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Perfect depolarization in single scattering of light
from uncorrelated surface and volume disorder
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We demonstrate that single scattering of p-polarized waves
from uncorrelated surface and volume disorder can lead to
perfect depolarization. The degree of polarization vanishes
in specific scattering directions that can be characterized
based on simple geometric arguments. Depolarization
results from a different polarization response of each source
of disorder, which provides a clear physical interpretation
of the depolarization mechanism. © 2020 Optical Society of
America

https://doi.org/10.1364/OL.405182

Polarimetric measurements are often used for the characteriza-
tion of ordered systems such as thin films, meta-materials, and
plasmonic surfaces [1–3]; disordered systems such as colloidal
suspensions [4–6] and rough surfaces [7,8]; or systems display-
ing both surface and volume disorder [9,10]. Measurements of
depolarization are often associated with the characterization
of scattering media to assess the multiple scattering regime
[11–15]. Lesser known is depolarization in the single scattering
regime. Disordered media can depolarize light in the single
scattering regime if they consist of, at least, two types of disorder
that have different polarization responses. Examples of such
systems are clouds of molecules or particles of different species
[16], randomly rough films [17], dielectric heterogeneity [18],
and combinations of the aforementioned disorders [19,20]. A
theoretical prediction of partial single-scattering depolarization
was given for rough dielectric film by Germer [17], although
not observed experimentally, probably due to interface corre-
lation. An experimental evidence of partial single scattering
depolarization by a combined rough surface and volume dielec-
tric fluctuation was demonstrated on etched steel samples by
Germer and collaborators [19].

In this Letter, we show that perfect single scattering depo-
larization for p-polarized incident light can occur in specific
scattering directions in a system consisting of a heterogeneous
medium bounded upwards by a randomly rough surface. We
develop an expression for the degree of polarization accounting
for the two types of disorder. The scattering directions of vanish-
ing degree of polarization are interpreted physically in terms of
simple geometrical arguments.

We consider the scattering system depicted in Fig. 1(a), con-
sisting of a heterogeneous substrate with dielectric fluctuations
bounded by a randomly rough surface. The surface profile
function ⇣(xk) and the dielectric (volume) fluctuations
1"(xk) are assumed to be the realizations of two stochastic
processes of the variable xk = (x1, x2, 0). Both stochastic
processes are assumed to be stationary, zero-mean, isotropic,
Gaussian random processes with Gaussian autocorrelation
functions;
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the following, the angle brackets denote an ensemble average
over realizations of the stochastic process. The parameters intro-
duced here are the surface root-mean-square (rms) roughness
�⇣ , the surface correlation length `⇣ , the rms dielectric fluc-
tuation �", and dielectric correlation length `" (see [21,22] for
details). It will be assumed that the region x3 > ⇣(xk) has dielec-
tric constant "1 while the region x3 < ⇣(xk) is characterized
by the dielectric function "2 + 1"(xk). Hence, the dielectric
function in the whole space can be written as

"(x) = "1 + H(⇣(xk) � x3)["2 � "1 + H(x3 + L)1"(xk)],
(1)

where H is the Heaviside step function. The depth L character-
izes the thickness of the fluctuating dielectric layer underneath
the mean surface x3 = 0. Note that for the sake of simplicity,
we have assumed the dielectric fluctuations to vary only in the
(x1, x2)-plane (i.e., constant along x3). The scattering from
such a configuration, referred to as a surface-like configuration,
was recently studied in Ref. [22]. Furthermore, both the rms
roughness, �⇣ , and the depth of the fluctuating layer, L , are
assumed to be smaller than the wavelength, i.e., k0�⇣ ⌧ 1 and
k0L ⌧ 1, where k0 = 2⇡/� with � being the wavelength of the
incident light.

