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We provide a simple semi-classical formalism to describe the coupling between one or several quantum emitters
and a structured environment. Describing the emitter by an electric polarizability, and the surrounding medium
by a Green function, we show that an intuitive scattering picture allows one to derive a coupling equation from
which the eigenfrequencies of the coupled system can be extracted. The model covers a variety of regimes observed
in light–matter interaction, including weak and strong coupling, coherent collective interactions, and incoherent
energy transfer. It provides a unified description of many processes, showing that different interaction regimes are
actually rooted on the same ground. It can also serve as a basis for the development of more refined models in a
full quantum electrodynamics framework. © 2019 Optical Society of America
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1. INTRODUCTION

Many aspects of light–matter interaction can be understood
from the coupling between dipole emitters (or absorbers) and
the electromagnetic field in a structured medium. Indeed, the
basic processes in molecular spectroscopy, light scattering from
small particles or atoms, fluorescence, nonlinear optics, or cav-
ity quantum electrodynamics (QED) are most of the time de-
scribed using electric (or magnetic) dipoles interacting with the
electromagnetic field [1–4]. With the advent of nanophotonics,
structuring the environment at scales much smaller than the
wavelength is used to modify and control the emission and ab-
sorption dynamics of quantum emitters (such as molecules or
quantum dots). This has become an active area of research,
with fundamental and applied perspectives [5,6].

Depending on the strength of the interaction, different re-
gimes are observed. In the weak-coupling regime, spontaneous
emission can be either accelerated or inhibited, a phenomenon
referred to as the Purcell effect [7]. When the emitter strongly
couples to a specific mode of the electromagnetic field, two new
hybridized eigenmodes (polaritons) are created, characterized
by a frequency splitting or the appearance of Rabi oscillations
in the time domain [8,9]. Initially the realm of cavity QED,
changes in the spontaneous emission dynamics in the weak-
and strong-coupling regimes have been demonstrated in nano-
photonics using optical antennas [10], microcavities [11,12],
photonic crystal cavities [13], or plasmonic cavities [14].
The mutual interaction between several emitters in the pres-
ence of an electromagnetic field also gives rise to different
phenomena, from energy transfer between two molecules in

weak coupling [15] to coherent collective interactions leading
to sub- and superradiance [16,17]. Here as well, confining the
electromagnetic field allows one to act on the coupling strength.
For example, the range of energy transfer can be modified using
surface plamons [18], and collective interactions can be
enhanced using photonic crystal cavities [19].

In this tutorial, we propose a simple and unified approach to
deal with the interaction between a quantum emitter and the
electromagnetic field in a structured medium, and we show
how the same starting point allows one to describe many differ-
ent regimes and phenomena in light–matter interaction. The
emitter is described by an electric polarizability, and the field
is described in terms of a Green function. Assuming an external
excitation, we address the coupling as a semi-classical scattering
process (by semi-classical we mean that the field is not explicitly
quantized), and we derive a coupling equation from which the
eigenfrequencies of the resulting eigenmodes can be deduced.
By choosing the correct model for the Green function, which
describes the response of the environment, the formalism nat-
urally leads to a description of the weak- and strong-coupling
regimes. The intuitive scattering approach is easily extended to
the situation of two emitters coupled through a structured envi-
ronment. Interestingly, beyond coherent mutual interactions
leading to strong coupling, the model also includes a descrip-
tion of incoherent energy transfer between molecules in the
weak-coupling regime. Finally, we show how a generalization
to a set of N emitters provides an appealing coupled-dipole
model to describe collective interactions.

The tutorial is organized as follows. In Section 2, starting
from the optical Bloch equations, we derive the polarizability
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model that allows us to describe either the full dynamics of a
two-level atom or the excitation dynamics of a three-level mol-
ecule. In Section 3, we introduce the concept of the Green
function, which is a useful tool to describe the electrodynamic
response of an arbitrary environment. In Section 4, we derive
the coupling equation that drives the dynamics of the coupled
emitter-field system, based on an intuitive scattering approach.
From this equation, we show how the weak- and strong-cou-
pling regimes emerge. In Section 5, we extend the scattering
approach to the situation of two emitters coupled through a
structured environment, focusing the analysis on the regimes
of weak and strong dipole–dipole interaction. In the weak-cou-
pling regime, we show how irreversible energy transfer can be
described using appropriate polarizability models. In Section 6,
we briefly discuss the generalization of the model to the collec-
tive interaction between N identical emitters, with N arbitrar-
ily large. Finally, Section 7 summarizes the main conclusions.

2. POLARIZABILITY OF A DIPOLE EMITTER

The electrodynamic response of a subwavelength resonant scat-
ter can be described in the electric-dipole limit using a dynamic
polarizability. The same description holds for an atom or a fluo-
rescent molecule. The interaction between a two-level atom
and a classical monochromatic electric field is a textbook prob-
lem that is usually treated by solving the optical Bloch equa-
tions [1,8]. Here we use this framework to describe the
excitation of a three-level system by a quasi-monochromatic
electric field. The three-level model includes the two-level atom
as a particular case. It also encompasses the main features
needed to describe the excitation of a fluorescent molecule.

