Non-linear coupling in two non-linear delayed acoustic resonators Reda, J., M. Fink, and F. Lemoult Journal of the Acoustical Society of America 158, no. 3, 2130-2137 (2025)
Résumé: Building on our previous work on a Hopf resonator that mimics the cochlear amplifier from Reda, Fink, and Lemoult [(2023). Europhys. Lett. 144(3), 37001], we now turn to the fact that the inner ear comprises thousands of such resonators, which interact through coupling mechanisms. To gain insight into these interactions, we investigate the coupling of two acoustic resonators with slightly detuned resonance frequencies, interacting through time-delayed feedback loops. By modulating the gain of the loop and the coupling strength, we demonstrate the emergence of frequency synchronization at low amplitudes and bifurcations leading to desynchronization at higher amplitudes. This tunable non-linear interaction offers insights into resonance phenomena in coupled systems, with potential implications for auditory modeling and complex acoustic systems.
|
|
Analog phase-sensitive time-reversal of optically carried radiofrequency signals Llauze, T., and A. Louchet-Chauvet Optics Letters 50, no. 16, 4874-4877 (2025)
Résumé: Achieving low-latency time-reversal of broadband radiofrequency signals is crucial for reliable communications in dynamic, uncontrolled environments. However, existing approaches are either digitally assisted—making broadband extension challenging—or limited to amplitude modulation. In this work, we report the very first, to our knowledge, experimental realization of a fully analog, phase-preserving time-reversal architecture for optically carried radiofrequency signals. The method exploits the exceptional coherence properties of rare-earth ion-doped materials and leverages the well-established photon echo mechanism, widely used in quantum technologies. While our demonstration is conducted with a modest bandwidth, we identify the fundamental cause of this limitation and propose solutions for future scalability.
|
|
Exploring the limits to quantitative elastography: supersonic shear imaging in stretched soft strips Croquette, S., A. Delory, D. A. Kiefer, C. Prada, and F. Lemoult Physics in Medicine and Biology 70, no. 14 (2025)
Résumé: Objective. Shear wave elastography has enriched ultrasound medical imaging with quantitative tissue stiffness measurements. We aim to explore the limitations that persist related to viscoelasticity, guiding geometry or static deformation. Approach. A nearly-incompressible soft elastomer strip is chosen to mimic the mechanical behaviour of an elongated tissue. A supersonic shear wave scanner measures the propagation of shear waves within the strip. It provides a wide range of shear wave velocities, from 2 to 6 m s<sup>−1</sup>, depending on the frequency, the static strain as well as the orientation of the strip. Main results. To explain these different measurements, the guided wave effect is highlighted and analysed from the dispersion diagrams provided by the spatio-temporal Fourier transform of the raw data. The guided waves are then described using a material model that accounts for both the rheology and the hyperelastic behaviour, and allows to extract the mechanical parameters of the sample. Significance. To overcome some limitations of current elastography, we propose a theoretical framework which allows the simultaneous characterization of the viscoelastic and hyperelastic properties of soft tissues, paving the way for robust quantitative elastography of elongated tissues.
|
|
Influence of Normal Stress, Shear Velocity and Materials on Steady-State Shear Resistance and Viscosity of Rapid Dry Granular Flows Hu, W., Y. Li, H. Gou, X. Jia, L. Zhou, and C. Chang Journal of Geophysical Research Solid Earth 130, no. 6 (2025)
Résumé: Understanding the rheological behavior of rapid granular flows is crucial for understanding various geological processes, such as fast fault slip and rapid motion of landslides. In this study, we conducted rotary shear experiments on different granular materials, spanning a range of shear velocities from slow to rapid and under varying normal stresses, to investigate the evolution of mechanical behavior under different flow conditions. The experimental results showed that steady-state shear resistance varied with normal stress and material composition at shear velocities below 1 m/s. A consistent velocity-dependent trend was observed. The steady-state shear resistance of the sample experienced a transition from velocity-strengthening behavior at low shear velocities (below 0.1 m/s) to velocity-weakening behavior at higher shear velocities (above 0.1 m/s). Interestingly, at shear velocities exceeding 1 m/s, the steady-state shear resistance became independent of normal stress and material composition, converging to a similar steady-state value for both crushable and uncrushable materials. Although normal stress and mineral composition had a limited influence on steady-state shear resistance at high shear rates, they significantly affected the weakening rate (the transition from peak strength to steady-state shear resistance), which was strongly correlated with the material's crushing ability, as characterized by the Weibull modulus. These findings provide insights into the mechanisms governing the hypermobility of mega-landslides and the rapid dynamics of geological flows.
|
|