A single-scattering theory of polarized light by systems with
surface and volume disorder is developed in Refs. [21,22].
The main result is that the scattered electric field E(sc) can be
written as the sum of the field E(sc)

⇣ , scattered by the rough
surface separating two homogeneous media of dielectric con-
stants "1 and "2, and the field E(sc)

" scattered by the dielectric
fluctuations bounded by the planar interface x3 = 0, viz.
E(sc)

= E(sc)
⇣ + E(sc)

" .
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Fig. 1. (a) Contour plot of the dielectric fluctuations over a vertical cross-section of one realization of the disordered scattering system. (b) Sketch
defining the relevant wave vectors, the associated angles of incidence and scattering, and the polarization directions. Notice that the in-plane scatter-
ing wave vector p is related to the scattering angles (✓r , �) via p =

p
"1k0 sin ✓r (cos �, sin �, 0).

When the scattering system is illuminated from medium 1 by
a plane wave of the form

E0(x) =

X
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the Fourier amplitude of the scattered reflected field can be writ-
ten in the form [22]
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Here,E0,p andE0,s are the amplitudes for the p- and s -polarized
components of the incident field, respectively; p0 is the in-
plane wave vector of the incident wave; and p is the in-plane
wave vector defining the observation direction of the scattered
field. In Eqs. (2) and (3), we have also introduced the wave
vectors
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The different polarization and geometrical parameters are
represented in Fig. 1(b). Furthermore, Rµ⌫(p, p0) in Eq. (3), is
the reflection amplitude for a µ-polarized scattered wave with
in-plane wave vector p, given an incident unit ⌫-polarized plane
wave with in-plane wave vector p0. It is the sum of surface and
volume reflection amplitudes, defined as [22]

R⇣,µ⌫(p, p0) = s (p, p0)⇢⇣,µ⌫(p, p0), (5a)

R",µ⌫(p, p0) = v(p, p0) ⇢",µ⌫(p, p0), (5b)
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describe the surface and volume responses, respectively, and
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are polarization coupling amplitudes. Here, ⇣̂ and 1"̂ denote
the Fourier transforms of the surface profile function and of the
dielectric fluctuation function, respectively. The functions r (⌫)

ji

and t (⌫)
ji are the Fresnel reflection and transmission amplitudes

for a ⌫-polarized plane wave incident from medium i onto a
planar surface, respectively.

Regarding depolarization, the crucial observation to make
from the single scattering theory is that the surface and volume
reflection amplitudes in Eq. (5) have different polarization
coupling factor [see Eq. (7)], which are independent of any
particular realization of the stochastic processes. The realization
dependent part of the reflection amplitudes is entirely contained
in the factors s and v, which are independent of polarization and
encode the speckle field.

There are several depolarization measures, such as the degree
of polarization [23] and the depolarization index [24]. Here we
have chosen to work with the degree of polarization [23]. For an
incident plane wave in the state (p0, ⌫), the degree of polariza-
tion for a wave scattered in direction k+

1 (p) is defined as

P (⌫)(p, p0) =

 

1 � 4
det J(⌫)(p, p0)

[Tr J(⌫)(p, p0)]
2

!1/2

, (8)

where the elements of the Jones coherency matrix are given by

J (⌫)
µµ0(p, p0) =

D
Rµ⌫(p, p0)R⇤

µ0⌫(p, p0)
E

. (9)

With Definition (8), the degree of polarization characterizes
the scattered wave for a given state of polarization of the incident
wave. Therefore, different incident states of polarization will, a
priori, lead to different degrees of polarization for the scattered
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Fig. 2. Contour plots in the p̂1 p̂2-plane [p̂ = p/(
p