A. Three-Level Model

We consider a three-level system characterized by three station-
ary and non-degenerate eigenstates jai, jbi, and jci, as repre-
sented in Fig. 1, with Γbc , Γba, and Γca the spontaneous decay
rates of each level. In practice, this three-level model can be
used to describe a two-level atom (by taking Γbc � 0), or a
three-level system with a high decay rate towards the auxiliary
level (Γbc ≫ Γba) that provides the simplest model of a fluores-
cent molecule.

The state of the system is conveniently described by a den-
sity operator ρ̂. The diagonal elements of this operator, known
as populations, give the probability for the system to be in one
of its eigenstates. The off-diagonal elements, known as

coherences, describe dynamic effects related to the coherent
superpositions of eigenstates. They enter, as we shall see, the
expression of the polarizability. The evolution of the density
operator is driven by the Hamiltonian Ĥ according to [20]

dρ̂

dt
� 1

iℏ
�Ĥ , ρ̂�: (1)

Using this equation is equivalent to using the Schrödinger
equation for an arbitrary state jψ�t�i of the system, with the
advantage of providing a straightforward description of mixed
states. Since we are interested in the interaction between the
three-level system and an external electric field, it is convenient
to write Ĥ � Ĥ 0 � Ĥ 1, where Ĥ 0 is the unperturbed
Hamiltonian (describing the emitter in absence of electric field)
and Ĥ 1 is the interaction Hamiltonian (describing the coupling
with the field). Following the procedure commonly used for
two-level systems [2], we can construct the unperturbed
Hamiltonian for three-level systems, which is

Ĥ 0 � ℏωabσ̂
�
abσ̂

−
ab � ℏωac σ̂

�
ac σ̂

−
ac , (2)

where ωij is the Bohr frequency associated with the transition
ij, and σ̂�ij � jjihij and σ̂−ij � jiihjj are the atomic raising and
lowering operators, respectively. In order to describe the exci-
tation of the emitter, we use a semi-classical description and
assume that it interacts with a classical quasi-monochromatic
electric field tuned to the transition ab. In the electric-dipole
approximation, we can express the interaction Hamiltonian as
[1,21]

Ĥ 1 � −dab · E�t��σ̂�ab � σ̂−ab�, (3)

where E�t� is the electric field at the position of the emitter and
dab � hajD̂jbi � hbjD̂jai is the dipole matrix element (or
transition dipole). At this stage we did not consider the effects
of spontaneous emission and other interactions with the envi-
ronment (such as collisions with other molecules in a gas, with
phonons in a solid, or with internal degrees of freedom in the
emitter itself ). These processes, assumed to be independent of
the external exciting field, affect the populations and the coher-
ences, and need to be included in Eq. (1). This leads to the
master equation

dρ̂

dt
� 1

iℏ
�Ĥ 0 � Ĥ 1, ρ̂� �

�
dρ̂

dt

�
relax

(4)

in which the last term accounts for the decay of populations
and coherences due to spontaneous emission and dephasing
processes (that contribute to the relaxation of the coherences).
The form of the relaxation terms can be found by considering
the three-level system in the absence of an external driving field.
In this case we know that the populations of states jbi and jci
decay spontaneously, with the rates indicated in Fig. 1, allowing
us to write dρbb∕dt � −�Γba � Γbc�ρbb and dρcc∕dt �
−Γcaρcc � Γbcρbb. The coherences ρba and ρab � ρ�ba, which
will be needed to compute the polarizability in the next
sections, also decay according to dρba∕dt � −�γab∕2�ρba, with
a damping rate γab satisfying γab ≥ Γba � Γbc (the equality
holding only when pure dephasing processes, which do not
change the energy states, can be neglected). Note that, formally,
the last term in Eq. (4) can be represented by an operator L̂d �ρ̂�
known as a Lindblad superoperator, which is sometimes used to

ba caE(t)

bc

>

>

a

c

b>

Fig. 1. Jablonski diagram of a three-level system. For Γbc � 0, the
system reduced to the model of a two-level atom. For Γbc ≫ Γba, the
three-level system is the simplest relevant model of a fluorescent mol-
ecule. In this case, Γbc corresponds to a fast non-radiative decay to-
wards state jci, and Γca corresponds to the radiative transition.
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explicitly include the relaxation terms in the master
equation [22].

B. Optical Bloch Equations

Finding the solution to Eq. (4) requires us to solve a system of
nine equations. For our purposes, we need to compute the ex-
cited-state populations ρaa, ρbb, and ρcc , as well as the coher-
ences ρab and ρba. The coherences will allow us to compute the
expectation of the dipole moment operators associated with
transition ab. Since the density operator is Hermitian and
satisfies the condition ρaa � ρbb � ρcc � 1, we can reduce
the problem to a set of three equations. As we assume the ex-
ternal electric field to be quasi-resonant with transition ab, we
can use the rotating wave approximation (jω − ωabj ≪ ωab)
and the slowly varying envelope approximation (γab ≪ ωab)
[2]. This leads to the optical Bloch equations [1,8,21]:

dρbb
dt

� −�Γba � Γbc�ρbb � 2 Im�ρabΩ����t��, (5)

dρcc
dt

� −Γcaρcc � Γbcρbb, (6)

dρba
dt

� −
γab
2
ρba − iωabρba � i�ρbb − ρaa�Ω����t�, (7)

where we have introduced the time-dependent Rabi frequency
Ω�t� � −�dab · E�t��∕ℏ, and its positive frequency component
defined with the following convention:

Ω����t� �
Z �∞

0

Ω�ω�e−iωtdω: (8)

The time-dependent Rabi frequency characterizes the coupling
strength between the three-level emitter and the electric field.
In the absence of an external field, Ω����t� � 0 and the system
spontaneously decays towards its lower energy state jai due to
the damping rates of populations and coherences. In contrast,
in the presence of an electric field, the terms in Ω����t� couple
the equations driving the populations and the coherences. In
particular, Eq. (5) shows that the evolution of the excited-state
population depends on the phase difference between the coher-
ences (related to the dipole moment operators) and the time-
dependent Rabi frequency (related to the external field). In
order to compute the polarizability associated with the transi-
tion ab, we need to solve the coupled Bloch equations and find
the expression of the coherences ρab and ρba.

