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Speckle patterns generated in a disordered medium carry a lot of information despite the apparent com-
plete randomness in the intensity pattern. When the medium possesses χ(2) nonlinearity, the speckle is
sensitive to the phase of the incident fundamental light, as well as the light generated within. Here, we
examine the speckle decorrelation in the fundamental and second-harmonic transmitted light as a function
of the varying power in the fundamental beam. At low incident powers, the speckle patterns produced by
successive pulses exhibit strong correlations, which decrease with increasing power. The average corre-
lation in the second-harmonic speckle decays faster than in the fundamental speckle. Next, we construct
a theoretical model, backed up by numerical computations, to obtain deeper physical insights into the
faster decorrelations in the second-harmonic light. While providing excellent qualitative agreement with
the experiments, the model sheds light on the contribution of two effects in the correlations, namely, the
generation of second-harmonic light and the propagation thereof.
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I. INTRODUCTION

Wave transport in a random medium is a univer-
sal phenomenon that transcends the boundaries of vari-
ous subtopics, such as optics, condensed-matter physics,
acoustics, quantum matter, etc. [1]. Among all of these, the
transport of optical waves has attracted the most attention
due to the sophisticated experimental capabilities offered
by optics. Indeed, the study of photon transport through
disordered media has revealed important facets of transport
in all regimes of disorder, from weak scattering occur-
ring in media such as fog to strong scattering in dense
powders. With increasing disorder, incident waves experi-
ence multiple scattering, where the transport of intensity
is described as a diffusion process. Further increase in
disorder leads to exotic phenomena such as weak localiza-
tion and strong localization manifest in the system, which
essentially represent reduced or arrested photon transport
[2]. Traditionally, all these phenomena have been stud-
ied in the linear regime due to the inherent noninteracting
nature of photons. However, interactions can be created
by introducing nonlinearities into the media. Materials that
respond to higher powers of incident electric fields can be
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exploited to create disordered systems that favor nonlin-
ear propagation. The consequences of nonlinearity on the
physics of light transport in disorder have been extensively
addressed both in χ(3) media, which are media exhibit-
ing intensity-dependent refractive index [3–6], and in χ(2)

media, which can generate second-harmonic frequencies
of light [7–14]. In the latter scenario, research efforts have
been focused on the fundamental physics of diffusion and
weak localization in χ(2) disorder [7,8,10,11] and on the
applicability of disorder in enhancing nonlinear generation
[12–14].

One of the most fundamental effects of disorder that
depends on the phase of the propagating light is the appear-
ance of speckles. A speckle pattern is the random intensity
distribution of bright and dark spots developed due to the
interference of many coherent wavelets with the same fre-
quency and different amplitudes and phases traveling in a
disordered medium [15]. Despite the apparent complete
randomness in the intensity distribution, various corre-
lations [16] are known to exist in the speckle pattern.
For instance, the optical-memory effect “remembers” the
incoming wave front under slight perturbation in position
and angle [17–21], an idea that has emerged as an efficient
tool in imaging through opaque media [22,23]. Recent
theory and experiments have unveiled non-Gaussian and
long-range correlations between transmitted and reflected
speckle patterns [24–26]. Not surprisingly, the rich physics
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of speckle correlations has already motivated research
in nonlinear systems. For instance, a nonlinear optical-
memory effect [27] has been revealed in a χ(3) medium,
namely a silica aerogel, through a series of pump and probe
experiments wherein a disordered medium is agitated by
an optothermal nonlinearity. Another well-known conse-
quence of χ(3) nonlinearity is speckle instability, wherein
the speckle pattern fluctuates and becomes unstable when
the nonlinearity surpasses a threshold value [28–30]. In the
weak-localization regime, the speckle patterns formed by
nonlinear point scatterers exhibit dynamic instability and
lead to chaotic behavior of the system [31]. Such speckle
instabilities in χ(3) nonlinear disordered media have been
experimentally reported [32]. On the other hand, χ(2)

nonlinearity has been employed to primarily investigate
angular correlations in speckles. For example, experiments
and calculations have shown that angular correlations in
the reflected speckle scale with the sample thickness for
second-harmonic light, in contrast to scaling with the mean
free path for fundamental light [33]. In another study [34],
angular correlations in second-harmonic speckle under
dual-beam excitation have been presented in a medium of
LiNbO3 microcrystals.

In this paper, we report our experimental and theoreti-
cal studies on intensity-dependent decorrelation in speckle
patterns produced by a second-order nonlinear disordered
medium. Specifically, we show that the fundamental and
second-harmonic speckle patterns produced by succes-
sive incident pulses exhibit strong correlations at low
input power, which drop at higher power. The correla-
tion between fundamental speckle patterns remains high
compared to the second harmonic. The decay rate of the
average correlation with increasing power is larger in the
second-harmonic speckles than in the fundamental speck-
les. To understand the decorrelation process, we build a
theoretical model that traces the propagation of the linear
field, followed by the conversion to the second harmonic,
and finally followed by the propagation of the second har-
monic. The model is in excellent qualitative agreement
with the experimental results. The theoretical model is
also backed up by a Monte Carlo computation, which
sheds light on two contributions to the decorrelation pro-
cess, namely, the decorrelation during the generation of the
second harmonic and that due to the propagation thereof.

II. EXPERIMENTS

A. Experimental setup

In preparation for the experiment, commercially avail-
able KDP (potassium dihydrogen phosphate, EMSURE
ACS) crystal grains are adopted as our nonlinear mate-
rial. Initially, the grain sizes range from approximately
2 mm to 3 mm and are uneven in shape. The grains are
subjected to a ball-milling process, creating a fine pow-
der of KDP, with particle sizes ranging from 2 to 8 μm.

The distribution of grain sizes approximately follows a
log-normal distribution, with a peak at 3.11 μm and a vari-
ance of 1.25 μm. For the speckle measurement, we prepare
two opaque slabs (thickness approximately 510 ± 15 μm
and approximately 680 ± 20 μm) of KDP microcrystals
and the slabs are sandwiched between two microscopic
slides of thickness approximately 170 ± 5 μm. A coher-
ent backscattering (CBS) [35,36] experiment estimates the
transport mean free path (�t) of the slabs and the esti-
mated values are approximately 352 μm and 169 μm
at λ = 1064 nm and λ = 532 nm, respectively. Figure 1
illustrates a schematic of the experimental setup for the
speckle-correlations measurements.

Nd:YAG laser pulses (EKSPLA, PL2143B, pulse width
approximately 30 ps) with a fundamental wavelength of
λ = 1064 nm (hereafter referred to as IR), are chosen as
our input beam. A glass wedge is introduced in the inci-
dent path to direct a small fraction (approximately 4%)
of the beam to a power meter (PM, Ophir Optronics, res-
olution 10 μW) for the input-power measurement. The
residual beam is then focused onto the scattering medium
(SM) through a lens (L) of focal length 10 cm. To avoid
damage to the sample, it is placed slightly away from
the focus. The transmitted light consists of both the fun-
damental and second-harmonic light (here referred to as
SHG, λ = 532 nm). A harmonic beam splitter (HBS) is
employed to separate the two components. The transmit-
ted (IR) and reflected (SHG) light from the HBS is then
directed to CCD1 and CCD2, respectively. CCD1 is an
(In, Ga)As detector (SWIR camera, Photonic Science, UK)
with pixel dimension 30 μm × 30 μm, while CCD2 is a
silicon detector (iXon Ultra 897, Andor technology) with
pixel dimension 16 μm × 16 μm. A laser line filter (F1)
at λ = 1064 nm is added in front of CCD1 to block any
unwanted SHG photons. Similarly, a laser line filter (F2) at
λ = 532 nm is placed in front of CCD2. The laser fires at
a repetition rate of 1 Hz and simultaneous measurements
of the pulse power and the corresponding IR and SHG
speckle patterns are made.

B. Results

An intense pulse of laser light impacts the disordered
sample and imparts a certain radiation pressure, which
causes the particles to be displaced from their original
position. Overall, the disorder configuration at the input
face is modified, in proportion to the pump power. See
Appendix A for more details. Since the disorder config-
uration changes with every impacting optical pulse, it is
imperative to avoid cumulative reconfigurations happen-
ing through multiple pump pulses. Therefore, we only grab
two successive speckle patterns in two consecutive pump
pulses and then translate the sample so as to illuminate a
different location on the sample. The homogeneity of the
disorder strength is constant across the total area, as also
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FIG. 1. A schematic of the experimental setup: BS, beam splitter; PM, power meter; L, lens; SM, scattering medium; HBS, harmonic
beam splitter; F1, laser line filter at λ = 1064 nm; F2, laser line filter at λ = 532 nm; CCD1, charge-coupled device with (In, Ga)As
detector; CCD2, charged-coupled device with silicon detector. Two experimental speckle patterns for fundamental (hereafter referred
to as IR, λ = 1064 nm) and second-harmonic generated (hereafter referred to as SHG, λ = 532 nm) light are shown here, while the
adjacent color bars indicate the normalized intensity scale.

certified by the systematic variation in the results. The cor-
relation coefficient between two speckle patterns A and B
(both m × n matrices) is calculated as

Cexpe=
∑m

i=1
∑n

j =1(Aij −A)(Bij −B)
√(∑m

i=1
∑n

j =1(Aij −A)2
) (∑m

i=1
∑n

j =1(Bij −B)2
) ,

(1)

where the overbar represents the mean of the matrix.
The initial two consecutive speckle patterns of IR and

SHG light at an input power of 10.5 mW are presented in
Figs. 2(a)–2(d), respectively. Obvious agreement is seen
between Fig. 2(a) and Fig. 2(b), with the yellow circles
emphasizing the regions of clear similarity. For the SHG
wavelength, there are no similarities in the speckle pat-
terns between two consecutive pulses, indicating strong
decorrelation within two pulses. The correlation coefficient
〈Cexpe〉 is averaged over ten sets of speckle patterns, each
grabbed at a different location on the sample at the same
pump intensity.