"1k0)] of the polarization coupling factors (a) ⇢⇣,pp ; (b) ⇢",pp , and (c) the degree of polarization
P (p) for the angles of incidence (✓0, �0) = (70�, 0�). Polar angle of scattering dependence of (d) the degree of polarizationP (p) for a set of azimuthal
angles of scattering and (e), (f ) several polarization coupling factors ⇢X ,µp and ⇢sp for �r = 19� (the angles of incidence were unchanged). The verti-
cal dashed and dashed-dotted lines in panels (d) and (f ) denote the values of the polar angles of scattering ✓r ⇡ 61.6 (the critical angle) and ✓r = ✓0,
respectively. The horizontal dashed line in panel (f ) is included as a guide to the eye for the sign of the plotted quantities. The remaining parameters
assumed in obtaining these results were "1 = 1, "2 = 2.25, �" = 0.36, L = �/20, `" = `⇣ = �/2, and �⇣ = 1.4 ⇥ 10�2�. For these parameters, one
has h|s |2i = h|v|2i.

wave. By inserting Eq. (5) into Eq. (8), we obtain

det J(⌫)
= h|s |2ih|v|

2
i
��⇢⇣,p⌫⇢",s ⌫ � ⇢",p⌫⇢⇣,s ⌫

��2 (10)

Tr J(⌫)
=h|s |2i

�
|⇢⇣,p⌫ |

2
+|⇢⇣,s ⌫ |

2�
+
⌦
|v|

2↵ �
|⇢",p⌫ |

2
+|⇢",s ⌫ |

2� .
(11)

In deriving these results, we have used the fact that surface and
volume disorders are uncorrelated, so that terms proportional to
hs v⇤i and hvs ⇤i vanish.

First, let us assume that only one type of disorder is present in
the scattering system. Then, either s = 0 or v = 0, which causes
det J(⌫) to vanish, and hence,P (⌫) = 1 identically. Indeed, when
only one of the two types of disorder is present, the polarization
state of an outgoing wave is, in the single scattering regime,
entirely given by ⇢⇣,µ⌫ and ⇢",µ⌫ , independently of the reali-
zation. From one realization to the next, the speckle pattern
will of course change, but the ratio of the p- and s -polarized
components of the scattered electric field (or any other two
components in an orthogonal polarization basis) will remain the
same for a given scattering direction. This confirms that a sam-
ple with pure surface or volume scattering does not depolarize in
the single scattering regime.

Second, let us now consider the two types of disorder simul-
taneously. Equation (10) predicts that, in general, det J(⌫) is
non-zero and, therefore, the degree of polarization is < 1. This
is due to the difference in the polarization response between the
two types of disorder, i.e., ⇢⇣,µ⌫ 6= ⇢",µ⌫ . Although each of the
polarization responses remains unchanged from one realization
to the next, they are weighted by independent random variables
(namely s and v), which will change the relative weights of the

p and s components for a given scattering direction when the
realization of disorder is changed. This demonstrates, as has
been known for some time [17,19,20], that depolarization is
not necessarily a signature of multiple scattering but that it can
also occur in a single-scattering regime from the interference of
fields that originate from (at least) two sources of disorder with
a different polarization response. Note that if the two sources of
disorder have the same polarization response, then the degree
of polarization is unity since the last factor in Eq. (10) van-
ishes. For instance, this occurs at normal incidence [✓0 = 0�].
Moreover, for an s -polarized incident wave, P (s ) = 1 for all
angles of incidence and scattering when the single scattering
regime is assumed. Actually, it can easily be seen from Eq. (7)
that ⇢⇣,µs = ⇢",µs (note that 1 + r (s )

ji = t (s )
ji ).

For the scattering system considered here, the case of par-
ticular interest is an obliquely incident p-polarized wave.
Figures 2(a) and 2(b) show contour maps of the surface and vol-
ume p-to-p polarization coupling factors for angles of incidence
(✓0, �0) = (70�, 0�). The parameters, given in the caption of
Fig. 2, were chosen so that the two types of disorder scatter light
with the same strength, i.e., h|s |2i = h|v|2i. By comparing the
results in Figs. 2(a) and 2(b), one can appreciate the differences
between the surface and the volume polarization couplings;
notice, in particular, the difference in sign. Due to their differ-
ence, the depolarization P (p) may become smaller than unity
for some scattering directions [Fig. 2(c)]. Interestingly, the
degree of polarization P (p) even vanishes at two points in the
p-plane located symmetrically about the plane of incidence
(the p1 p3-plane). To further investigate the conditions leading
to P (p) = 0, Fig. 2(d) presents P (p) as function of the polar
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angle of scattering for a set of positive azimuthal angles of scat-
tering. The behavior of these curves, with a minimum of P (p),
are reminiscent of measurements of the polarization degree
as a function of the azimuthal angle of scattering in Ref. [19].
For the angles of incidence that we assume, P (p) vanishes for
(✓r , �r ) ⇡ (61.6�, ±19.0�). According to Eq. (8), this should
happen for a critical in-plane wave vector of scattering, p?, that
satisfies