C. Polarizability

Assuming an excitation by a stationnary external field, we focus
on the steady-state behavior of the coupled emitter-field sys-
tem. In this regime, the solution of the optical Bloch equations
can be found analytically. Solving Eqs. (5)–(7) in the frequency
domain yields

ρba�ω� � −
Ω����ω�

ωab − ω − iγab∕2

�
1

1� s

�
, (9)

where s is the saturation parameter given by

s � 2�2Γca � Γbc�
Γca�Γba � Γbc�

Z �∞

−∞
Im

� jΩ����ω 0�j2
ωab − ω

0 − iγab∕2

�
dω 0: (10)

Equation (9) can be used to compute the expectation value of
the dipole moment operator defined as d � Tr�ρ̂ D̂�. More
precisely, in order to define a polarizability matching the
classical convention for monochromatic fields with a time
dependence exp�−iωt�, we will need the positive frequency part
of the expectation value that is given by d����ω� � ρba�ω�dab.
For a weak exciting field, we can neglect saturation effects
(s ≪ 1), and we obtain

d����ω� � 1

ℏ

�
1

ωab − ω − iγab∕2

�
�dab · E����ω��dab: (11)

By definition of the polarizability αab�ω�, we also have

d����ω� � αab�ω�ϵ0E����ω�: (12)

These two equations readily lead to the following expression of
the polarizability characterizing the excitation of the three-level
emitter:

αab�ω� �
3πc3

ω3
ab

Γsp
ba

ωab − ω − iγab∕2
u ⊗ u: (13)

In this expression, we have introduced the unit vector u char-
acterizing the orientation of the transition dipole, such that
dab � dabu, and ⊗ denotes the tensor product. We have also
introduced the spontaneous emission rate (or Einstein A
coefficient) [2]

Γsp
ba �

ω3
abd

2
ab

3πϵ0ℏc3
: (14)

Note that very often Γba ≥ Γsp
ba since additional non-radiative

processes can contribute to the decay of the excited state jbi
towards the ground state jai. From the expression of the polar-
izability αab�ω� � αab�ω�u ⊗ u, we can deduce the expres-
sions of the extinction and scattering cross sections
σe�ω� � �ω∕c�Im�αab�ω�� and σs�ω� � �ω4

0∕�6πc4��jαab�ω�j2
[23]. For quasi-resonant excitation (ω ≃ ωab), we have

σe�ω� �
3πc2

2ω2
ab

γabΓ
sp
ba

�ωab − ω�2 � γ2ab∕4
, (15)

σs�ω� �
3πc2

2ω2
ab

�Γsp
ba�2

�ωab − ω�2 � γ2ab∕4
: (16)

Note that when the damping rate of the coherence equals the
spontaneous emission rate (γab � Γsp

ba), the extinction cross sec-
tion equals the scattering cross section. In this limit, light is
scattered without absorption.

3. FIELD RESPONSE: GREEN’S FUNCTION

While the electrodynamic response of a dipole emitter (or scat-
terer) is described by its polarizability, the linear response of the
environment is conveniently described using the electric Green
function G (also denoted by field susceptibility). The tensor
(electric) Green function is defined as the solution of the vector
Helmoltz equation [5,24]

∇ × ∇ × G�r, r 0,ω� − ω
2

c2
ϵ�r,ω�G�r, r 0,ω� � δ�r − r 0�I (17)

satisfying the outgoing condition when jr − r 0j → ∞ (one also
refers to it as the retarded Green function). In this equation,
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δ�…� is the Dirac delta function, I is the unit tensor, and
ϵ�r,ω� is the space- and frequency-dependent dielectric func-
tion of the medium. Physically, the Green function connects a
monochromatic electric-dipole source d�ω� located at a posi-
tion r 0 to the radiated electric field at a position r in the
medium through the relation [25]

E�r,ω� � μ0ω
2G�r, r 0,ω�d�ω�: (18)

Note that this relation holds for both classical dipoles and fields,
and for quantum operators (the Green function is the same in
classical and quantum electrodynamics). The Green function
contains the electrodynamic response of the environment,
and can be used to relate one or several dipole sources to
the electric field in arbitrary geometries such as a cavity, an
antenna, an interface supporting surface plasmons, or a more
complex medium, which can all be treated formally on the
same footing. It will be convenient to decompose the Green
function as follows:

G�r, r 0,ω� � G0�r, r 0,ω� � S�r, r 0,ω�, (19)

where G0 is the free-space Green function and S is the change
in the Green function due to the structured environment.
Given the response of the dipole emitter (polarizability) and
of the environment (Green function), we will now see that
the coupling between them can be studied formally based
on a picture borrowed from scattering theory [26,27].