Figure 3 reveals the variant decorrelation with pump
power for the fundamental and second-harmonic light.
A monotonic decrease in the correlation coefficient is
observed in both samples of thicknesses L = 510 μm and
L = 680 μm. At low powers, up to about 15 mW, the cor-
relation drops rapidly, after which the rate reduces with
further increase in power. It can be expected to asymp-
totically approach zero. To compare the qualitative rate
of decorrelation between IR and SHG, we calculate the
slopes of the two curves for each point and plot them in
Fig. 3(c). For L = 510 μm and IR light, the slope initially
drops, indicating a slowing down of the decorrelation with
increasing power. Subsequently, it rises monotonically. For
the SHG light, an initially static slope is seen to rise mono-
tonically and then saturate at the highest power. For the

thicker sample, the trends are very similar. The intersec-
tion between the blue and red curves indicates the pump
power at which the decorrelation rates are the same. Evi-
dently, the two curves intersect at a lower pump power for
the thicker sample. The slopes of the two curves represent
a valuable diagnostic for comparing with the theoretical
model, which is discussed later.

The source of the fluctuating speckle pattern can be
traced to the radiation pressure of the incident pulses,
which induces displacements in the scatterers in random

(a)

(c)

(b)

(d)

FIG. 2. The initial two consecutive speckle patterns of (a),(b)
IR and (c),(d) SHG light scattered from a 510-μm-thick sample
at an input power of 10.53 mW. The IR speckle shows higher
correlation (0.71) and the marked regions with yellow circles
emphasize the agreement. On the contrary, the correlation for
SHG light is observed to be low (0.23) and any regions arbi-
trarily chosen in the pattern (yellow circles) do not show visible
agreement. The color bar indicates the normalized intensity. The
scale bar represents 600 μm.
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(a) (b)

(d)(c)

(exp.)

(exp.)

(exp.)

(exp.)

FIG. 3. (a),(b) The correlation coefficient between the first two
consecutive speckle patterns of IR (red markers) and SHG (blue
markers) light as a function of the input power of the funda-
mental light, calculated from measured speckle patterns. The
solid lines are obtained after smoothing the experimental data.
The data are measured on two different samples with thickness
(a) L = 510 μm and (b) L = 680 μm. (c),(d) The slopes of
〈Cexpe〉IR and 〈Cexpe〉SHG calculated on each power value for the
two samples for (c) L = 510 μm and (d) L = 680 μm.

directions. This has been experimentally verified in our
earlier study, wherein we have shown a decrease in speckle
contrast with pump power [37]. Such a situation of scat-
terer displacement under radiation pressure in a medium
without nonlinearities has been theoretically treated in
Ref. [38]. A given absolute displacement of the scatterers
amounts to a smaller relative displacement with respect to
the wavelength for the IR light, as compared to the SHG
light. However, the origin of the behavior of decorrelation
seen in Fig. 3 is not obvious and needs to be rigorously
evaluated. This is carried out in Sec. III.

III. THEORETICAL MODEL

In parallel to the experiment, we develop a theoretical
model based on coupled transport equations for the linear
(λ = 1064 nm) and second-harmonic (λ = 532 nm) light.
While earlier theoretical treatments have relied on coupled
diffusion equations for the linear and second-harmonic
light [9], the consequence of scatterer displacement has not
been invoked. Our model provides physical insights on the
origin of the faster decorrelation for the second-harmonic
speckle compared to the decorrelation of the linear speckle.
Before deriving the model, we first focus on the correlation

function defined in Eq. (1). It can also be written as

Cexpe =
∫

CCD δI(r)δĨ(r)dr
[∫

CCD δI 2(r)dr
∫

CCD δĨ 2(r)dr
]1/2 , (2)

where δI = I − Ī , I being the intensity, and Ī =∫
CCD I(r)dr. Ĩ denotes the intensity once the scatterers

have moved due to radiation pressure. It is important to
note that this correlation function does not correspond
to the correlation of speckle patterns at different times
but measures the correlation between the speckles pro-
duced by two slightly different disorder configurations, the
scatterer displacements being induced by the radiation-
pressure effect. Assuming ergodicity, we can replace the
integration over the pixels of the CCD camera with a sta-
tistical average over all possible disorder configurations
which is denoted by 〈·〉. Moreover, we consider that the
statistical properties of the medium are the same after
the displacement of the scatterers, i.e., 〈I〉 = 〈

Ĩ
〉
. Next, we

assume that the field has Gaussian statistics (or, equiva-
lently, that the speckles are fully developed), which is valid
in the regime k0�s � 1, k0 = ω/c = 2π/λ being the wave
number and �s being the scattering mean free path. This
implies that

〈
δI 2

〉 = 〈I〉2. The correlation function in Eq.
(2) becomes Cexpe ∼ CI − 1, where

CI (r) =
〈
I(r)Ĩ(r)

〉

〈I(r)〉2 . (3)

Finally, we also have CI = 1 + |C|2, where C is the field-
field correlation function given by

C(r) =
〈
E(r)Ẽ∗(r)

〉

〈E(r)E∗(r)〉 , (4)

E being the electric field and the superscript asterisk (“∗”)
denoting the complex conjugate. It is important to note
that we make the assumption of a scalar field for the
sake of simplicity. This can be justified in the multiple-
scattering regime, where the field can be considered to be
fully depolarized [39]. We finally have

Cexpe ∼ |C|2. (5)

The problem of estimating Cexpe theoretically now reduces
to the computation of C for two different frequencies, i.e.,
ω for the linear beam and 2ω for the second-harmonic one.
The purpose of the following subsections is to develop a
transport model for C. We present only the important steps,
the full derivation from first principles being described in
Appendix B.

054047-4



SPECKLE DECORRELATION... PHYS. REV. APPLIED 18, 054047 (2022)

A. Disorder model

The real samples are composed of packed KDP crystal
grains of different sizes and shapes. Thus the most rele-
vant and simple disorder model consists of a fluctuating
continuous and real (no absorption) permittivity ε(r). The
disorder microstructure is then characterized by a spatial
correlation function chosen to be Gaussian, in the form

Cε(|r − r′|, ω) = 〈
δε(r, ω)δε(r′, ω)

〉

= |	ε(ω)|2 exp
[

−|r − r′|2
2�2

]

. (6)

In this equation, δε(r, ω) = ε(r, ω) − 〈ε(r, ω)〉 is the fluc-
tuating part of the permittivity, |	ε(ω)|2 is the amplitude
of the correlation, and � is the correlation length. |	ε(ω)|2
depends on frequency, since the permittivity ε is disper-
sive. However, � involves only the geometrical structure
of the disorder and thus does not depend on frequency. The
χ(2) nonlinearity is supposed to be correlated in a similar
way.

B. Linear regime

We first consider the linear regime (λ = 1064 nm) cor-
responding to propagation at the fundamental frequency ω.
We use an approach similar to that in Ref. [40], developed
in the context of diffusing-wave spectroscopy (DWS). The
most important point concerns the selections of the scatter-
ing paths followed by the field E and its complex conjugate
Ẽ∗ that dominate in the expression of the correlation func-
tion C. In a dilute medium such that k0�s � 1, the leading
contribution corresponds to E and Ẽ∗ following the same
scattering sequences. These sequences can be represented
by the diagram

E(r, ω)

Ẽ∗(r, ω)

E0

E∗
0 (7)

with an arbitrary number of scattering events [41]. In these
so-called ladder diagrams, the circles represent the scatter-
ing events, the thick solid lines correspond to the average
Green functions modeling the field propagation between
scattering events, and the thick dashed lines denote the
incident field. The upper (bottom) line describes the propa-
gation of E (Ẽ∗), respectively, and the thin dashed vertical
lines represent the disorder correlation Cε . It is important
to note that in the model of the continuous disorder, the cir-
cles do not represent real scatterers (grains) but scattering
events connected by the correlation function Cε . The width
� of the correlation function Cε is, however, on the order
of the grain size. The ladder shape of this dominant dia-
gram implies that there is always constructive interference
between the field E and its complex conjugate Ẽ∗. Thus

the problem of computation of C reduces to the problem of
solving a radiative transport equation [42],

[

u · ∇r + 1
�s(ω)

]

Ĩ(r, u, ω)

= 1
�s(ω)

∫

p(u, u′, ω)g(r, u, u′, ω)Ĩ(r, u′, ω)du′, (8)

where Ĩ(r, u, ω) is the specific intensity, that can be seen
as the radiative flux at position r, in direction u and at
frequency ω. More precisely, it can be shown from first
principles that it is given by the Wigner transform of the
field. In our context (scatterer displacements), it reads

δ(k − k0)Ĩ(r, u, ω) =
∫ 〈

E
(

r + s
2

, ω
)

Ẽ∗
(

r − s
2

, ω
)〉

× e−iku·sds. (9)

