensity 〈I (4)〉 = 〈|E(4)|2〉 as a function of the depth
z/� inside the slab (numerical computation: red solid line; analytical
solution: blue dashed line); b = 10 and k0� = 40.

The ballistic part is given by Eq. (49) and the diffuse part reads
diagrammatically as

(68)

We follow the same procedure as for the echo correlation
function C

(4)
D . According to the diagram, the source term for

the echo diffuse intensity reads as the correlation multiplied
by the average intensity. This leads to the following diffusion
equation governing the evolution of I

(4)
D :

−�2

2
	I

(4)
D (r) = 2k0� Re[iχ∗C(4)(r)]〈I (r)〉. (69)

Again, the source term in this diffusion equation is delocalized
over the whole sample, thus leading to a different behavior for
I

(4)
D compared with ID (or for 〈I (4)〉 compared with 〈I 〉) even

if both quantities have significant values for all depths inside
the slab, as illustrated in Figs. 5 and 2.

We note that 〈I (4)〉 is much larger than I
(4)
hom. Two arguments

can be put forward as an explanation: (1) In a random-walk
picture, the paths followed by photons inside the disordered
medium can be much longer than the slab thickness. Indeed,

0 2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8
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∣
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∣
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∣
∣ /
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II(4) analytical

FIG. 6. Normalized correlation |C(4)(z)|/[〈I (z)〉〈I (4)(z)〉]1/2 in-
side the slab. The analytical result, based on the diagrammatic
approach, and the numerical computation are both displayed as a
function of the normalized depth z/� (blue dashed line and red solid
line, respectively), with b = 10 and k0� = 40.

the average path length is of the order of 〈s〉 = 2L2/� in a thick
(b 	 1) and dilute (k0� 	 1) scattering medium while it is
shom = L for a homogeneous slab. (2) In a disordered medium,
the driving fields have larger values than in a homogeneous
material thanks to light confinement by scattering. This is
visible in Fig. 2 where a maximum average intensity on the
order of 2.5I0 is reached.

Finally, Fig. 6 shows the dramatic increase of the normalized
correlation |C(4)(z)|/[〈I (z)〉〈I (4)(z)〉]1/2 with the penetration
depth, up to ≈0.8 at the slab exit.

VI. NUMERICAL RESULTS

The analytical expressions are expected to be consistent
with the statistically averaged solutions of the coupled wave
equations (see Sec. III B). We must resort to numerical com-
putation to obtain these solutions, in order to validate the
analytical approach.

Solving Eq. (6) represents the most challenging task. In-
deed, to solve this set of Ns equations, one has to inverse a
large Ns × Ns matrix, the actual size of which is imposed by
the large depth (L 	 �) and slab geometry (infinite transverse
extension) assumptions. To minimize Ns , we reduce the slab
transverse dimension to D = 4L, expected to be a good trade-
off, limiting finite-size effects while maintaining a reasonable
computing time. To satisfy the diffusive-regime, large-depth,
condition we set L/� = 10. Hence Ns = DLρs = 400�2ρs .
According to Eq. (25), for a given value of �, the scatterer
density ρs is minimized when Im α is maximized. As already
pointed out in Sec. III B [see Eq. (10)], the maximum value
of Im α, compatible with energy conservation, is 4/k2

0 , which
leads to �2ρs = k0�/4. Finally, to satisfy the dilute medium
condition k0� 	 1, we set k0� = 40, which leads to Ns =
4000.
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Since the echo signal (13) and the driving field (6) only differ
from each other through the source term, they are both solved
by the same inverse matrix. In the echo signal equations we
have to discretize the integral of the source term. As we perform
statistics (i.e., computation of average fields, intensities and
correlations), we have chosen to treat the active region as a
collection of Na randomly placed active atoms at positions ρj .
This leads to

k2
0χ

∫
G0(r − r ′)E(1)∗(r ′)E(2)(r ′)E(3)(r ′)d r ′

∼ k2
0χSa

Na∑
j=1

G0(r − ρj )E(1)∗(ρj )E(2)(ρj )E(3)(ρj ), (70)

where Sa = LD/Na is the surface of one active atom. The
statistical observables are not sensitive to the number of active
regions, Na , even if very small (i.e., continuum not reached).
In practice, we have used Na = 4000.

