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Abstract

Eigenvalues of parameter-dependent quadratic eigenvalue problems form eigencurves. The critical points on these curves,
where the derivative vanishes, are of practical interest. A particular example is found in the dispersion curves of elastic
waveguides, where such points are called zero-group-velocity (ZGV) points. Recently, it was revealed that the problem
of computing ZGV points can be modeled as a multiparameter eigenvalue problem (MEP), and several numerical meth-
ods were devised. Due to their complexity, these methods are feasible only for problems involving small matrices. In
this paper, we improve the efficiency of these methods by exploiting the link to the Sylvester equation. This approach
enables the computation of ZGV points for problems with much larger matrices, such as multi-layered plates and three-

dimensional structures of complex cross-sections.

Keywords Parameter-dependent quadratic eigenvalue problem - Eigencurve - Zero-group-velocity point - Sylvester
equation - Method of fixed relative distance - Two-parameter eigenvalue problem

1 Introduction

In many physics and engineering applications, we encounter
parameter-dependent quadratic eigenvalue problems (QEP)
of the form

W (k,w)u := ((ik)*La + ikLy + Lo + w’M) u =0, (1)
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where Lqg, L1, Lo, M are real n X n matrices, which are
usually obtained by a (semi-)discretization of a boundary
value problem. The solutions (k, w) form eigencurves w(k),
and we are interested in locating the critical points on these
curves, where w'(k) = g—z = 0. Although solutions of (1)
can be complex, we consider the important case where w

and k are both real.

This work is motivated by the study of (anisotropic) elas-
tic waveguides (see, e.g., [24, 37]), where w denotes the
angular frequency and k the wavenumber. In this context,
the eigencurves are referred to as dispersion curves. The
slope ¢, = W' is called group velocity, which is of practical
relevance, as it describes the propagation of energy. Points
(k«,ws) on the dispersion curves where the group veloc-
ity vanishes are called zero-group-velocity (ZGV) points.
Often, the term is used exclusively for solutions at finite
wavenumber k,, while those at k., = 0 are traditionally
denoted as thickness resonances or cut-off frequencies [31]
but both cases lead to resonance phenomena. In the follow-
ing, we use the designation “ZGV” for solutions at any k..
In the light of this motivating practical application, we will
generally refer to points on the curves formed by eigenval-
ues of parameter-dependent eigenvalue problems that sat-
isfy w'(k) = 0 as ZGV points, irrespective of their physical
interpretation.
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Recently, a numerical algorithm for the computation of
ZGV points in anisotropic elastic waveguides was intro-
duced [24] that can be applied to a general problem of the
form (1). The method is based on a generalization of the
method of fixed relative distance (MFRD) from [19], which
provides good initial approximations that can be refined
by a locally convergent Newton-type method. Inspired by
the Sylvester-Arnoldi method from [29], we show in this
contribution that sophisticated tools from linear algebra
substantially speed up the algorithm and reduce its mem-
ory requirements. This enables us to solve problems with
larger matrices and tackle more complex problems, such as
multi-layered plates as well as waveguides of arbitrary two-
dimensional cross-sections.

In the following, we first discuss properties of ZGV
points in Sect. 2. In Sect. 3, we introduce several tools we
will use in the following section; the presentation is inter-
twined with their application to the computation of ZGV
points: the Sylvester equation, multiparameter eigenvalue
problems, and the MFRD. Our main contributions are
included in Sect. 4, where we show how we can exploit the
structure of the Sylvester equation to apply the MFRD more
efficiently and in Sect. 5, where we present a scanning algo-
rithm for the computation of ZGV points that combines the
MFRD and a locally convergent Gauss—Newton method. In
Sect. 6, we introduce a waveguide model that is used in the
numerical experiments in the following section, where we
demonstrate the strength of the proposed method. Finally,
we discuss possible generalizations and give a conclusion
in Sects. 8 and 9.

2 Theory on ZGV points

If we assume that v = u(k) and w = w(k) are differentia-
ble, then, by differentiating (1), we obtain

(—2kLo + 1Ly + 2w(k)w' (k) M)u(k) + W (k,w(k))u'(k) = 0,

where, in general, o' = %. If (K., w.) is a ZGV point, then
w'(k«) = 0, and it follows that

(—=2kyLo + iL1)us + W (ky, wi)vse = 0, )

where u, = u(ks) and v, = v'(ks). Let 2z, be the cor-
responding left eigenvector of (1) at (k.,ws), ie.,
22W (k,,w,) = 0. By multiplying (2) by zI from the left,
we get the following necessary condition for a ZGV point:

(2K, Ly +iL))u, = 2HBW/ (k. w.)u, = 0. (3)

@ Springer

Lemma 2.1 If (k.,w.) is a ZGV point of the parameter-
dependent QEP (1), then k. is a multiple eigenvalue of the
QFP

Q(k)u := ((ik)*La + ikLy 4+ Lo + w>M)u =0 4)
that we get by fixing w in (1) to w,.