Thus, solving for Ĩ gives direct access to the field-field
correlation function C. Equation (8) is very similar to the
standard radiative transfer equation (RTE) [43], except that
it includes an additional function g(r, u, u′, ω) that repre-
sents the decorrelation of the field at each scattering event
due to the motion of scatterers. It is given by

g(r, u, u′, ω) =
∫

e−ik0(u−u′)·�f (r, �)d�, (10)

where u and u′ are unit vectors representing the scattered
and incoming directions for a given scattering process.
f (r, �) is the probability density of having a displacement
� of a scatterer at the position r. The position depen-
dence is required since this displacement is induced by the
radiation pressure, which can be heterogeneous inside the
medium (in particular, at small depths). Equation (10) can
be interpreted as follows: the decorrelation is due to the
phase shift (Doppler shift) averaged over all accessible dis-
placements for a scatterer. As a simple model, we consider
that the amplitude of the displacement is proportional to
the specific intensity, which leads to

f (r, �) = δ

[

	 − βI
(

r,
�

	
, ω

)]

×
[

β2
∫

I (r, u, ω)2 du
]−1

, (11)

where β is a factor taking into account the link between
the displacement and the value of the specific intensity. In
the following, β is considered as a scaling parameter. In
Eq. (11), I (r, u, ω) is the specific intensity without any
displacements. Finally, p(u, u′, ω) is the phase function
representing the part of the energy incident from direction
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u′ and scattered into direction u. For the Gaussian disorder
considered here, it is given by

p(u, u′, ω) ∝ p(k0|u − u′|),

where p(q) = exp
[

−q2�2

2

]

, (12)

and normalized such that
∫

p(u, u′, ω)du′ = 1. Equation
(8) can easily be interpreted using a random-walk
approach. Indeed, light undergoes a random-walk the aver-
age step of which is given by the scattering mean free path
�s(ω) and the angular distribution of which at each scat-
tering event is given by the phase function p(u, u′, ω). A
phase shift is introduced between the fields at each scat-
tering event due to the displacement of the scatterers as
described by the function g(r, u, u′, ω).

C. Second-harmonic regime

We now address the question of the generation and prop-
agation of the second-harmonic light. As is usually done in
homogeneous materials, we use a perturbative approach in
order to compute the field at 2ω from the field at ω. The
full process can be broken down into three steps. First,
the linear field at ω propagates inside the material. Sec-
ond, it is converted to a second harmonic on an arbitrary
scatterer. Finally, this process is followed by the propa-
gation of the second-harmonic field. The same sequence
of processes also applies to the complex conjugate of the
field. From this sequence, the most important point here is
still the identification of the leading diagram, taking into
account the nonlinearity. It is given by

E(r, 2ω)

Ẽ∗(r, 2ω)

E0

E0

E∗
0

E∗
0

(13)

where the squares represent the second-harmonic gener-
ation process. We could assume that the nonlinear pro-
cesses for E and Ẽ∗ occur at two positions with an arbi-
trary distance between them. However, this would lead
to the propagation of the correlations

〈
E(r, ω)Ẽ∗(r, 2ω)

〉

or
〈
E(r, 2ω)Ẽ∗(r, ω)

〉
, which are supposed to vanish since

they involve fields at two different frequencies. The gen-
erations of the second-harmonic sources for E and Ẽ∗
are then confined in a small volume with typical size �.
The relevance of the dominant diagram responsible for the
second-harmonic correlation has to be carefully checked.
For that purpose, we perform ab initio numerical sim-
ulations that are presented in Appendix C. Finally, the

diagram of Eq. (13) can be interpreted the following way:
the right part represents the propagation of two specific
intensities at frequency ω obeying Eq. (8) and the left
part represents the propagation of the specific intensity at
frequency 2ω. It is given by the following nonlinear RTE:

[

u · ∇r + 1
�s(2ω)

]

Ĩ(r, u, 2ω)

= 1
�s(2ω)

∫

p(u, u′, 2ω)g(r, u, u′, 2ω)Ĩ(r, u′, 2ω)du′

+ α

∫∫

pSHG(u, u′, u′′, ω)gSHG(r, u, u′, u′′, ω)

× Ĩ(r, u′, ω)Ĩ(r, u′′, ω)du′du′′. (14)

This equation is the main theoretical result of this work. It
shows that the second-harmonic specific intensity follows
a similar transport equation as the fundamental intensity
[Eq. (8)] but with a source term describing the nonlin-
ear conversion process. Its physical interpretation is very
simple. Light propagates first at frequency ω, which is
described by the specific intensity Ĩ(r, u′′, ω) solution to
Eq. (8). Then, an SHG process occurs, which creates a
source at frequency 2ω, the amplitude of which is given
by the product of two specific intensities at ω. Finally,
propagation at 2ω is described by the specific intensity
Ĩ(r, u′′, 2ω), which follows Eq. (14). In this expression, α

is a factor that takes into account all constants involved in
the SHG process such as χ(2). pSHG(u, u′, u′′, ω) is the SHG
phase function. It involves three unit vectors. u′ and u′′
correspond to the incoming directions of the two specific
intensities at ω and u is the outgoing direction of the spe-
cific intensity at 2ω. In the case of the correlated disorder
that we consider here, we have

pSHG(u, u′, u′′, ω) ∝ p(k0|2u − u′ − u′′|), (15)

with
∫

pSHG(u, u′, u′′, ω)du′du′′ = 1. u appears with a fac-
tor of 2 since it corresponds to the nonlinear specific
intensity direction. gSHG(u, u′, u′′, ω) is the decorrelation
function, given by

gSHG(r, u, u′, u′′, ω) =
∫

e−ik0(2u−u′−u′′)·�f (r, �)d�.

(16)

It still corresponds to the decorrelation induced by a
Doppler shift involving three beams, i.e., two incoming
beams at frequency ω in directions u′ and u′′ and one
outgoing beam at frequency 2ω in direction u.

D. Numerical simulations

In order to solve the system of Eqs. (8) and (14), we
develop a Monte Carlo scheme, which can be seen as
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a random-walk process inside the material [44]. Three
Monte Carlo simulations are performed in a slab geome-
try of thickness L under plane-wave illumination at normal
incidence. The first is used to compute I (r, u, ω), the
specific intensity in the absence of displacement of the
scatterers. This is required in order to compute the proba-
bility density f (r, �) to have a displacement � at position
r. The second Monte Carlo simulation is used to compute
Ĩ (r, u, ω), the specific intensity associated with the corre-
lation function at ω. Finally, a last simulation is performed
in order to compute Ĩ (r, u, 2ω), the specific intensity asso-
ciated with the correlation function at 2ω. More precisely,
the correlation functions are computed from the energy
density at the output interface in transmission, i.e.,

C(ω) =
∫

Ĩ (z = L, u, ω) du
∫

I (z = L, u, ω) du
, (17)

C(2ω) =
∫

Ĩ (z = L, u, 2ω) du
∫

I (z = L, u, 2ω) du
. (18)

These computations are performed for different incident
intensities I0 (or different incident powers 〈P〉), meaning
different probability densities f (r, �), which correspond
to different radiation pressures. Regarding the numerical
parameters, it is important to keep in mind that the KDP
powder used in the experiment has crystal grains of dif-
ferent sizes, ranging from 2 μm to 8 μm. This makes
the choice of the correlation length � difficult. However,
we test several values, showing that this is not a crucial
parameter. Since the particles are large compared to the
wavelength, we choose k0� = 3 for the results presented
in Fig. 4. This gives the anisotropy factors g(ω) = 0.89
and g(2ω) = 0.97. The thickness of the medium L as
well as the transport mean free paths �t = �s/(1 − g) take
the values measured experimentally, which gives k0L =
3012 (for L = 510 μm), k0L = 4016 (for L = 680 μm),
k0�t(ω) = 2079 and k0�t(2ω) = 998. This finally leads to
the normalized scattering mean free paths k0�s(ω) = 229
and k0�s(2ω) = 30.

We can observe that the results shown in Fig. 3
are reproduced qualitatively. The second-harmonic beam
decorrelates faster than that of the fundamental frequency.
The slopes of the decorrelation curves also reproduce the
same trends seen in experiments, for the most part of
the input-power range. The IR light shows a reducing
slope followed by a rise at a certain pump power, while
the frequency-doubled light shows a steady rise followed
by a saturation region. Barring a minor difference at low
powers, the experimental data exhibit the same behav-
ior. The crossing of the two slope curves also happens
at a lower pump power in the thicker sample, as seen in
the experiments. The agreement with the experiments is
very clear qualitatively but is not quantitative. The main
reason should probably be investigated in relation to the

(a) (b)

(c) (d)

FIG. 4. (a),(b) Monte Carlo (MC) simulated correlation func-
tions |C|2 for the linear (red solid line) and second-harmonic
(blue solid line) beams as a function of the incident intensity I0
in arbitrary units: (a) L = 510 μm; (b) L = 680 μm. The range
of I0 is chosen such that the extreme values of the linear cor-
relation |C(ω)|2 are in agreement with the experimental values
Cexpe(ω) presented. (c),(d) Slopes of |C(ω)|2 and |C(2ω)|2 calcu-
lated on each power value for the two samples: (c) L = 510 μm;
(d) L = 680 μm. A qualitative agreement is immediately seen
with the experimental behavior in Fig. 3.

dependence of the probability density f on the specific
intensity I . Building this relationship is not a trivial task
and is beyond the scope of the present work. A second
potential effect, which has been neglected so far, is the
role of the refractive index mismatch at the interfaces of
the slab. In the Monte Carlo simulation, we verify that this
does not substantially change the results up to a refractive
index n = 2.