4. DIPOLE EMITTER INTERACTING WITH AN
ENVIRONMENT

In this section, we consider a two-level dipole emitter located at
a position rs, with a fixed orientation of its transition dipole
(defined by unit vector u), and characterized by its free-space
polarizability α0�ω� � α0�ω�u ⊗ u, with

α0�ω� �
3πc3

ω3
0

Γ0

ω0 − ω − iγ0∕2
: (20)

In this expression we assume ω ≃ ω0, and we can use γ0 ≥ Γ0

to account for non-radiative dephasing processes. We stress that
this expression of the polarizability can also describe classical
resonant scatterers [28].

A. Coupling Equation

The response of the dipole emitter to an external field can be
understood as a two-step scattering process. First, the emitter is
excited by the field Eexc generated by scattering of the incident
field Einc by the environment. Second, the emitter is excited by
its own field scattered back by the environment. These two
processes are represented schematically in Fig. 2. With these
two processes in mind, the induced dipole can be written as

d����ω� � α0�ω�ϵ0E���
exc �rs,ω�

� α0�ω�k20S�rs, rs,ω�d����ω�, (21)

where k0 � ω∕c. Note that the interaction with the environ-
ment is described by the modification of the Green function
S � G − G0 since the interaction of the emitter with itself
through the vacuum field is already included in α0�ω�. We
can also define the dressed polarizability α�ω� such that

d����ω� � α�ω�ϵ0E���
exc �rs,ω�: (22)

From Eqs. (21) and (22), we obtain

α�ω�−1 � α0�ω�−1 − k20S�rs, rs,ω�, (23)

which gives a general expression of the dressed polarizability.
Eigenmodes of the coupled system can be defined as poles
in α�ω�, or zeros of α�ω�−1. This leads to the following general
coupling equation:

ω2

c2
S�rs, rs,ω�α0�ω� � I: (24)

Projecting on the direction u of the dipole, this can be re-
written as

ω2

c2
�u · S�rs, rs,ω�u�α0�ω� � 1, (25)

which is a scalar equation. The solutions of this coupling equa-
tion, considered as an implicit equation in ω, define the eigen-
frequencies of the coupled system. For a two-level system,
introducing Eq. (20) into Eq. (25), we find that the complex
eigenfrequencies ϖp are solutions of

S�ϖp� � ω0 −ϖp − iγ0∕2, (26)

where we use the notation

S�ω� � 3πcΓ0

ω0

�u · S�rs, rs,ω�u�: (27)

Note that we can use ω � ω0 in prefactors since we already
assumed ω ≃ ω0 in Eq. (20). Solving Eq. (26) allows one to
find the complex eigenfrequencies ϖp � ωp − iγp∕2, defining
the central frequencies ωp and the linewidth γp of the eigenm-
odes of the coupled emitter-field system [3]. This leads to a
simple description of different interaction regimes and their
main features.

B. Weak Coupling

Let us first consider the situation in which the environment has
a smooth frequency dependence at the scale of the emitter line-
width γ0. We can assume S�ω� ≃ S�ω0�, and the solution to
Eq. (26) simply becomes

Fig. 2. Representation of the two scattering processes involved in
the electrodynamic interaction between a dipole emitter and a
structured environment.
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ϖp � ω0 −
i
2
γ0 − S�ω0�: (28)

Both the resonance frequency and the linewidth of the emitter
are affected by the coupling, and are respectively given by

ωp � ω0 − Re�S�ω0��, (29)

γp � γ0 � 2 Im�S�ω0��: (30)

We can see that the coupling induces a (classical) frequency
shift δω � ωp − ω0 that scales with the real part of the
Green function due to the environment. The linewidth is also
modified, the change scaling with the imaginary part of the
Green function. In the absence of non-radiative dephasing
processes �γ0 � Γ0�, the change in the linewidth (or, equiva-
lently, in the spontaneous decay rate) can be rewritten as

γp
Γ0

� 1� 2 Im�S�ω0��
Γ0

: (31)

Introducing the partial (or projected) local density of
states (LDOS), which is defined by ρu�r,ω� � 2ω∕�πc2�
Im�u · G�r, r,ω�u� [25], we find

γp
Γ0

� ρu�rs,ω�
ρu,0

, (32)

where ρu,0 � ω2∕�3π2c3� is the partial LDOS in
vacuum. We recover the well-known fact that in the weak-
coupling regime, the spontaneous decay rate is modified
according to the change in the LDOS, which is known as
the Purcell effect (the original paper by Purcell considers the
particular case of a single-mode cavity with weak losses [7],
the change in the LDOS being given in this case by the so-
called Purcell factor).

