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volume in a diffusive sample. We show that the fluorescence lifetime is a
critical parameter for the precision of the technique. A time resolved fDOT
system that does not use spatial information is also considered. In certain
cases, a simple steady-state configuration may be as efficient as this time
resolved fDOT system.
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1. Introduction

Fluorescence diffuse optical tomography (fDOT) has become a valuable tool for in vivo molec-
ular imaging, and various fDOT systems have be proposed during the last two decades [1–3].
In this paper, we focus more specifically on two common modalities that can be identified in
the literature, namely the continuous wave (or steady-state) and the time domain fDOT sys-
tems. In a continuous wave fDOT setup (CW-fDOT), one illuminates the sample with one or
several continuous excitation sources and the emitted fluorescent light is detected on an array
of detectors that is usually a CCD sensor [1, 4–6]. In a time domain fDOT system (TD-fDOT),
the sample is illuminated with short light pulses and a time-resolved detection is performed
using photon-counting methods with a single detector [7,8] or with optimized arrangements of
detectors [9, 11, 12, 14, 43] to get simultaneously temporal and spatial informations.

A key issue is the determination of the performances of a given setup, in terms of spatial res-
olution (location of fluorescent sources) and signal quantification (fluorophore concentration).
The precision in the determination of these two parameters from tomographic measurements,
using inverse reconstruction methods [10], depends on the sensitivity of the signal to these pa-
rameters and on the noise level [13]. TD-fDOT has received increasing interest, due to its (often
assumed) ability to overtake CW-fDOT. Indeed, improvements have been reported in specific
situations [9, 14, 15]. Yet, a systematic study of the performances of these imaging systems,
and, in particular, of the influence of the lifetime of the fluorescence on the precision of the
technique is still lacking.

In this paper, we present a rigorous methodology to calculate the precision limit of differ-
ent imaging modalities. We first develop the analysis of a theoretical fDOT system based on
ultrafast CCD sensor, allowing spatially and temporally resolved imaging; This analysis sheds
light on the important role of the fluorophore lifetime on the depth localisation precision of
the TD system. Then, two simplified systems are considered: an integrated time domain fDOT
(ITD-fDOT) setup with no spatial information, and a CW-fDOT with no temporal information.
These two “degraded” systems use the fluorescent signal in very different ways and comparing
their ability to localize the depth of the fluorescent inclusion is of interest.

2. Light propagation models and fluctuations in the counting signal

Let us consider a fluorescent point-like volume located at r f and embedded in a 9mm thick
homogeneous diffusive slab (see Fig. 1). The determination of the location and intensity of
a luminescent point source in such a diffusive medium is a standard problem in molecular
imaging [16, 17].

2.1. Tomographic configurations in reflection geometry

We consider a simple and theoretical contact optical tomography set-up in epi-illumination
configuration and a reflection geometry as recently used in [18]. However, the methodology
presented in this paper is general and can be adapted to deal with other instrumental configura-
tions —e.g., setups in transmission geometry or with non contact detection devices (provided
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that one accounts for the free-space propagation of the light [19]). In this paper, a set of 7× 7
excitation sources are placed on the upper side (z = 0 mm) of the slab over a 7 mm×7 mm
surface. They deliver either a continuous light beam (CW-fDOT) or a Dirac delta-function light
pulse (TD-fDOT). These sources are modelled by point-like isotropic sources placed inside the
medium at a depth corresponding to one transport mean free path �∗ = [μs(1− g)]−1 [14, 20]
with μs the scattering coefficient and g the anisotropy factor. The fluorescence signal is collected
using 32×32 joined detectors (pixels) with area ΔΣ placed on the same side as the illumination
and covering a 25 mm×25 mm surface. In our TD-fDOT experiment, the spatially resolved
fluorescence signal is also time resolved, the emitted photons being collected within time bins
with duration ΔT . We consider also a simplified spatially integrated time-domain experiment
(ITD-fTOD) in which all the emitted photons impinging on the surface of the CCD camera are
detected within the time bin ΔT .