The faster decorrelation of the second-harmonic speckle
can be explained through two different mechanisms. The
first one corresponds to the decorrelation when the second-
harmonic light is generated, which is represented by
gSHG(r, u, u′, u′′, ω). Its dependence on the three different
directions through the relation 2u − u′ − u′′ favors a faster
decorrelation. The second mechanism is due to the prop-
agation of the second-harmonic field. The factor of 2 in
g(r, u, u′, 2ω) also makes the correlation vanish faster than
for the linear beam. For a small optical thickness, both
effects play a role and have to be taken into account prop-
erly. This comes from the fact that photons experience
few scattering events before escaping the medium and thus
the decorrelations due to gSHG and to g are of the same
order of magnitude. On the other hand, for large optical
thicknesses, many scattering events are involved and the
contribution of gSHG is negligible compared to that of g.
Figure 5 illustrates this statement using the Monte Carlo
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(a) (b) (c)

FIG. 5. Monte Carlo (MC) simulated correlation functions |C|2 for the second-harmonic speckles taking into account all decorre-
lation effects (i.e., the effect of g and gSHG, green dashed line) and only the decorrelation occurring during beam propagation (i.e.,
the effect of g, blue solid line). The computations are performed for (a) k0L = 40, (b) k0L = 3129, and (c) k0L = 4172. The other
parameters are the same as in Fig. 4.

simulations. This simple conclusion is also easily observed
in the more simple case of statistically homogeneous and
isotropic displacements discussed in Sec. III E.

E. Statistically homogeneous and isotropic
displacements

Beyond the effect of radiation pressure that is examined
in this study, it is also interesting to consider a displace-

ment probability for the scatterers that is homogeneous
and isotropic, i.e., f (r, �) = f (	)/(4π	2). Indeed, con-
sidering large medium thicknesses compared to the trans-
port mean free paths, i.e., L � {�t(ω), �t(2ω)}, we can
derive diffusion equations for the linear and second-
harmonic correlation functions. The derivation is detailed
in Appendix D and leads to analytical expressions given
by

C(ω) = κ(ω)L
sinh[κ(ω)L]

, (19)

C(2ω) = 6D(ω)

κ(2ω)L sinh[κ(ω)L]2 sinh[κ(2ω)L]
κ(2ω)2 {1 − cosh[2κ(ω)L]} − 4κ(ω)2 {1 − cosh[κ(2ω)L]}

κ(2ω)2 − 4κ(ω)2 , (20)

where

κ =
√

3

�̃t�̃a
, �̃t = �s

1 − g̃
, (21)

1

�̃a
= 1

�s

[

1 −
∫

p(u, u′)g(u, u′)du′
]

, (22)

and

g̃ =
∫

p(u, u′)g(u, u′)u · u′du′
∫

p(u, u′)g(u, u′)du′ , (23)

all these four quantities being defined at ω and 2ω. We also
have

D(ω) = 1
4π

∫

pSHG(u, u′, u′′, ω)

× gSHG(u, u′, u′′, ω)dudu′du′′. (24)

We can clearly see from these expressions that the effect
of the decorrelation during the propagation of the waves
at ω or at 2ω can be seen as an absorption effect and is
encoded in the κ functions. The decorrelation process tak-
ing place during the generation of the second-harmonic
light is encoded in the D function. Finally, these analytical
expressions can be simplified in the even more particu-
lar case of isotropic scattering such that p(u, u′) = 1/(4π)

and pSHG(u, u′, u′′, ω) = 1/(16π2) and of a constant
displacement amplitude d such that k0d 	 1 and f (	) =
δ(	 − d). This gives

κ(ω)L = b(ω)k0d, κ(2ω)L = 2b(2ω)k0d, (25)

and
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D(ω) = 1
8π

∫ 2π

φ=0

∫ 1

μ=−1

∫ 1

μ′=−1
sinc

[

k0d
√

6 − 4μ − 4μ′ + 2μμ′ + 2
√

1 − μ2
√

1 − μ′2 cos φ

]

dμdμ′dφ, (26)

where b = L/�s is the optical thickness. These last expres-
sions are very useful to gain further insights into the
decorrelation effects encoded in functions κ(ω), κ(2ω),
and D(ω). In particular, as already noted in the numerical
simulations, we clearly see that the decorrelation during
propagation is stronger when the optical thicknesses b(ω)

and b(2ω) increase, which reduces the effect of D(ω). In
the diffusive regime considered here, D(ω) can thus be
replaced by its limit when k0d → 0, i.e., D(ω) ∼ 1.

IV. DISCUSSION AND CONCLUSIONS

In summary, we experimentally investigate the decorre-
lation of speckle patterns with increasing pump power in a
second-order nonlinear disordered medium. Simultaneous
speckle measurements at the fundamental and second-
harmonic wavelengths reveal a varying rate of decorre-
lation under the same incident power. The decorrelation
arises from the microscopic displacements in the disorder
configuration induced by the radiation pressure produced
by the pump beam. In addition, the second-harmonic cor-
relation decreases faster than the fundamental. We lay the
foundations of a theoretical model that describes the syn-
ergy of second-order nonlinearity and light diffusion. The
model demarcates the contribution of two components in
the decorrelation, namely, one arising from the genera-
tion of second-harmonic light and the other arising from
the propagation thereof. For the samples and input pow-
ers employed in our experiments, the former seems to
be the stronger contributor. Wider investigations of the
model show that the relative strengths of the two compo-
nents depend upon the degree of disorder. With regard to
the differences in the experimental and computed results,
we discuss the origins qualitatively as follows. The actual
displacement at a location r is dependent on the specific
intensity at that location and the size and shape of the par-
ticle at that location. This is too intricate a parameter to
calculate and we do not venture to do so. In the theory,
the sample is homogeneously disordered and particle size
is not a parameter in computing the displacement under
radiation pressure. At a future stage, a distribution in the
displacements may be invoked in the theory. We believe
that these unavoidable differences in the experimental sam-
ples and theoretical assumptions limit the agreement in
the respective results. This study sheds light on the subtle
mechanism of nonlinear conversion in disordered media,
with expected outcomes in fundamental studies in meso-
scopic wave transport, as well as the design of efficient
materials for nonlinear generation of light.
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APPENDIX A: A DIFFERENT EXPERIMENT TO
VALIDATE PARTICLE MOVEMENT DUE TO

LASER RADIATION PRESSURE

We carry out experiments to demonstrate that the scat-
terer displacements are due to radiation pressure. Specifi-
cally, a stabilized frequency, low-power cw laser (He:Ne,
λ = 632.8 nm) is made incident onto the sample simulta-
neously with the pump. The phase stability of the He:Ne
laser is confirmed by performing a simple experiment.
First, we focus the He:Ne laser on a ground-glass diffuser
and subsequently capture the transmitted speckle pattern
on a CMOS camera over 30 min at 1-min intervals. In
Fig. 6, we plot the speckle correlation calculated with
respect to the initial speckle pattern. We observe that the
correlation coefficient always stays close to the ideal value
of 1 (indicated by the red dashed line), which proves that
our He:Ne laser is highly stable.

FIG. 6. The speckle correlation, showing the high stability of
the He:Ne laser.
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FIG. 7. The experimental setup to investigate the movements of the particles due to a high input-laser power: L, lens; SM, scattering
medium; CML, central wavelength.

It is well known that the speckle pattern produced by
a scattering medium remains static if the scatterers of
the medium do not move. A schematic of the experi-
mental setup is depicted in Fig. 7. Nd:YAG laser pulses
(pulse width 35 ps, repetition rate 1 Hz) with a funda-
mental wavelength of 1064 nm are falling normally on
the sample. A cw phase-stabilized He:Ne laser with a
wavelength of 632.8 nm is also made incident on the
sample at the same position. Here, it should be noted
that the sample behaves as a linear medium for the laser
coming from the He:Ne, whereas Nd:YAG pulses, at a suf-
ficient input power, can generate nonlinear photons. As a
result, in transmission, we can retrieve three speckle pat-
terns, namely, red (λ = 632.8 nm), IR (λ = 1064 nm), and
SHG (λ = 532 nm). For the current purpose, the speckle
dynamics of the red light is monitored. A laser line fil-
ter (Thorlabs, FL-635-10) with a center wavelength of
635 nm is placed in front of a CMOS camera (Thor-
labs). We capture the speckle patterns of red light while
increasing the Nd:YAG laser power from very low to high
and again from high to low. The speckles are reported in
Figs. 8(a)–8(f).

The first two images [Figs. 8(a) and 8(b)] correspond to
consecutive Nd:YAG laser shots where the input power is
very low. Clearly, the speckle patterns are almost the same
over these shots. Next, we increase the input power of the
Nd:YAG laser such that the second harmonic is efficiently
generated. Figures 8(c) and 8(d) are consecutive speckle
images corresponding to this input power and they are seen
to be obviously different. This shows that the configuration
of the sample is changing from shot to shot at high power.
Next, we again decrease the Nd:YAG power to the min-
imum power and grab Figs. 8(e) and 8(f) on consecutive
laser pulses. Again, the speckle becomes stable when the
input power reaches a very low value, since the sample
is stable. Further, it is also observed that the initial [Figs.
8(a) and 8(b)] and final [Figs. 8(e) and 8(f)] red speckle
patterns, although at the same low power, are completely
different, which indicates that the particle configuration
inside the sample has changed over the experiment. All of
this clearly indicates the scatterer displacements due to the
high input power.