C. Strong Coupling

We now assume that the emitter is coupled to an environment
exhibiting sharp resonances, and is resonant (or quasi-resonant)
with a specific mode so that we can restrict the problem to the
interaction with a single mode. Assuming jω − ωmj ≪ ωm and
γm ≪ ωm, where ωm and γm are, respectively, the central fre-
quency and linewidth of the mode, we can use the following
single-mode expansion of the Green function:

G�r, r 0,ω� � c2

2ωm

em�r� ⊗ e�m�r 0�
ωm − ω − iγm∕2

, (33)

where em�r� is the normalized complex amplitude of the mode
[25]. The change in the Green function S can be deduced
from Eq. (33) by subtracting the contribution of the vacuum
Green function G0. Only the imaginary part has to be sub-
tracted, since the singular real part of G0 is not included in
expression (33). For a discussion of this point, see [29,30].
This leads to

S�ω� � FmΓ0γm∕4
ωm − ω − iγm∕2

− iΓ0∕2, (34)

where we have introduced the Purcell factor of the mode de-
fined by [25]

Fm � 6πc3

ω2
mγm

jem�rs� · uj2: (35)

Note that in this definition, the factor jem�rs� · uj2, whose in-
verse defines the mode volume, depends on the emitter location
and orientation (the Purcell factor is often defined using the
maximum value of jem�rs� · uj−2, a convention that we do not
use here). Introducing Eq. (34) into the coupling Eq. (26),
we find that the complex eigenfrequencies ϖp of the coupled
system must satisfy

1 � FmΓ0γm∕4
�ω0 −ϖp − iγ0∕2��ωm −ϖp − iγm∕2�

−
iΓ0∕2

ω0 −ϖp − iγ0∕2
: (36)

Solving this second-order equation, we obtain two solutions
ϖ�

p and ϖ−
p given by

ϖ	
p � ϖ 0

0 �ϖm

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϖm −ϖ 0

0

2

�
2

� g2
s

, (37)

where g �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FmΓ0γm∕4

p
is the coupling constant,ϖm � ωm −

iγm∕2 is the complex frequency of the mode, and ϖ 0
0 � ω0 −

i�γ0 − Γ0�∕2 characterizes the emitter. For 4g2 ≪ jϖm −ϖ 0
0j2,

developing the square-root term to first order, we would find
two slightly modified eigenmodes (compared to the decoupled
emitter and field mode), with a small frequency shift and a
broadening, thus recovering the features of the weak-coupling
regime. In contrast, for 4g2 ≫ jϖm −ϖ 0

0j2 corresponding to
the strong-coupling regime, the central frequency and the
linewidth of the eigenmodes become

ω	
p � ω0 � ωm

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FmΓ0γm

4

r
, (38)

γ	p � �γ0 − Γ0� � γm
2

: (39)

Equation (38) shows the appearance of two new eigenmodes of
the strongly coupled system, with resonance frequencies split
around the average resonance frequency of the uncoupled sys-
tems. Frequency splitting is a feature of the strong-coupling
regime, which can be experimentally observed when the split-
ting is larger than the linewidth of the new eigenmodes. Note
that the strong-coupling condition 4g2 ≫ jϖm −ϖ 0

0j2 often
ensures that the frequency splitting can be experimentally
observed, but is not always sufficient (for instance, when
ϖm ∼ϖ 0

0).
For the sake of illustration, let us consider a dipole emitter

characterized by a central frequency ω0 � 2370 meV, a radi-
ative linewidth Γ0 � 0.004 meV, and a total linewidth γ0 �
140 meV (these values are typical of a fluorescent molecule at
room temperature). We assume the emitter to be coupled to a
single-mode cavity characterized by ωm � 2220 meV and
γm � 40 meV. By increasing the Purcell factor Fm of the cav-
ity, we can follow the evolution of the eigenfrequencies in the
complex plane, as shown in Fig. 3(a). Both the frequency split-
ting and the change in the linewidth are observed. The depend-
ence of the frequency splitting on the Purcell factor (that
changes the coupling constant) is shown in Fig. 3(b). In this
example, the critical Purcell factor, which separates the weak-
and strong-coupling regimes, is on the order of 105.
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5. TWO EMITTERS IN A STRUCTURED MEDIUM

In this section we describe the interaction between two dipole
emitters in an environment, and discuss the strong- and
weak-coupling regimes. In the weak-coupling regime, we show
that the formalism encompasses the process of irreversible
energy transfer between a donor and an acceptor.

A. Coupling Equation

We consider two dipole emitters located in an arbitrary
medium, and excited by an external field. The emitters are
characterized by their free-space polarizability αi�ω� �
αi�ω�ui ⊗ ui, the unit vector ui defining the fixed orientation
of the transition dipole, with

αi�ω� �
3πc3

ω3
0

Γi

ωi − ω − iγi∕2
for i � 1, 2: (40)

Since we are considering the quasi-resonant regime with
ω ≃ ω1 ≃ ω2, we use the average resonance frequency ω0 �
�ω1 � ω2�∕2 in all prefactors. We also introduce the following
notations:

Sii�ω� �
3πcΓi

ω0

�ui · S�ri, ri,ω�ui �, (41)

Gij�ω� �
3πc

ffiffiffiffiffiffiffiffiffi
ΓiΓj

p
ω0

�ui · G�ri, rj,ω�uj�: (42)

While Sii�ω� describes the influence of each emitter on itself
through the environment, Gij�ω� describes the interaction
between them. Following the scattering picture used in
Section 4, the relation between the induced dipoles d1 �
d 1u1 and d2 � d 2u2 in each emitter and the excitation

field are conveniently expressed in a matrix form MX � Y,
where

X �
�
d ���
1 �ω�

d ���
2 �ω�

�
, (43)

Y �
 
α01�ω�ϵ0u1 · E���

exc �r1,ω�
α02�ω�ϵ0u2 · E���

exc �r2,ω�

!
, (44)