Fig. 1. Schematic description of the reflection fDOT setup. L is the depth of the point-like
fluorescent volume. The dots below the upper surface represent the 7×7 excitation laser
sources. The detection is performed on a 32×32 pixel detector (CW-fDOT) or on a single
detector with same area (TD-fDOT). The field of view is 25mm×25mm.

2.2. The expected counting signal

The Cramer-Rao analysis presented in this paper requires a light propagation model in the slab.
This subsection describes this model that rests upon the diffusion approximation [27] and the
method of images [28]. We emphasize that such a model may be inaccurate, especially if the
energy density is computed near a boundary or close to a source, see [30,31]. In such cases, the
methodology presented in this paper may still be implanted provided that an appropriate light
transport model is adopted, see for instance [13].

Let us consider first a single pointwise excitation source located at the position sn and emit-
ting a temporal pulse of energy E0 at t = 0. Given an arbitrary density distribution of fluorescent
sources n(r), the energy density on the detection surface, at the position rk, reads [21,24,25,29]

U(rk, t;sn) = ησE0

∫
Ωslab

G(rk − r, t)�t [n(r)R(t;τ)]�t G(r− sn, t)d3r (1)

where �t is the temporal convolution operator, and η and σ is the quantum efficiency and the
absorption cross-section, respectively. The time response function R(t;τ) describes dynamics
of photon emission by a fluorophore. Assuming single-exponential decay (which is the case for
organic fluorophores widely used in biomedical optics), one has R(t;τ) = exp(t/τ)/τ , where τ
is the lifetime of the excited state. The expression of the time-dependent fluorescence intensity
given by Eq. (1) has been widely used to model fDOT experiments, either in the time-domain
[23, 24, 29] and in the frequency domain [21, 25]. The photon transport, at both the excitation
and emission wavelengths, is described in the diffusion approximation [27] by the diffusive
Green function for the slab geometry G(r, t) computed using the method of images [28]. We
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assume that the characteristics of the model transport are the same at the emission and excitation
wavelengths.

For a monochromatic excitation located in sn, the average (or expected) photon count de-
tected in a temporal bin centered in tp and in the pixel centered in rk is

〈mrk,tp,sn〉=
1

hν

∫
Πp(t)

∫
Πk(r)

D
zb

U(r, t;sn)d2 rdt (2)

where 〈...〉 denotes the ensemble average and with Πp(t) and Πk(r) the support of the temporal
bin and of the pixel, respectively. h and ν are the Plank constant and the frequency of the col-
lected photons, D = c�∗/3 is the diffusion coefficient with c the energy velocity in the medium,
and zb ∼ �∗ is the extrapolation length in the diffusion approximation [27]. Provided that the
duration of the bin ΔT and the area of the pixel ΔΣ are small enough, the counting signal mTD

rk,tp,sn

induced by the pointwise fluorescent volume buried in the slab is on average

〈mTD
rk,tp,sn

〉 � ρE0 ×A ΔT ΔΣ [G(rk − r f , tp)�t R(tp;τ)�t G(r f − sn, tp)]

= ρE0 ×gTD
rk,tp,sn

(r f ;τ) (3)

where A = cησD/(hνzb), and with r f the position of the fluorophores and ρ the fluorophore
concentration defined by n(r) = ρ δ (r−r f ) with δ (r) the Dirac delta function in space. Finally,
let us introduce

GCW(r) def.
=

∫ ∞

0
G(r, t)dt and GITD(t;r) def.

=

∫
G(r′ − r, t)d2r′

and mCW
rk,sn

the number of detected photons on the k-th pixel of a CCD camera in the CW-fDOT
situation, or mITD

tp,sn
the number of detected photons in the p-th temporal bin in the ITD-fDOT

case. The expected number of detected photon induced by the excitation in sn is given by

〈mITD
tp,sn

〉 � ρE0 ×A ΔT [G
ITD(tp;r f )�t R(tp;τ)�t G(r f − sn, tp)]

= ρE0 ×gITD
tp,sn

(r f ;τ) (4)

and

〈mCW
rk,sn

〉 � ρP0T ×A ΔΣ [G
CW(rk − r f )G

CW(r f − sn)]

= ρP0T ×gCW
rk,sn

(r f ) (5)

with T and P0 the exposition time and the power of the laser illumination for the steady-state
experiment.