This experiment allows us to rule out thermal effects.
Thermal effects tend to work on longer time scales than

(a)

(b) (d)

(e)

(f)

(c)
FIG. 8. The speckle patterns of red light in differ-
ent scenarios. (a),(b) The beginning of the experi-
ment, with a low power of the input pulsed laser.
(c),(d) The high power of the input pulsed laser.
(e),(f) The ending of the experiment, with a low
power of the input pulsed laser.
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impact by the radiation pressure. In the speckle pattern
generated by the He:Ne laser, we observe that the speckle
is instantaneously reorganized when the pulse hits the sam-
ple and that immediately thereafter, the pattern is stable.
There is no gradual and continuous change in the speckle
for a finite time after the pulse. This motivates us to assert
that, although thermal effects cannot be ruled out com-
pletely, the major contribution to the decorrelation arises
from displacement due to pulse impact. Furthermore, the
laser pulses are shot at too low a repetition rate to expect a
cumulative thermal effect.

APPENDIX B: TRANSPORT-MODEL
DERIVATION

This appendix is devoted to the derivation of the trans-
port model used to estimate the correlation function C
in the linear as well as in the second-harmonic regime.
This derivation is largely inspired by the standard multiple-
scattering theory, details of which can be found in several
references (see, e.g., Refs. [42,45,46]). The generalization
presented here allows us to take into account (1) scat-
terer displacements and (2) second-harmonic generation.
Regarding the first point, the reader can also refer to Ref.
[40], which presents a similar derivation. Regarding the
second point, a similar approach has been used in the
context of photon echoes, described in Ref. [47].

1. Disorder model and scattering potential

We consider a continuous disorder model described by
a fluctuating permittivity ε(r, ω) and a fluctuating second-
order nonlinear susceptibility χ(r). We choose to charac-
terize their statistical properties by a Gaussian correlation
function that is identical for both ε and χ , since the disor-
der at the origin of the scattering and of second-harmonic
generation is the same. This gives

Cε(r, r′, ω) = 〈
δε(r, ω)δε(r′, ω)

〉 = |	ε(ω)|2C(|r − r′|),
(B1)

Cχ(r, r′) = 〈
δχ(r)δχ(r′)

〉 = |	χ |2C(|r − r′|), (B2)

with

C(|r − r′|) = exp
[

−|r − r′|2
2�2

]

, (B3)

and where |	ε(ω)|2 and |	χ |2 are the amplitudes and
� is the correlation length. δε(r, ω) = ε(r, ω) − 〈ε(ω)〉 is
the fluctuating part of the permittivity. Similarly, δχ(r) =
χ(r) − 〈χ〉 is the fluctuating part of the second-order sus-
ceptibility. The disorder correlation function depends only
on |r − r′| because we consider that the disorder is statis-
tically isotropic and homogeneous. From this model, we

first define the scattering potential, which is at the root of
the multiple-scattering theory. It is given by

V(r, ω) = k2
0 [ε(r, ω) − εb(ω)] . (B4)

εb is the background permittivity corresponding to the ref-
erence nonscattering medium. It is thus homogeneous. We
now consider that there are scatterer displacements, for
example, under the action of the radiation pressure but
this can be a completely different physical process. After
displacements, the new potential is given by

Ṽ(r, ω) = V(r − �(r), ω), (B5)

where �(r) is the displacement at position r. In the fol-
lowing, we consider that this displacement is constant over
a length scale of the order of �. This allows us to take
the Fourier transform of Eq. (B5) considering no position
dependence in �, which gives

Ṽ(k, ω) = V(k, ω) exp [−ik · �(r)] . (B6)

In a similar way, we have

χ̃ (r) = χ(r − �(r)), (B7)

which leads to

χ̃(k) = χ(k) exp [−ik · �(r)] . (B8)

2. Self-energy and intensity vertex

We now focus on the computation of some important
building blocks regarding wave propagation in complex
media, which are the self-energy � and the intensity ver-
tex �. Similarly to the scattering potential, we show how
their expressions are modified in order to take the scatterer
displacements into account.

We first consider the self-energy � and, more impor-
tantly, its counterpart denoted by �̃ when scatterer dis-
placements are present. The self-energy is an important
quantity entering the Dyson equation that drives the evo-
lution of the statistical average electric field propagating
inside a strongly scattering medium. It contains all possible
scattering sequences that cannot be statistically factorized.
In a dilute medium where the scattering mean free path is
large compared to the wavelength, it can be limited to the
first two orders and written as

�(r, r′, ω) = 〈V(r, ω)〉 δ(r − r′)

+ 〈
V(r, ω)Gb(r − r′, ω)V(r′, ω)

〉
c , (B9)

where 〈·〉c represents a statistical average restricted to the
connected part, i.e., 〈VGbV〉c = 〈VGbV〉 − 〈V〉 Gb 〈V〉. Gb
is the Green function in the reference medium, which
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describes the field propagation between two consecutive
scattering events on the potential V. For the case of
scatterer displacements, we have

�̃(r, r′, ω) = 〈
Ṽ(r, ω)

〉
δ(r − r′)

+ 〈
Ṽ(r, ω)Gb(r − r′, ω)Ṽ(r′, ω)

〉
c . (B10)

It is important to keep in mind that the statistical average
performed here is not only an average over all possible
configurations of the disorder but is also an average over
the displacements. By Fourier transforming Eqs. (B10) and
(B9) and using Eq. (B6), we obtain

�̃(k, k′, ω) = �(k, k′, ω)

∫

exp
[−i(k − k′) · �

]

× f (r, �)d�, (B11)

where f (r, �) is the probability density of having a dis-
placement � at position r. From the statistical homogene-
ity and isotropy of the disorder, we obtain

�(k, k′, ω) = 8π3δ(k − k′)�̆(k, ω) and

�̃(k, k′, ω) = 8π3δ(k − k′) ˘̃
�(k, ω), (B12)

which leads to

˘̃
�(k, ω) = �̆(k, ω), (B13)

where �̆ and ˘̃
� are the reduced self-energies. Since the

extinction mean free path is given by the imaginary part of
the reduced self-energy, we have

1
�e(ω)

= Im�̆(k0, ω)

k0
= Im ˘̃

�(k0, ω)

k0
= 1

�̃e(ω)
. (B14)

By invoking the nonabsorbing nature of the medium, we
finally obtain equality between the scattering mean free
paths with and without scatterer displacements. Insertion
of the expression for the correlation function Cε into Eq.
(B9) leads to

1

�̃s(ω)
= 1

�s(ω)
= k4

0|	ε(ω)|2
16π2

∫

C(q)d�, (B15)

where q = 2k0 sin(θ/2) is the modulus of the scattering
vector and d� = sin θdθdφ is the elementary solid angle

in standard spherical units. From Eq. (B3), we obtain

C(q) =
∫

exp
[

− R2

2�2 − iq · R
]

dR

= �3(2π)3/2 exp
[

−q2�2

2

]

, (B16)

which finally gives

1

�̃s(ω)
= 1

�s(ω)
= k2

0�|	ε(ω)|2
√

2π

4
[
1 − exp(−2k2

0�
2)

]
.

(B17)

The same analysis now has to be applied to the inten-
sity vertex � and its counterpart �̃ when scatterer dis-
placements are present. The intensity vertex is an impor-
tant quantity entering the Bethe-Salpeter equation that
describes the evolution of the field-field correlation func-
tion. It contains all possible scattering sequences for the
field and its complex-conjugate counterpart that cannot be
statistically factorized. Still, in a dilute medium, it can be
limited to the first order and written as

�(r, r′, ρ, ρ ′, ω) = 〈
V(r, ω)V∗(ρ, ω)

〉
c δ(r − r′)δ(ρ − ρ′).

(B18)

For the case of scatterer displacements, we have

�̃(r, r′, ρ, ρ ′, ω) = 〈
V(r, ω)Ṽ∗(ρ, ω)

〉
c δ(r − r′)δ(ρ − ρ′).

(B19)

It is important to note that the correlation C involves the
electric field before any displacement (E) and its complex-
conjugate counterpart after displacement (Ẽ∗). This is
the reason why only the complex-conjugated potential is
replaced in Eq. (B19) compared to Eq. (B18). We also note
that although the potential is real, we keep the complex-
conjugate notation for the sake of understanding, i.e., to
show that it applies to the complex-conjugate field. By
Fourier transforming Eqs. (B19) and (B18) and using Eqs.
(B6), we obtain

�̃(k, k′, κ , κ ′, ω) = �(k, k′, κ , κ ′, ω)

×
∫

exp
[−i(κ − κ ′) · �

]
f (r, �)d�.

(B20)

From the statistical homogeneity of the disorder, we obtain

�̆(k, k′, κ , κ ′, ω) = 8π3δ(k − k′ − κ + κ ′)

× �(k, k′, κ , κ ′, ω), (B21)
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˘̃
�(k, k′, κ , κ ′, ω) = 8π3δ(k − k′ − κ + κ ′)

× �̃(k, k′, κ , κ ′, ω), (B22)

which finally leads to

˘̃
�(k, k′, κ , κ ′, ω) = �̆(k, k′, κ , κ ′, ω)

×
∫

exp
[−i(κ − κ ′) · �

]
f (r, �)d�,

(B23)

where �̆ and ˘̃
� are the reduced intensity vertices. The

standard phase function is given by �̆ through the relation

1
�s(ω)

p(u, u′, ω) = 1
16π2 �̆(k0u, k0u′, k0u, k0u′, ω).

