Damping-Driven Time Reversal for Waves Hidalgo-Caballero, S., S. Kottigegollahalli Sreenivas, V. Bacot, S. Wildeman, M. Harazi, X. Jia, A. Tourin, M. Fink, A. Cassinelli, M. Labousse, and E. Fort Physical Review Letters 130, no. 8 (2023)
Abstract: Damping is usually associated with irreversibility. Here, we present a counterintuitive concept to achieve time reversal of waves propagating in a lossless medium using a transitory dissipation pulse. Applying a sudden and strong damping in a limited time generates a time-reversed wave. In the limit of a high damping shock, this amounts to "freezing"the initial wave by maintaining the wave amplitude while canceling its time derivative. The initial wave then splits in two counterpropagating waves with half of its amplitude and time evolutions in opposite directions. We implement this damping-based time reversal using phonon waves propagating in a lattice of interacting magnets placed on an air cushion. We show with computer simulations that this concept also applies to broadband time reversal in complex disordered systems.
|
|
Passive antenna characterization through impedance correlations in a diffuse field Tamart, M., J. De Rosny, and E. Richalot IEEE Transactions on Antennas and Propagation, 1-1 (2023)
Abstract: Ambient noise correlations allow the passive recovery of Green’s functions between two probes. Recently, the same approach has been applied to electromagnetism, but by correlating diffuse fields in mode stirred chambers. Until now, only correlation of S-parameters has been studied. However, it has very recently been shown that the result can be difficult to interpret. To overcome this limitation, a new approach is proposed in this paper to directly estimate the self and mutual impedances of two coupled antennas from impedance correlations. The theoretical developments presented are validated experimentally in a reverberation chamber excited by a single antenna where mechanical and source stirring techniques are combined to generate a sufficiently diffuse field environment. It is shown, with antennas of different properties, that this approach allows to reconstruct with a good accuracy the complex impedance matrix between two receiving antennas as well as the transmission coefficient between them. The extracted gain pattern, in good agreement with that measured in an anechoic chamber, shows the good sensitivity of the proposed passive characterization technique.
|
|
Superresolved Imaging Based on Spatiotemporal Wave-Front Shaping Noetinger, G., S. Métais, G. Lerosey, M. Fink, S. M. Popoff, and F. Lemoult Physical Review Applied 19, no. 2 (2023)
Abstract: A label-free approach to improving the performances of confocal scanning imaging is proposed. We experimentally demonstrate its feasibility using acoustic waves. It relies on a way to encode spatial information using the temporal dimension. By moving an emitter, used to insonify an object, along a circular path, we create a temporally modulated wavefield. Because of the symmetries of the problem, the spatiotemporal input field can be decomposed into harmonics corresponding to different spatial vortices. Acquiring the back-reflected waves with receivers that are also rotating, multiple images of the same object with different point spread functions are obtained. Not only is the resolution improved compared to a standard confocal configuration, but the accumulation of information also allows the building of images that beat the diffraction limit.
|
|