In practice, the choice of the incident energy E0 (in the TD or ITD cases), or of both the
acquisition time T and the incident power P0 (in the CW case) are set by the experimental
conditions. The integration time is limited by the drift of the sample and the photobleaching of
the fluorophores while the power of the excitation pulse is limited by the available sources and
the possible damage caused to the sample. However, for a fair comparison of the considered
techniques, we assumed that for a given position of the fluorescent volume, the total number of
detected photons is the same whatever the fDOT configurations. This condition ensures that all
the experiments exhibit an equivalent signal to noise ratio. Note that, without this constraint,
one could increase the integration time of the detector in the CW set-up and obtain infinite
signal to noise ratio (and infinite precision). We shall also consider configurations that have
been designed so that the truncation and the discretization of the space or time varying signals
yield negligible loss of information. As a result, for a given position of the fluorescent volume
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and an excitation source, the three setups yield (in average) the same total amount of detected
photons, i.e. we get

∀sn, ∑
k≤K
p≤P

〈mTD
rk,tp,sn

〉 = ∑
p≤P

〈mITD
tp,sn

〉 = ∑
k≤K

〈mCW
rk,sn

〉

with K and P the number of pixels in the field-of-view of the camera and the total number of
time bins, respectively.

For the sake of simplicity, we restrict our localization problem to a one-dimensional problem
such that the depth of the source (denoted L) is the only position parameter that is unknown.
Hence, in the sequel of the paper, both the position L and the concentration ρ are unknown
parameters of interest, whereas the time response R(t;τ) is assumed to be known —lifetime τ
included.

As an illustrative example, Fig. 2 shows the averaged fluorescence signals (normalized by the
excitation energy E0) computed in the CW and ITD configurations for a single excitation source
located in (0,0, ��) and for two different locations of the fluorescent source L = 3 mm and
L = 4.5 mm. In both cases, the scattering and absorption coefficients are μs = 36.7 mm−1 and
μa = 0.029 mm−1, with an anisotropy factor g = 0.9, which is a coarse description of a mouse
brain where the optical properties have been homogenized [13]. The chosen characteristics of
fluorescent probes are standard for fluorophores such as Cyanines 5 [26]: The quantum yield
is η = 0.3, the absorption cross-section is σ = 10−16 cm−2 and the lifetime is τ = 1 ns. The
solid lines correspond to a concentration ρ = 1 whereas the dashed lines were obtained with
adjusted values of ρ so that the maxima of the expected signals coincide for both depths. For
the CW setup, the plots are radial profiles of the averaged fluorescence signal detected on the
CCD camera.

As shown in Fig. 2, the parameters ρ and L affect the signal in a very different way: the
source depth L modifies the shape of the curve while the source concentration ρ acts as a
multiplicative factor. For the time resolved experiments, the expected signals Eq. (3) and Eq.
(4) are expressed as a multiple convolution in time involving the time response of a fluorophore.
For this reason, the ability to recover both the position and the concentration of the fluorescent
source is certainly dependant on the lifetime τ . The next subsection illustrates the potential
difficulty in estimating accurately both these parameters from data degraded by photon noise.

2.3. The noise fluctuations in the data-set

In the following, let m def.
= {m j}N

j=1 be the data-set drawn from any of the instrumental setup

considered this paper, with N the total number of measurements [32]. Similarly, 〈mj〉 def.
=

ρE0 g j(L) is a generic average number of detected photon that corresponds to Eq. (3) in the
TD case, or to Eq. (5) and Eq. (4) in the CW and ITD case, respectively.