4 det J(p)(p?, p0) = [Tr J(p)(p?, p0)]
2 . (12)

From the polarization vectors defined in Eqs. (4c) and (4d)
one can readily show that [see Fig. 2(e)]

⇢⇣,s p = ⇢",s p ⌘ ⇢sp. (13)

Combining this result with the expressions in Eqs. (10) and
(11), we can rewrite condition (12) as
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2
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2
= [|⇢⇣,pp |

2
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2
+ 2|⇢sp|

2
]
2,
(14)

where we assume that h|s |2i = h|v|2i. Figure 2(f ) illustrates
that at the critical points, the polarization coupling factors
actually satisfy ⇢sp = ⇢⇣,pp = �⇢",pp , so that the condition (14)
[and (12)] is trivially fulfilled, and the degree of polarization
P (p)(p?, p0) vanishes. Depending on the angles of inci-
dence (characterized by p0), the critical wave vectors p? may
correspond to the evanescent or radiative modes. We have expe-
rienced that the critical points appear in the radiative region for
a sufficiently large polar angle of incidence (see the animation
provided in Visualization 1).

An enlightening geometrical interpretation of p? can be
given. For such a critical wave vector, the two contributions to
the scattered electric field originating from the surface and the
volume are orthogonal. Indeed, for an incident p-polarized
wave, the electric fields scattered by the surface or by the volume
are proportional to, respectively,

E(sc)
⇣ (p, x3) / ⇢⇣,pp(p, p0)ê

+

1,p(p) + ⇢⇣,s p(p, p0)ês (p),

(15a)

E(sc)
" (p, x3) / ⇢",pp(p, p0)ê

+

1,p(p) + ⇢",s p(p, p0)ês (p) .
(15b)

The scalar product of these two electric fields vectors reads

E(sc)
⇣ · E(sc)

" / ⇢⇣,pp⇢",pp + ⇢2
sp, (16)

which vanishes at the critical wave vector since ⇢sp = ⇢⇣,pp =

�⇢",pp . Hence, the interpretation of perfect depolarization
is clear. For scattering into modes characterized by the critical
wave vectors p?, the polarization vectors associated with the
surface and volume contributions to the scattered electric field
are orthogonal. Therefore, they form a basis for polarization and
are weighted by the uncorrelated random variables s(p?, p0) and
v(p?, p0). In this basis, the two contributions to the scattered
electric field are uncorrelated, which, indeed, is the definition
of perfect depolarization [23]. It should be noted that whenever
h|s |2i 6= h|v|2i, zero degree of polarization may not be pos-
sible to achieve. In such cases, only a minimum for P (p) can be
reached at a critical wave vector if the values for h|s |2i and h|v|2i

are sufficiently close.
In summary, in this Letter, we have demonstrated that perfect

depolarization can be observed in specific scattering directions

in the single scattering of light by a disordered system. The
mechanism responsible for perfect depolarization is the super-
position of two statistically independent scattered fields of equal
average intensity with deterministic orthogonal polarization
states. For uncorrelated sources of disorder, the prediction of the
perfect depolarization directions is thus given by the condition
of orthogonality of the polarization states. The analysis will be
extended to the case of correlated surface and volume disorders
in a future study. In particular, we will study the possibility of
modulating the degree of polarization using the cross correlation
as a degree of freedom.
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