M �
0
@ 1 − S11�ω�

ω1−ω−iγ1∕2
− G12�ω�
ω1−ω−iγ1∕2

− G21�ω�
ω2−ω−iγ2∕2

1 − S22�ω�
ω2−ω−iγ2∕2

1
A: (45)

Note that reciprocity imposes that the Green function satisfies
G12�ω� � G21�ω�. The eigenfrequencies of the coupled system
are found by solving det�M�ω�� � 0. This leads to the follow-
ing equation satisfied by the complex eigenfrequencies ϖp:

0 � 1 −
S11�ϖp�

ω1 −ϖp − iγ1∕2
−

S22�ϖp�
ω2 −ϖp − iγ2∕2

� S11�ϖp�S22�ϖp� − G2
12�ϖp�

�ω1 −ϖp − iγ1∕2��ω2 −ϖp − iγ2∕2�
: (46)

This equation is a convenient starting point to discuss different
interaction regimes.

B. Weak Coupling to the Environment

If the medium has a smooth dependence on frequency (no res-
onance), we can write Sii�ω� ≃ Sii�ω0� and Gii�ω� ≃ Gii�ω0�.
The two eigenfrequency solutions of Eq. (46) are then given by

ϖ	
p � ϖ1 �ϖ2

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϖ2 −ϖ1

2

�
2

� G12�ω0�2
s

, (47)

where we have introduced ϖi � ωi − iγi∕2 − Sii�ω0�, which
corresponds to the eigenfrequency of each emitter considered
alone in the environment [see Eq. (28)]. For strong dipole–
dipole coupling between the emitters (4G12�ω0�2 ≫
jϖ2 −ϖ1j2) the central frequency and the linewidth of the
two eigenmodes become

ω	
p � ω1 � ω2

2
− Re

�
S11�ω0� � S22�ω0�

2

�
	 Re�G12�ω0��,

(48)

γ	p � γ1 � γ2
2

� 2 Im

�
S11�ω0� � S22�ω0�

2

�


 2 Im�G12�ω0��: (49)

We observe two eigenmodes characterized by a frequency split-
ting that scales with Re�G12�ω0��, i.e., with the strength of the
electrodynamic coupling between the two dipoles. This is a
feature of a strong-coupling regime between the emitters.
The linewidths show the appearance of both a broadened
(or superradiant) mode and a narrowed (or subradiant) mode.

To get orders of magnitude, let us take the example of two
emitters in free space, with the same parameters as in the pre-
vious section, which are typical for fluorescent molecules at
room temperature (central frequency ω1 � ω2 � 2370 meV,
radiative linewidth Γ1 � Γ2 � 0.004 meV, and total linewidth
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Fig. 3. (a) Evolution of the eigenfrequencies of the coupled system
in the complex plane when increasing the Purcell factor Fm of the
cavity. (b) Normalized frequency shift of the two eigenmodes versus
the Purcell factor Fm. Error bars represent intervals bounded by
ωp 	 γp∕2.
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γ1 � γ2 � 140 meV). Let us assume that the transition dipoles
are oriented along the z axis, and separated by a distance d
along a perpendicular direction (the x axis). In these conditions,
the critical distance for the observation of frequency
splitting is 3 nm, and the change in the linewidth is negligible
(see Fig. 4). For d ≫ 3 nm, the emitters can be considered
independent. Also note that the condition 4G12�ω0�2 ≫
jϖ2 −ϖ1j2, which we used to define the strong dipole–dipole
interaction regime, is not sufficient for the observation of fre-
quency splitting (that has to be larger than the linewidth).

C. Weak Dipole–Dipole Interaction

On top of the assumption of weak coupling to the environ-
ment, we now assume that the two emitters are weakly coupled
to each other (4G12�ω0�2 ≪ jϖ2 −ϖ1j2). In this limit, we can
perform a first-order expansion of the square root in Eq. (47),
yielding

ϖ	
p � ϖ1 �ϖ2 	 �ϖ2 −ϖ1�

2
	 G12�ω0�2

ϖ2 −ϖ1

: (50)

We see that the eigenmode + (resp. –) correponds to the mod-
ifications in frequency and linewidth of emitter 2 (resp. 1). It is
interesting to show that this expression can describe irreversible
energy transfer between two emitters (usually referred to as do-
nor and acceptor), which at short distance is known as Förster
resonant energy transfer (FRET) [31]. FRET has been widely
used in biology as a mechanism to detect molecular interaction
[32]. Short-distance energy transfer is also involved in the pro-
cess of photosynthesis [33]. To compute the eigenfrequencies
in this regime, we need to specify the polarizability models for
emitter 1 (donor) and emitter 2 (acceptor). We shall assume
that the donor is an ideal two-level atom (with γ1 � Γ1), while

the acceptor is a three-level system, with a large excited-state
decay rate towards the auxiliary radiative level (as in a flo-
rescent molecule). This means that the condition γ2 ≫
�Γ1,Γ2, 2 Im�S11�ω0��, 2 Im�S22�ω0��� is assumed to be satis-
fied. Note that, as described in Section 2, the polarizability
α2�ω� describes the excitation of emitter 2 only (subsequent
fluorescent emission at a different frequency is implicit). We
also assume ω1 � ω2 � ω0, meaning that the emission fre-
quency of the donor matches the absorption frequency of
the acceptor. Under these conditions, the linewidths of the
eigenmodes of the coupled system are