To investigate the sensitivity of the considered imaging configurations, we assume the ideal
case where the experiments are only limited by photon noise. In this case, the number of de-
tected photons mj obeys Poisson statistics. Assuming further statistical independence of the
data-set, the probability law for the observed data-set for any instrumental setup that is consid-
ered in this paper reads

P(m ; ρ ,L) =
N

∏
j=1

[ 〈m j〉m j

m j !

]
exp [−〈m j〉] . (6)

Assuming that the geometry and optical properties of the diffusive sample are perfectly
known, the estimation could be done by fitting the time and/or space varying signals with a
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Fig. 2. Expected counting signal in CW-fDOT (a) or in ITD-fDOT (c) obtained for a single
excitation source (i.e. Ns = 1) located in sn = (0,0, ��) and a fluorescent volume located
L = 3 mm in the slab —these signals are normalized by the incident excitation energy E0.
The shaded area corresponds to the standard deviation due to photo noise. (b,d): Same as
(a) and (c) for L = 4.5 mm (blue solid curve). The red dashed line is the expected signal for
L = 3 mm, but with a concentration adjusted so that the maxima of the signals coincide for
both depths. For the ITD configuration (c,d), the considered fluorophore lifetime is τ = 1
ns.

two-parameters model of the experiment. However, the noise spoiling the data may render this
a priori simple task most difficult. In Fig. 2(b) and 2(c), we plotted the expected fluorescence
signals in the CW and ITD configurations for L = 3 mm and L = 4.5 mm. One standard-
deviation error-bars are also depicted by a shaded area [33]. Two different concentrations of
fluorophores ρ are considered so that the maxima of both signals coincide —the concentration
for L = 3 mm being much smaller than that taken for L = 4.5 mm.

We observe that, although the exact spatial or temporal dependence of the signals are differ-
ent for both depths, the general shape remain similar and the signals at L = 3 mm and L = 4.5
mm are included inside the error bars. Hence, whatever the chosen imaging configuration, (CW
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Fig. 3. (Blue solid curve) Averaged temporal signal in the ITD configuration for a single
excitation source (i.e. Ns = 1) located in sn = (0,0, ��) and a fluorescent volume located
L = 5 mm with τ = 0 ns (a) or τ = 2 ns (b) —these signals are normalized by the incident
excitation energy E0. The shaded area corresponds to the standard deviation due to photo
noise. (Red dashed line) Averaged signal for a source in L = 2.5 mm with τ = 0 ns (a) or
τ = 2 ns (b), but with a concentration adjusted so that the maxima of the averaged signals
coincide for both depths.

or ITD), the signal of a weak fluorescent source at a given depth could be erroneously associated
to that of a source with stronger intensity located deeper in the slab. This simple observation
shows that the precision of the joint estimation of L and ρ can be very poor. Furthermore, for
time resolved experiments (TD or ITD configurations), the time response of the fluorescent
source R(t;τ) will “blur” the temporal counting signal, that in turn increases the ambiguity in
depth of the fluorescent source. Figure 3 shows an illustration of this phenomenon: the count-
ing signals from the depths L = 5 mm and L = 2.5 mm are hardly distinguishable if τ = 2 ns
whereas τ = 0 ns allows a clear separation of the signals.

Now these illustrative examples are not sufficient to draw quantitative precision limits con-
cerning the imaging modes. One needs a formal quantitative tool that is able to measure the
precision of a given imaging configuration. The Cramer-Rao bound (CRB) analysis provides a
perfect rationale for this task.

3. Cramer-Rao analysis

Because of noise, different realizations of the same experiment yield different estimations for
L and ρ . The depth and concentration estimates can be considered as random variables and one
can define their standard deviations, δL and δρ , which measure the precision of the experiment.
Using the Cramer-Rao formalism [34], it is possible to calculate lower bounds for δL and δρ
that depend solely [35] on the model describing the behavior of the detected signals and the
noise Eqs. ((3)-(6)).