(B24)

By definition, the phase function p is normalized such that
∫

p(u, u′, ω)du′ = 1. (B25)

These results allow us to define a generalized phase func-
tion p̃ for the case where there are scatterer displacements,
given by

1

�̃s(ω)
p̃(r, u, u′, ω) = 1

�s(ω)
p(u, u′, ω)g(r, u, u′, ω)

= 1
16π2

˘̃
�(k0u, k0u′, k0u, k0u′, ω),

(B26)

where

g(r, u, u′, ω) =
∫

exp [−iq · �] f (r, �)d�, (B27)

and q = k0(u − u′) is the scattering vector. Substitution of
the expression of the correlation function Cε into Eq. (B18)
leads to

p(u, u′, ω) = k2
0�

2 exp[−q2�2/2]
2π

[
1 − exp(−2k2

0�
2)

] . (B28)

This concludes the computation of the building blocks
required to describe light propagation in a diluted dynamic
scattering medium.

3. Linear regime

We now consider the case of light transport in the lin-
ear regime. In a dilute medium such that k0�s � 1, we can
show that the field and its complex conjugate follow the

same scattering sequences (after statistical average), which
can be represented by the following diagram:

E(r, ω)

Ẽ∗(r, ω)

E0

E∗
0
.

(B29)

In this representation, the top line represents a path for
the electric field E and the bottom line is for a path of
its complex conjugate Ẽ∗ in the presence of scatterer dis-
placements. The solid and dashed thick lines correspond to
average Green functions (describing propagation between
consecutive scattering events) and average fields, respec-
tively. The circles denote scattering events and the verti-
cal dashed lines represent statistical correlations between
scattering events through Eq. (B1).

This specific diagram is called the ladder and is the
leading contribution to the expression of the field-field cor-
relation function C. Indeed, the fact that it corresponds
to the same path for the field and its complex conju-
gate implies that there is always constructive interference
between both. From this diagram, we deduce that the corre-
lation function C is described by a RTE and can be written
as [42]

[

u · ∇r + 1
�s(ω)

]

Ĩ(r, u, ω)

= 1
�s(ω)

∫

p(u, u′, ω)g(r, u, u′, ω)Ĩ(r, u′, ω)du′,

(B30)

where the specific intensity Ĩ is defined by the field-field
correlation

δ(k − k0)Ĩ(r, u, ω)

=
∫ 〈

E
(

r + s
2

, ω
)

Ẽ∗
(

r − s
2

, ω
)〉

e−iku·sds. (B31)

4. Second-harmonic regime

We now move on to the second-harmonic regime. As
stated in the main text, we apply a perturbative approach to
compute the second-harmonic correlation. This means that
we have first the propagation of the field at the frequency
ω, then second-harmonic generation, and finally propaga-
tion of the field at the frequency 2ω. That being said, the
most difficult task now is to determine the typical pairs of
paths for the field and its complex conjugate that make the
leading contribution to the correlation. This is equivalent to
determining the diagrams that lead to constructive interfer-
ence. We follow the same idea as for the linear regime, thus
assuming that we have essentially ladder diagrams for the
beams at ω and 2ω. However, these ladders have to be con-
nected by a kernel corresponding to the second-harmonic
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generation process. This leads to the diagram

E(r, 2ω)

Ẽ∗(r, 2ω)

E0

E0

E∗
0

E∗
0

(B32)

where the squares denote the second-harmonic processes.
We may consider that the nonlinear processes occur at
two different positions for the electric field E and its
complex-conjugate counterpart Ẽ∗. However, this would
lead to propagation of the correlations

〈
E(r, ω)Ẽ∗(r, 2ω)

〉

or
〈
E(r, 2ω)Ẽ∗(r, ω)

〉
, which are supposed to vanish since

they involve fields at two different frequencies. This is
the reason why we have a disorder correlation function
Cε between the second-harmonic processes (dashed line
between the squares). Strictly speaking, we should also
take into account the degeneracy of the diagram (factor
4). Indeed, it corresponds to all possible permutations of
the incident fields. However, this does not play any role in
the following and this factor is taken into account in the
constant α.

The kernel dressed with the two ladders at frequency
ω can be considered as a source term for the second-
harmonic ladder. It is given by

S(r, ρ, 2ω) =
∫

〈
G(r − r′, 2ω)

〉 〈
G∗(ρ − ρ ′, 2ω)

〉

× �̃SHG(r′, r′′, r′′′, ρ ′, ρ ′′, ρ ′′′, 2ω)

× 〈
E(r′′, ω)Ẽ∗(ρ ′′, 2ω)

〉

× 〈
E(r′′′, ω)Ẽ∗(ρ ′′′, 2ω)

〉

× dr′dr′′dr′′′dρ ′dρ ′′dρ ′′′, (B33)

where �̃SHG is the SHG vertex given by

�̃SHG(r, r′, r′′, ρ, ρ ′, ρ ′′, ω)

= 〈
χ(r)χ̃∗(ρ)

〉
c δ(r − r′)δ(r − r′′)δ(ρ − ρ ′)δ(ρ − ρ ′′).

(B34)

Similarly to the case of �̃, we keep the complex-conjugate
notation for the second-order susceptibility although it is
a real quantity, in order to remind us that it corresponds
to the complex-conjugate field. Without any scatterer dis-
placement, we have

�SHG(r, r′, r′′, ρ, ρ ′, ρ ′′, ω)

= 〈
χ(r)χ∗(ρ)

〉
c δ(r − r′)δ(r − r′′)δ(ρ − ρ ′)δ(ρ − ρ ′′).

(B35)

By Fourier transforming Eqs. (B34) and (B35) and making
use of Eq. (B8), we obtain

�̃SHG(k, k′, k′′, κ , κ ′, κ ′′, ω)

= �SHG(k, k′, k′′, κ , κ ′, κ ′′, ω)

×
∫

exp
[−i(κ − κ ′ − κ ′′) · �

]
f (r, �)d�. (B36)

From the statistical homogeneity of the disorder, we obtain

�̆SHG(k, k′, k′′, κ , κ ′, κ ′′, ω)

= 8π3δ(k − k′ − k′′ − κ + κ ′ + κ ′′)

× �SHG(k, k′, k′′, κ , κ ′, κ ′′, ω), (B37)

˘̃
�SHG(k, k′, k′′, κ , κ ′, κ ′′, ω)

= 8π3δ(k − k′ − k′′ − κ + κ ′ + κ ′′)

× �̃SHG(k, k′, k′′, κ , κ ′, κ ′′, ω), (B38)

which finally leads to

˘̃
�SHG(k, k′, k′′, κ , κ ′, κ ′′, ω)

= �̆SHG(k, k′, k′′, κ , κ ′, κ ′′, ω)

×
∫

exp
[−i(κ − κ ′ − κ ′′) · �

]
f (r, �)d�, (B39)

where �̆SHG and ˘̃
�SHG are the reduced SHG vertices. From

this, we can define a SHG phase function given by

αpSHG(u, u′, u′′, ω)

= 1
125π5 �̆SHG(2k0u, k0u′, k0u′′, 2k0u, k0u′, k0u′′, ω).

(B40)

α is a coefficient that takes into account all constants
involved in the second-harmonic process and is such that
the second-harmonic phase function is normalized, i.e.,

∫

pSHG(u, u′, u′′, ω)du′du′′ = 1. (B41)

These results allow us to define a generalized SHG phase
function given by

αp̃SHG(u, u′, u′′, ω)

= αpSHG(u, u′, u′′, ω)gSHG(r, u, u′, u′′, ω)

= 1
125π5

˘̃
�SHG(2k0u, k0u′, k0u′′, 2k0u, k0u′, k0u′′, ω),

(B42)
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where

gSHG(r, u, u′, u′′, ω) =
∫

exp [−iq · �] f (r, �)d�,

(B43)

in which q = k0(2u − u′ − u′′) is the SHG scattering vec-
tor. Substitution of the expression for the correlation
function Cχ into Eq. (B35) leads to

pSHG(u, u′, u′′, ω) ∝ exp
[

−q2�2

2

]

. (B44)

We finally obtain the formulation of the RTE for the
second-harmonic specific intensity linked to the second-
harmonic correlation function, which reads

[

u · ∇r + 1
�s(2ω)

]

Ĩ(r, u, 2ω)

= 1
�s(2ω)

∫

p(u, u′, 2ω)g(u, u′, 2ω)Ĩ(r, u′, 2ω)du′

+ α

∫∫

pSHG(u, u′, u′′, ω)gSHG(u, u′, u′′, ω)

× Ĩ(r, u′, ω)Ĩ(r, u′′, ω)du′du′′. (B45)

The second-harmonic specific intensity is still given by the
field-field correlation

δ(k − k0)Ĩ(r, u, 2ω)

=
∫ 〈

E
(

r + s
2

, 2ω
)

Ẽ∗
(

r − s
2

, 2ω
)〉

e−iku·sds.

(B46)

This concludes the derivation of the RTE for the linear and
second-harmonic beams.