Having obtained the expression of the exciting echo field
on each scatterer, we use Eq. (14) to compute the echo field at
any position in or outside the system.

Repeating the same procedure for a large set of randomly
drawn configurations, we are in position to evaluate statistical
quantities such as the average echo field, the correlation
of the echo with a driving field, and the average echo
intensity.

In the slab geometry, under plane-wave illumination at nor-
mal incidence, statistical quantities are invariant by translation
along the transverse direction x. To spare computation time,
while taking care of finite-size effects, we combine average
over Nconf = 200 000 configurations with limited range inte-
gration over x.

A. Average field of the echo

As observed in Fig. 3, the analytical and the numerical
approaches consistently describe the echo ballistic intensity
variation with the depth inside the slab, although the analytical
expression is derived under the diffusion approximation, valid
only at large depths (i.e., z 	 �).

B. Correlation of photon echoes with the driving fields

Figure 4 gives the evolution of the correlation of the echo
field with one of the driving fields as a function of the depth
inside the slab. Again a good agreement is clearly obtained
between the analytical calculation and the numerical model.
Nevertheless, the analytical result is not fully quantitative.
Two potential effects have been identified to explain this
discrepancy. First the validity of the diffusion approximation
can be questioned. In the linear regime, the agreement be-
tween the diffusion equation theory and the coupled-dipole
simulation is very good, as shown in Fig. 2 even for small
depths. However, when nonlinearities are present, there is
potentially an accumulation of errors because of the recursion
in the diffusion model provided by Eqs. (36) and (63). For
small and intermediate depths, the radiative transfer equation
(RTE) could be a good candidate for a refined model valid at
all depth [36]. However, the main drawback is that analytical
results do not exist for the RTE in a slab geometry. Second

and potentially more important, the signal is very sensitive to
the boundaries in the presence of nonlinear effects. This has
been checked numerically by changing the transverse size D of
the pseudo-slab geometry and the results show that converged
results are hard to obtain.

C. Average intensity of the echo

Regarding the average intensity of the echo signal, the
numerical results are presented in Fig. 5. Although qualitative
agreement is preserved (confirming that the analytical theory
captures the main physical mechanisms), a larger discrepancy
is found between the theory and the simulations than for the
correlation. The reasons are the same: finite transverse-size
effects in presence of nonlinearity and validity of the diffusion
approximation.

VII. CONCLUSION

We have presented a theoretical study of photon echo
generation in disordered scattering media. Developed in terms
of Feynman–Dyson diagrams, the multiple scattering sta-
tistical approach has been validated by ab initio numerical
simulations.

According to previous experiments [23], the driving fields
and the echo beam stay strongly correlated as they propagate
through the disordered medium. The theory has confirmed this
paradoxical feature and provided some physical insight. In the
buildup of any two-field observable, such as diffuse intensity
or diffuse correlation, the same dominant diagrams emerge:
those that make both fields follow a common path through the
disordered medium. This single propagation scheme explains
the similar size of those different quantities, and the large size
of the normalized correlation.

Another noticeable result is the strong enhancement of the
echo by the disordered medium, in comparison with echo
emission in the corresponding homogeneous material with the
same concentration of active atoms. This might open the way
to applications in energy conversion.

The present work has been confined to signal investiga-
tion inside the disordered material. To be consistent with
experimental conditions, we should consider signal collection
outside the material, on a large aperture detector. This issue
is deferred to a future work. Encouraged by the present
promising results, we also plan to refine the analysis in such
directions as that of the RTE, with the help of Monte Carlo
simulations.
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