#141531 - $15.00 USD Received 21 Jan 2011; revised 13 May 2011; accepted 15 May 2011; pub. 19 May 2011
(C) 2011 OSA 1 June 2011 / Vol. 2,  No. 6 / BIOMEDICAL OPTICS EXPRESS  1633



3.1. The vectorial Cramer-Rao bound

Let us introduce the Fisher information matrix F def.
= 〈∇ logP(m)∇t logP(m)〉 where ∇ def.

=
(∂/∂ρ ,∂/∂L)t . This matrix is readily deduced from Eqs. (6) and reads

F =

[
CL CLρ
CLρ Cρ

]
with

⎧⎪⎪⎨
⎪⎪⎩

CL = ρ E0 ∑ j
[∂Lg j(L)]

2

g j(L)

Cρ = E0
ρ ∑ j g j(L)

CLρ = E0 ∑ j ∂Lg j(L)

(7)

with ∂L = ∂/∂L. The (Cramer-Rao) bounds for δL and δρ provide lower bounds for the variance
in the unbiased estimation of L and ρ . Thus, we introduce the following precision limits [34]

PL
def.
=

√
CRBL ≤ δL and Pρ

def.
=

√
CRBρ ≤ δρ (8)

where CRBL and CRBρ are defined via the diagonal elements of F−1:

CRBL
def.
= (CL −C2

Lρ/Cρ)
−1

CRBρ
def.
= (Cρ −C2

Lρ/CL)
−1.

(9)

These expressions generalize the single-parameter result previously described in [13]. The co-

efficient C−1/2
L [resp. C−1/2

ρ ] represents the precision limit for the depth [resp. concentration]
that is obtained when the intensity [resp location] of the source is known [13]. The actual pre-

cision limit PL is larger than C−1/2
L , except when L and ρ affect the signal in a uncoupled way,

which is a very particular case. We stress that Eq. (9) describes quantitatively the cross-coupling
between the precision limits for the depth L and for the concentration of fluorophores ρ .

The value of PL and Pρ depend on the number of collected photons. Indeed, for pho-
ton noise limited imaging, theses precision limits decreases with the energy of the excitation
source E0. Furthermore, the depth precision limit PL decreases with the concentration ρ , the
inverse being true for the concentration precision limit Pρ —i.e. increasing the concentration
ρ deteriorates the bound for this parameter [36]. Let us note that the CRB depends also on the
size of the elementary elements chosen for discretizing the signal (pixel size ΔL or time bin ΔT ).
As already explained in subsection 2.2, we wish to avoid considering these additional parame-
ters in the discussion. Hence, in order to take advantage of all the information contained in the
signals, we have chosen elements that are small enough for the sums in Eq. (7) to reach their
asymptotic values. More specifically, we chose ΔΣ = 0.64 mm2 and ΔT = 5 ps. Finally, let us
underline that the CRB provides the best precision that the imaging experiment can achieves,
but it does not provide any tool to retrieve it. Since the pioneering work of R.A. Fisher [37],
the estimation from noisy data-set is usually performed by maximizing the likelihood function
with respect to (ρ ,L) ; in our context, the likelihood function is simply the expression (6) as a
function of the unknown parameters (ρ ,L). In the asymptotic limit of high counting rates, this
estimation technique is unbiased and reaches the lower bounds defined by Eq. (9) [38].

3.2. The intrinsic depth precision limit

The depth precision limit for the various fDOT configurations presented in section 2 are now
considered. Note that the analysis of the precision limit on the concentration yields similar
results. Indeed, we introduce the following normalized depth precision limits that does not
depend neither on the excitation energy E0 nor on the concentration ρ of the fluorescent source

P̃•
L

def.
= (ρE0)

1/2 ×P•
L
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Fig. 4. (Black solid lines) Normalized precision limit for the estimation of L with different
values of the fluorescence lifetime τ in the TD-fDOT situation, see Sec. 2 for details. (Red
dashed line with circles) Normalized precision limit for τ = 0 ns in the ITD-fDOT setup.
(Blue dashed line with triangles) Normalized precision limit for the CW-fDOT setup.