APPENDIX C: VALIDITY CHECK FROM AB
INITIO SIMULATIONS

The model developed in Appendix B is obtained under
several approximations. The most important one concerns
the diagrams that have to be taken into account in order to
estimate the second-harmonic specific intensity. In a dilute
medium, we consider that a ladder-type diagram is a lead-
ing contributor to the second-harmonic speckle correlation.
In order to check the validity of this approximation, we
run ab initio simulations of Maxwell equations using a
coupled-dipole formalism and compare the results to the
RTE model solved using a Monte Carlo scheme.

It is important to note that we consider here a simplified
model that does not reflect the conditions of the experi-
ment but that helps to check the validity of the transport
model. In particular, the coupled-dipole formalism used

here implies that the disorder model is limited to point scat-
terers randomly located inside the medium. Regarding the
scatterer displacement model, we simply consider that a
scatterer can move in an arbitrary direction over a distance
d that is fixed.

Moreover, the numerical resolution of Maxwell equa-
tions requires significant computing resources. This is the
reason why we restrict to two-dimensional (2D) systems in
TE polarization (electric field along the direction of invari-
ance by translation). This means that a scalar model can
be used and no polarization effects have to be taken into
account.

1. Coupled-dipole model

a. Linear regime

In the linear regime, the coupled-dipole equations are
given by

Ei(ω) = E0(ri, ω) + k2
0α(ω)

N∑

j =1
j �=i

G0(ri − rj , ω)Ej (ω),

(C1)

E(r, ω) = E0(r, ω) + k2
0α(ω)

N∑

j =1

G0(r − rj , ω)Ej (ω).

(C2)

Ei represents the field illuminating the scatterer i lying at
position ri. It is also called the exciting field. It is given
by two contributions: the incident field E0 and the field
scattered by all other scatterers. G0(r − r0, ω) is the Green
function in vacuum. It links the field created at position r
by a source dipole p(ω) lying at position r0 through the
relation

E(r, ω) = μ0ω
2G0(r − r0, ω)p(ω). (C3)

For 2D TE waves, it is given by

G0(R, ω) = i
4

H (1)

0 (k0|R|), (C4)

where H (1)

0 is the Hankel function of the first kind and
zero order. α(ω) is the polarizability of the scatterer,
which describes the optical response of the particle. In the
nonabsorbing case, energy conservation implies

k0Im α(ω) = k3
0

4
|α(ω)|2. (C5)

Once the exciting fields have been computed for all dipoles
by solving the set of Eqs. (C1), the field at any position,
i.e., E(r, ω), can be computed using Eq. (C2).
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In order to take scatterer displacements into account,
we just have to redo the same computation after moving
the scatterers by a distance d in arbitrary directions. Then
we have access to Ẽ(r, ω). An average over several dis-
order configurations allows estimation of the correlation
function:

CCD(r, ω) =
〈
E(r, ω)Ẽ∗(r, ω)

〉

〈E(r, ω)E∗(r, ω)〉 , (C6)

where the subscript “CD” means “coupled dipoles.”

b. Nonlinear regime

The second-harmonic regime is still considered through
the standard perturbative approach. This means that the
coupled-dipole equations are written as follows:

Ei(2ω) = β

α(2ω)
Ei(ω)2

+ k2
0α(2ω)

N∑

j =1
j �=i

G0(ri − rj , 2ω)Ej (2ω), (C7)

E(r, 2ω) = k2
0α(2ω)

N∑

j =1

G0(r − rj , 2ω)Ej (2ω), (C8)

where β can be seen as a second-harmonic polarizability.
This set of equations is solved using the results of the linear
case and following exactly the same steps. This leads to an
estimate of the correlation function:

CCD(r, 2ω) =
〈
E(r, 2ω)Ẽ∗(r, 2ω)

〉

〈E(r, 2ω)E∗(r, 2ω)〉 . (C9)

2. Monte Carlo scheme

In order to solve the set of transport equations, we per-
form Monte Carlo simulations. For a cloud of uncorrelated
point dipoles lying in a 2D dilute medium and considering
TE waves, the parameters are given by

�s(ω) = 1
ρσs(ω)

, where σs(ω) = k3
0

4
|α(ω)|2, (C10)

p(u, u′, ω) = 1
2π

, pSHG(u, u′, u′′, ω) = 1
4π2 , (C11)

and

f (r, �) = δ(	 − d)

2π	
, (C12)

ρ being the density of the scatterers. Two different Monte
Carlo simulations are done. The first one solves Eq. (B30).

This is a fully standard Monte Carlo scheme except that
we have to multiply the energy quanta of the random-walk
packets by g(r, u, u′, ω) at each scattering event in order
to take the decorrelation process into account. At the end,
we have access to a map of the specific intensity Ĩ(r, u, ω),
which is used to compute the correlation function

CMC(r, ω) =
∫

Ĩ (r, u, ω) du
∫

I (r, u, ω) du
, (C13)

where the subscript “MC” means “Monte Carlo.” The sec-
ond Monte Carlo simulation is used to solve Eq. (B45) and
is similar to the first one except that the source term is
given by the SHG process [the last term of Eq. (B45)]. At
the end, we have access to the specific intensity Ĩ(r, u, 2ω),
which gives the correlation function

CMC(r, 2ω) =
∫

Ĩ (r, u, 2ω) du
∫

I (r, u, 2ω) du
. (C14)

3. Comparison of numerical results

To make comparisons between the couple-dipole for-
malism and the Monte Carlo simulations, we consider a
slab geometry of thickness L illuminated by a plane wave
at normal incidence, as represented in Fig. 9(b). However,
this very simple model has to be slightly adapted in the
case of the coupled-dipole simulation, which is detailed in
Fig. 9(a). Indeed, the finite number of scatterers imposes
a finite transverse size D. Moreover, in order to avoid
diffraction effects at the transverse boundaries, we choose

(a) (b)

a
z z

L L

r

w
D

FIG. 9. The 2D slab geometry considered to validate the trans-
port approach. (a) The scattering rectangle used in the coupled-
dipole simulation. We have D � {L, w} and w � {L, λ} to mimic
a slab geometry illuminated by a plane wave at normal incidence.
a is the transverse size of the detection zone, where we com-
pute the correlation functions C. We have w � a � λ to capture
several speckle grains in order to improve the statistical conver-
gence. We also have r > λ to avoid near-field interaction close
to the interface. (b) The infinite scattering slab used in the Monte
Carlo simulation. Since the ab initio computation is done using
point dipoles, the standard phase function p as well as the SHG
phase function pSHG are chosen to be isotropic (g = 0).
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FIG. 10. A comparison of the correlation functions obtained
using the coupled-dipole simulations (CCD) and the Monte Carlo
schemes (CMC) for the linear (ω) and second-harmonic (2ω)
beams as a function of the normalized displacement distance k0d.
The parameters are k0L = 100, k0D = 8000, k0/

√
ρ = 6, k0w =

3800, k0r = 5, and k0a = 8. The polarizability is chosen such
that k0�s(ω) = 50 and k0�s(2ω) = 50, which leads to b(ω) =
b(2ω) = 2. Nc = 256 configurations are used for the coupled-
dipole simulations and Np = 5 × 106 random-walk packets are
used for the Monte Carlo schemes.

to illuminate the medium by a Gaussian beam of waist
w. We choose D � {L, w} and w � {L, λ}. The speckle
correlation functions are computed just behind the slab,
at a distance r from the interface and averaged along a
transverse distance a in the case of the coupled-dipole sim-
ulation. In the case of the Monte Carlo simulation, we
consider the full transmitted specific intensity.

We test several sets of parameters, each of which gives
rise to very good agreement between the results of the
two numerical approaches. This proves that the theoret-
ical model is accurate and that the diagram considered
for the second-harmonic correlation function is the lead-
ing term. As an example, we show in Fig. 10 the results for
an optical thickness b = L/�s = 2 for both the linear and
second-harmonic beams.

APPENDIX D: DIFFUSION LIMIT

This appendix is devoted to obtaining analytical expres-
sions of the correlation functions in the diffusion limit. We
consider a three-dimensional slab geometry of thickness
L illuminated by a plane wave at normal incidence. This
implies that all physical quantities will depend only on the
depth z inside the medium. The diffusion approximation
requires that L � {�t(ω), �t(2ω)}, �t being the transport
mean free path. We also assume that the displacement

direction of the scatterers is isotropic, which leads to

f (r, �) = f (	)

4π	2 . (D1)

1. Linear regime

We first consider the linear regime. Defining the absorp-
tion length �̃a and the anisotropy factor g̃ by

1

�̃a(ω)
= 1

�̃e(ω)
− 1

�̃s(ω)

= 1
�s(ω)

[

1 −
∫

p(u, u′, ω)g(u, u′, ω)du′
]

,

(D2)

g̃(ω) = 1

�̃s(ω)

∫

p̃(u, u′, ω)u · u′du′

=
∫

p(u, u′, ω)g(u, u′, ω)u · u′du′
∫

p(u, u′, ω)g(u, u′, ω)du′ , (D3)

we are back to the standard RTE with an absorption term.
Thus we can apply the no less standard diffusion-equation
derivation in the framework of the P1 approximation [1].
Since the diffusion equation is valid only for the diffuse
part of the correlation function, we split it into its ballistic
(Cb) and diffuse (Cd) components, which gives

C(r, ω) = 〈E(r, ω)〉 〈
Ẽ∗(r, ω)

〉 + 〈
δE(r, ω)δẼ∗(r, ω)

〉

= Cb(r, ω) + Cd(r, ω). (D4)

This splitting is similar to the one that we usually perform
on the average intensity. The ballistic component is given
by