γ�p � γ2, (51)

γ−p � γ1 � 2 Im�S11�ω0�� �
4Re�G12�ω0�2�

γ2
: (52)

As expected, eigenmode + (corresponding to emitter 2 or
acceptor) has negligible broadening due to coupling to both
the donor and the environment (this follows directly from
the condition of a large γ2). More interestingly, the linewidth
associated to eigenmode – (corresponding to emitter 1 or do-
nor) is modified by the surrounding medium [second term on
the right-hand side in Eq. (52)] and by the presence of the ac-
ceptor [third term on the right-hand side in Eq. (52), which
will be denoted by Γinter]. We can observe that the presence
of the acceptor can either increase or decrease the linewidth
of the donor, depending on the sign of Re�G12�ω0�2�. This
can be understood as the result of changes in the relative phase
between the induced dipole in the donor and the field back-
scattered by the acceptor at the donor position, as in the process
giving rise to oscillations in the fluorescence lifetime of an emit-
ter in front of a reflective interface [34]. For distances much
smaller than the wavelength λ0 � 2πc∕ω0, we can assume
Re�G12�ω0�2� ≃ jG12�ω0�j2. (This can be easily verified in free
space, as long as the interdistance d < λ0∕4.) This means that
at short distance the linewidth of the donor is always increased
by the presence of the acceptor. Moreover, from Eqs. (15) and
(16), one can deduce the on-resonance expressions of the ex-
tinction and scattering cross sections σe�ω0� and σs�ω0�, which
are, respectively,

σe�ω0� �
6πc2

ω2
0

Γ2

γ2
, (53)

σs�ω0� �
6πc2

ω2
0

�
Γ2

γ2

�
2

: (54)

In the regime γ2 ≫ Γ2, the scattering cross section is negligible,
and we can assume that the absorption cross section σa�ω0�
equals the extinction cross section. Then, the last term on
the right-hand side in Eq. (52), usually referred to as the energy
transfer rate Γet , can be written

Γet � 6πΓ1σa�ω0�ju1 · G�r1, r2,ω0�u2j2, (55)

where we have used Eq. (42) and the assumption
Re�G12�ω0�2� ≃ jG12�ω0�j2. This expression takes the usual
form of the energy transfer rate in dipole–dipole interaction
[35] (see also [36,37] for a full QED treatment). The main
difference between Γet and Γinter is that the latter includes
back-action from the acceptor to the donor due to scattering,
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Fig. 4. (a) Evolution of the eigenfrequencies in the complex plane
when decreasing the distance d between the emitters in free space.
(b) Normalized frequency shift of the two eigenmodes versus the
distance d . Error bars represent intervals bounded by ωp 	 γp∕2.
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which disappears in the energy transfer regime. In free space,
the Green function at short distance can be taken in the quasi-
static limit, and follows the scaling u1 · G0�r1, r2,ω0�u2 ∼
jr1 − r2j3. The free-space energy transfer rate therefore scales
as Γet ∼ jr1 − r2j6, which is a feature of FRET, as initially de-
rived by Förster [31]. In more complex geometries, inserting
the appropriate Green function into Eq. (55) allows one to
compute the change in the FRET rate due to the environment
(see, for example, Refs. [18,38]).

As a didactic example, let us consider a donor (two-level
system) with emission frequency ω1 � 2370 meV and radia-
tive linewidth γ1 � Γ1 � 0.004 meV, and an acceptor (three-
level molecule) with absorption frequency ω2 � ω1 and total
linewidth γ2 � 140 meV. We show in Fig. 5 the energy trans-
fer rate Γet , calculated using Eq. (55), versus the distance d
between donor and acceptor. For comparison, we also display
the change in the donor linewidth due to the acceptor that
includes the scattering back-action (Γinter). We see that both
expressions coincide for d < 100 nm. Note that for larger
distances, the difference would remain difficult to observe since
the energy transfer efficiency is very low in this regime (on the
order of 10−6 ).

D. Strong Dipole–Field Interaction

We now examine the regime of strong coupling of the two
emitters to a single electromagnetic mode. To proceed, we
use the expansion of the Green function in Eq. (33). For con-
venience we introduce the Purcell factor experienced by each
emitter, defined by

F i �
6πc3

ω2
mγm

jem�ri� · uij2 for i � 1, 2: (56)

It follows that

Sii�ω� �
F iΓiγm∕4

ωm − ω − iγm∕2
− iΓi∕2, (57)

Gij�ω�2 �
F iΓiF jΓjγ

2
m∕16

�ωm − ω − iγm∕2�2
: (58)

The eigenfrequencies of the coupled system can then be found
by inserting these expressions into Eq. (46), resulting in a
third-order equation in the complex frequency ϖp whose roots

can be found analytically. Different behaviors can be observed
depending on the relative values of the two coupling constant
g1 and g2, defined as

gi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F iΓiγm

4

r
for i � 1, 2: (59)