Fig. 5. (Black solid lines) Normalized precision limit for different values of the fluorescence
lifetime τ in the ITD-fDOT situation, see Sec. 2 for details. (Blue dashed line with triangles)
Normalized precision limit for the CW-fDOT setup.

where ”•” stands for TD, ITD or CW. More specifically, the precision limits P̃TD
L and P̃ ITD

L

depend on both the depth L and the lifetime τ , whereas P̃CW
L is only a function of the depth

L. In addition, we note that these three precision limits depend on the quantum yield η and
on the absorption cross-section σ [39]. Let us remind that in our study the CW situation cor-
responds to the use of many detectors to resolve spatially a steady-state signal, while the ITD
case corresponds to a time-resolved detection on a single extended detector.

For TD-fDOT in the reflection geometry depicted in Fig. 1, the precision limit P̃TD
L is de-

picted in Fig. 4. These curves are computed using Eqs. (3), (7) and (9) for typical values of
the fluorescence lifetime τ . Firstly, we note that the precision of the depth estimation decreases
with the depth of the fluorescent volume (the precision limit increases). This is due to a de-
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crease of the signal-to-noise ratio and of the sensitivity of the signal to a variation of the source
position (both the spatial and temporal signal flatten out for deeper sources). Secondly, the pre-
cision on the depth estimation substantially depends on the fluorescence lifetime τ . The longer
the lifetime, the poorer the precision limit, the worst precision been achieved for τ → ∞ which
corresponds to the precision limit in the CW configuration, i.e. P̃CW

L . Qualitatively, the fluo-
rescence lifetime affects the TD signal in a similar way as the source depth, reducing the signal
sensitivity to the source depth. Finally, we note that the precision limits P̃TD

L and P̃ ITD
L are al-

most identical for τ = 0: In this limit case, the CCD sensor in the considered TD-fDOT system
does not help in the depth estimation of a single source. However, for typical lifetime values,
spatially resolved detectors does bring useful information for the localization of the fluorescent
source. In particular, for a given number of incident photons on the system, the CW and the
ITD setups in reflection geometry achieve comparable precision limits, see Fig. 5. In this case,
and for the reflection geometry, we observe that the precision in CW is comparable to that in
the ITD technique. The precision limit can even be smaller in CW for a depth L that is smaller
than the photon diffusion length within the fluorescent lifetime

√
Dτ . Of course, the precision

of the the CW situation could be improved by increasing the integration time of the CCD. Fi-
nally, we note that in the limit τ → ∞, the ITD experiment reduces to a CW configuration, but
with a single extended detector that collects all the emitted photons (no spatial sampling). For
the estimation of L and ρ , this is a worst case scenario that still achieves a finite precision limit
since this fDOT system provides Ns = 7×7 independent measurements to retrieve the unknown
pair of parameter (L,ρ).

4. Conclusion

In summary, we have introduced a rigorous methodology to compare the theoretical perfor-
mances of a single source localisation in an homogeneous medium for the time-resolved and/or
spatially-resolved fDOT setups in the reflection geometry depicted in Fig 1. However, for the
considered time-resolved (i.e. TD and ITD) configurations, this analysis reveals the critical role
of the fluorophore lifetime for the localization capability of the setup. In particular, our results
suggest that the best depth precision in fDOT imaging are expected with the smallest lifetime.
Furthermore, the depth precision capability of a time-resolved (single-detector) ITD modality
is not necessarily better than that of a spatially-resolved CW technique.

Finally, let us note that the fDOT systems considered in this paper are simple examples
chosen to illustrate the potentiality of a Cramer-Rao analysis as a performance index for a given
setup and a given task. We do not claim to compare CW and time resolved fDOT systems in
general since we think that a universal answer is probably out of reach. However, the proposed
methodology does not restrict to the fDOT systems evaluated here and it can be adapted to other
fDOT systems like frequency domain systems [42, 45–47] or time-gating techniques [9, 14].
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