Cb(z, ω) = I0 exp [−z/�s(ω)] (D5)

and its diffuse counterpart reads

[

− �̃s(ω)�̃t(ω)

3
∂2

∂z2 + �̃s(ω)

�̃a(ω)

]

Cd(z, ω)

= 1
1 − g̃(ω)

Cb(z, ω), (D6)

where the transport mean free path is given by

�̃t(ω) = �̃s(ω)

1 − g̃(ω)
. (D7)
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The boundary conditions involve the standard extrapola-
tion length z̃0(ω) = 2�̃t(ω)/3 and are given by

Cd(z = 0, ω) − z̃0(ω)
∂Cd

∂z
(z = 0, ω)

= − 2g̃(ω)

1 − g̃(ω)
Cb(z = 0, ω), (D8)

Cd(z = L, ω) + z̃0(ω)
∂Cd

∂z
(z = L, ω)

= 2g̃(ω)

1 − g̃(ω)
Cb(z = L, ω). (D9)

The resolution of this set of equations is straightforward.
Using the fact that �s 	 L, an approximate solution is
given by

Cd(z, ω)

=
[

−2
g(ω)

1 − g(ω)
+ 3

{

1 + z0(ω)

�s(ω)

}]

× I0
sinh[κ(ω)(L − z)]

sinh[κ(ω)L]

= 5I0
sinh[κ(ω)(L − z)]

sinh[κ(ω)L]
. (D10)

Thus, close to the output interface in transmission, the
normalized correlation is given by

Cd(z = L, ω) = κ(ω)L
sinh[κ(ω)L]

, (D11)

where

κ(ω) =
√

3

�̃t(ω)�̃a(ω)
. (D12)

Equation (D11) is the standard expression that we usually
obtain in the case of a large absorbing scattering medium,
except that here, the usual absorption term describes a
decorrelation process.

2. Second-harmonic regime

We now move to the second-harmonic regime and we
have to apply the standard diffusion-equation derivation to
the nonlinear RTE given by Eq. (B45). Since the goal of
this appendix is to obtain analytical results, we first have
to make an assumption on the specific intensity at fre-
quency ω that enters the source term in the nonlinear RTE.
Deeply inside the medium, we consider that its diffuse part

is isotropic, which gives

Ĩ(r, u, ω) = Cb(z, ω)δ(u − ez) + Cd(z, ω)

4π
. (D13)

The correlation at 2ω is still given by

C(r, 2ω)

= 〈E(r, 2ω)〉 〈
Ẽ∗(r, 2ω)

〉 + 〈
δE(r, 2ω)δẼ∗(r, 2ω)

〉

= Cb(r, 2ω) + Cd(r, 2ω). (D14)

The ballistic component can be fully neglected. Indeed, it
corresponds to a diagram where both the SHG processes
for the field and its conjugate take place in statistically
independent positions. This implies that phase matching
cannot be obtained and this term vanishes. Besides, it is
important to note that this diagram is not taken into account
in Eq. (B45). In order to obtain a diffusion equation for
the diffuse component, we first define the first and second
moments of the SHG phase function by

M0(z, ω) =
∫

S(z, u, ω)du,

M1(z, ω) =
∫

S(z, u, ω)u · ezdu, (D15)

where S is the source term of the RTE at 2ω, given by

S(z, u, ω) = α

∫∫

pSHG(u, u′, u′′, ω)gSHG(u, u′, u′′, ω)

× Ĩ(r, u′, ω)Ĩ(r, u′′, ω)du′du′′. (D16)

Then, we obtain the diffusion equation for the diffuse
component, given by

[

− �̃s(2ω)�̃t(2ω)

3
∂2

∂z2 + �̃s(2ω)

�̃a(2ω)

]

Cd(z, 2ω)

= �̃s(2ω)M0(z, ω) − �̃s(2ω)�̃t(2ω)
∂

∂z
M1(z, ω),

(D17)

with the boundary conditions

Cd(z = 0, 2ω) − z̃0(2ω)
∂Cd

∂z
(z = 0, 2ω)

= −2�̃s(2ω)M1(z = 0, ω)

1 − g̃(2ω)
, (D18)

Cd(z = L, 2ω) + z̃0(2ω)
∂Cd

∂z
(z = L, 2ω)

= 2�̃s(2ω)M1(z = L, ω)

1 − g̃(2ω)
. (D19)
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Writing S in the form

S(z, u, ω) = αCb(z, ω)2A(u, ω)

+ α

4π
Cb(z, ω)Cd(z, ω)B(u, ω)

+ α

16π2 Cd(z, ω)2C(u, ω), (D20)

where

A(u, ω) = pSHG(u, ez, ez, ω)gSHG(u, ez, ez, ω), (D21)

B(u, ω) = 1
4π

∫

pSHG(u, u′, ez, ω)gSHG(u, u′, ez, ω)

+ pSHG(u, ez, u′, ω)gSHG(u, ez, u′, ω)du′,
(D22)

and

C(u, ω) = 1
16π2

∫∫

pSHG(u, u′, u′′, ω)

× gSHG(u, u′, u′′, ω)du′du′′, (D23)

we obtain

M0(z, ω) = α

[

Cb(z, ω)2A0(ω)

+ 1
4π

Cb(z, ω)Cd(z, ω)B0(ω)

+ 1
16π2 Cd(z, ω)2C0(ω)

]

, (D24)

M1(z, ω) = α

[

Cb(z, ω)2A1(ω)

+ 1
4π

Cb(z, ω)Cd(z, ω)B1(ω)

+ 1
16π2 Cd(z, ω)2C1(ω)

]

, (D25)

with

X0(ω) =
∫

X(u, ω)du, X1(ω) =
∫

X(u, ω)u · ezdu,

(D26)

where X = A,B,C. Since we consider that the diffusive
regime is valid, in the following we neglect the ballistic
component Cb. Thus A ∼ 0 and B ∼ 0. Moreover, C is of
the form

C(u, ω) = 1
16π2

×
∫∫

F(6 − 4u · u′ − 4u · u′′ + 2u′ · u′′, ω)

× du′du′′, (D27)

which implies that C is independent of u. This leads to
C1 = 0. Finally, only C0 is nonzero. In order to compute
Cd(z, 2ω), we note that

Cd(z, ω)2 = 25I 2
0

2 sinh [κ(ω)L]2

× [
e2κ(ω)(L−z) + e−2κ(ω)(L−z) − 2

]
. (D28)

Thus the diffusion equation becomes
[

− �̃s(2ω)�̃t(2ω)

3
∂2

∂z2 + �̃s(2ω)

�̃a(2ω)

]

Cd(z, 2ω)

= 25I0�̃s(2ω)αC0(ω)

32π2 sinh [κ(ω)L]2

[
e2κ(ω)(L−z) + e−2κ(ω)(L−z) − 2

]
,

(D29)

with the boundary conditions

Cd(z = 0, 2ω) − z̃0(2ω)
∂Cd

∂z
(z = 0, 2ω) = 0, (D30)

Cd(z = L, 2ω) + z̃0(2ω)
∂Cd

∂z
(z = L, 2ω) = 0. (D31)

The resolution of this set of equations is still straightforward and we obtain

Cd(z = L, 2ω) = 6D(ω)

κ(2ω)L sinh[κ(ω)L]2 sinh[κ(2ω)L]

× κ(2ω)2 {1 − cosh[2κ(ω)L]} − 4κ(ω)2 {1 − cosh[κ(2ω)L]}
κ(2ω)2 − 4κ(ω)2 , (D32)
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where

D(ω) = 1
4π

∫

pSHG(u, u′, u′′, ω)gSHG(u, u′, u′′, ω)

× dudu′du′′. (D33)

In this expression, we define

κ(2ω) =
√

3

�̃t(2ω)�̃a(2ω)
. (D34)

In the particular case where κ(2ω) = 2κ(ω), we obtain

Cd(z = L, 2ω) = 3D(ω)

sinh[κ(ω)L]

×
[

1
sinh[κ(ω)L]

− 1
κ(ω)L cosh[κ(ω)L]

]

.

(D35)

3. Comparison to Monte Carlo simulations

In order to check the validity of Eqs. (D11) and (D32),
we perform Monte Carlo simulations in the particular case
of a constant displacement amplitude d such that k0d 	 1
and f (	) = δ(	 − d). This gives

κ(ω)L = b(ω)k0d, κ(2ω)L = 2b(2ω)k0d, (D36)

and D(ω) = 1
8π

∫ 2π

φ=0

∫ 1

μ=−1

∫ 1

μ′=−1
sinc

[

k0d
√

6 − 4μ − 4μ′ + 2μμ′ + 2
√

1 − μ2
√

1 − μ′2 cos φ

]

dμdμ′dφ. (D37)

An example of the results obtained is reported in Fig. 11
for b(ω) = b(2ω) = 40, g(ω) = 0.31, and g(2ω) = 0.75.
The disorder correlation is given by k0� = 1. Good agree-
ment is obtained.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4
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1.0

k0d

FIG. 11. A comparison of the correlation functions obtained
using the Monte Carlo scheme (CMC) and the diffusion approxi-
mation (Cd) for the linear (ω) and second-harmonic (2ω) beams
as a function of the normalized displacement distance k0d. The
parameters are b(ω) = b(2ω) = 40, g(ω) = 0.31, g(2ω) = 0.75,
and k0� = 1. Np = 28 × 106 random-walk packets are used for
the Monte Carlo schemes.
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