Indeed, if g1 and g2 are substantially different, the emitter with
the larger coupling dictates the features of two split eigenmodes
(resulting from strong coupling between this emitter and the
field mode), while the third eigenmode is associated with
the other uncoupled emitter. The situation is more complicated
when g1 ∼ g2 since in this case the features of the three eigenm-
odes depend on both emitters. As an example, let us consider
two emitters with features matching those of fluorescent mol-
ecules at room temperature, characterized by different resonant
frequencies (ω1 � 2370 meV and ω2 � 2070 meV), by a
radiative linewidth Γ1 � Γ2 � 0.004 meV and by a total
linewidth γ1 � γ2 � 140 meV. We assume the emitters
coupled to a single-mode cavity with ωm � 2220 meV and
γm � 40 meV. Moreover, we set the Purcell factor seen by
emitter 1 to F 1 � 3 × 106 so that this emitter is strongly
coupled to the mode (see Fig. 3), while F 2 is left as a free
parameter allowing us to tune the coupling strength of
emitter 2. The behavior of the central frequency ωp and line-
width γp of the three eigenmodes is shown in Fig. 6. For
F 2 ≪ F 1, we observe the two eigenfrequencies resulting from
the strong coupling between the emitter 1 and the field mode,
while the third eigenfrequency is associated with the unper-
turbed emitter 2. By increasing F 2, this third eigenfrequency
progressively changes to the free-space resonance frequency
of emitter 1. In the regime F 2 ≫ F 1, two eigenfrequencies
characterizing strong coupling between emitter 2 and the field
emerge, while the third eigenfrequency is associated with the
unperturbed emitter 2. This behavior can be interpreted as
follows: the emitter with the largest coupling constant strongly
couples to the field mode, creating two frequency shifted new
eigenmodes, leaving the other emitter out of resonance.

6. GENERALIZATION: N IDENTICAL DIPOLE
EMITTERS IN MUTUAL INTERACTION

The approach can be extended to N dipole emitters coupled to
a structured environment. In the simplest situation, we can as-
sume N identical emitters with a polarizability α0�ω� given by
Eq. (20), all with the same orientation of their transition dipole.
We can also assume that all emitters see the same environment,
so that Sii�ω� � S�ω� and Gij�ω� � G�ω�. Finding the
eigenfrequencies of the coupled system amounts to solving
det�M� � 0, where M is now a N × N matrix. This leads
to the following equation for the complex eigenfrequencies ϖp:�

1 −
S�ϖp� − G�ϖp�
ω0 −ϖp − iγ0∕2

�
N−1

(60)

×
�
1 −

S�ϖp� � �N − 1�G�ϖp�
ω0 −ϖp − iγ0∕2

�
� 0: (61)

Whenever the surrounding medium can be considered as
weakly resonant, the N eigenfrequencies are given by
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Fig. 5. Solid line: normalized modification in the donor linewidth
due to the presence of the acceptor Γinter∕Γ1 versus the distance d
between donor and acceptor. Dashed line: normalized energy transfer
rate Γet∕Γ1 calculated using expression (55).
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ϖ−
p � ω0 −

i
2
γ0 − S�ω0� − �N − 1�G�ω0�, (62)

ϖ�
p � ω0 −

i
2
γ0 − S�ω0� � G�ω0�, (63)

where the solution ϖ�
p has a multipicity N − 1. In contrast, if

the surrounding medium is strongly resonant, and the emitters
are quasi-resonant with one specific eigenmode m of the field,
we obtain very different collective behavior. Using the notations
ϖ 0

0 � ω0 − i�γ0 − Γ0�∕2 and ϖm � ωm − iγm∕2, and intro-
ducing the coupling constant g �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ0γmFm∕4

p
with Fm

the Purcell factor of the mode, we find N � 1 eigenfrequencies
given by

ϖ	
p � ϖ 0

0 �ϖm

2
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ϖm −ϖ 0

0

2

�
2

� Ng2
s

, (64)

ϖ 0
p � ϖ 0

0, (65)

where the solution ϖ 0
p has a multiplicity N − 1. The eigenfre-

quencies given by Eq. (64) can be compared to the solutions for
one emitter strongly coupled to the field given by Eq. (37).
These solutions only differ by a modification of the coupling
constant, and the coupling constant for N identical emitters is
simply

ffiffiffiffiffi
N

p
g, where g is the coupling constant for one emitter.

Interestingly, the weak-coupling and strong-coupling situations
lead to very different results. In particular, when the environ-
ment is weakly resonant, the splitting in frequency and the line-
width scale with N , as one would obtain with the theory of
Dicke superradiance in the weak-excitation limit [17]. In con-
trast, when the environment is strongly resonant, the splitting
scales with

ffiffiffiffiffi
N

p
and the linewidth does not depend on N , in

agreement with results obtained with the Jaynes–Cumming

Hamiltonian [39]. The simple coupled-dipole model intro-
duced in this tutorial therefore contains the main ingredients
to describe collective interactions between quantum emitters
under external excitation.

7. CONCLUSION

In summary, we have presented a semi-classical description of
the interaction between one or several quantum dipole emitters
and a structured environment under weak external excitation.
The approach is based on a self-consistent coupling equation
resulting from a scattering picture. This coupling equation
serves as a starting point to discuss many interaction regimes,
covering weak and strong coupling between a single emitter and
the electromagnetic field, collective interactions between sev-
eral emitters leading, for example, to superradiance, as well
as energy transfer between two emitters. This simple approach
provides both a unified description and an intuitive under-
standing of the behavior of dipole emitters in (nano)structured
environments. It can also serve as a foundation for more
elaborate models, including an explicit quantization of the
electromagnetic field and/or saturation effects in the emitter
dynamics [2,4,16,40].
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