Proof If z and u are the left and right eigenvectors of a
simple eigenvalue k of the QEP Q(k)u = 0, then it is well-
known that 27Q’(k)u # 0, see, e.g., [33, Prop. 1] or [1,
Thm. 3.2]. But, since (3) holds at a ZGV point, it thus fol-
lows that &, is a multiple eigenvalue of (4). g

Lemma 2.1 gives a necessary condition, but not every point
(k«,w,) such that k, is a multiple eigenvalue of (4) for a
fixed w = w, corresponds to a ZGV point. In addition, (2)
must hold as well, and this means that v, is a root vector of
height two.! This is possible only if the algebraic multiplic-
ity m, of k, as an eigenvalue of (4) is strictly greater than
the geometric multiplicity m, = dim(Ker(Q(k.))). Also,
to make sure that w(k) is analytic in a neighborhood of k.,
we require that w, is a simple eigenvalue of W (k,,w), i.e.,
the generalized eigenvalue problem (GEP) that we get by
fixing k to k. in (1). Note that in some cases, it is possible to
extend the dispersion curves so that they remain analytical
also in points where the curves cross and multiple eigen-
values appear, see, e.g., [28]. To keep things concise, we
will keep the requirement that w, is a simple eigenvalue of
W (k.,w) and thus exclude points from candidates for ZGV
points where two or more dispersion curves cross.

Example 2.2 We take

2 1 0 0 30
Ly=|1 1 0|, Li=|-3 0 0],
00 1 0 0 0
—~1.75 1 0 31 0
Lo=| 1 —-175 0 |, M=1|1 4 o0].
0 0 —0.25 0 0 35

We selected the matrices so that Ly is symmetric, L is
skew-symmetric, and Ly, M are symmetric positive defi-
nite. This way, the matrices have the same properties as the
larger matrices in [24], where ZGV points of Lamb waves
in an austenitic steel plate are computed.

The corresponding eigenvalue problem (1) has five
real ZGV points (0, 0.2673), (0, 0.4074), (0, 1.0628), and
(£1.0642,0.2393), such that w > 0, which are shown

! An eigenvalue \. of a quadratic matrix polynomial Q(\) is defec-
tive if and only if there exist an eigenvector (a root vector of height
one) v # 0 and a root vector of height two w such that Q(A«)v =0
and Q(A)w + Q' (A )v = 0, see, e.g., [12, Sect. 2.2].
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together with the real dispersion curves in Fig. 1. We consider
only the solutions with w > 0 since each dispersion curve
w(k) has its counterpart —w(k), and the same holds for the
ZGV points. Note that the points (+0.4236, 0.3503), where
the dispersion curves cross, are not ZGV points, although
k. = £0.4236 is a double eigenvalue of (4) for a fixed
w, = 0.3503.

Due to the structure of the matrices, the dispersion curves
are also symmetric with respect to the w-axis, and there
exist trivial ZGV points at k = 0, which can be computed
from the GEP (Lo + w?M)u = 0. Nontrivial ZGV points
come in pairs (£k.,w,), and we are interested in solutions
where k. > 0.

3 Auxiliary results

In this section, we introduce some related results and
numerical methods that we will use in the following sec-
tions to construct an efficient numerical method for finding
the ZGV points of (1).

3.1 Sylvester equation

The Kronecker product A ® B of matrices A € C"*™ and
B € CP*9 is a matrix of size np x mgq of the block form

auB
A@B=| :
anlB

almB
anmB

For a matrix X € C™*", vec(X) € C™" is a vectorization
of matrix X, i.e, the vector obtained by stacking all columns
of X on top of each other. Our results are based on the well-
known equality (see, e.g., [16, Lem. 4.3.1]):

vec(AXB) = (BT ® A) vec(X), (5)

Fig. 1 Real dispersion curves w(k) and ZGV points of Example 2.2

which holds for A € C"™*™, B € C"*", and X € C™*",
Suppose that we are looking for a matrix X € C™*" that
satisfies the Sylvester equation

AX +XB=C (6)

for given matrices A € C™*™, B € C"*", and C € C™*™,
It follows from (5) that (6) is equivalent to

(I, ® A+ BT @ I,,,)vec(X) = vec(C). (7

The Sylvester equation is therefore uniquely solvable when
I, A+ BT ®1,, is nonsingular, which is true if and only
if A+ # 0 for all possible pairs (A, 1), where A is an
eigenvalue of A, and p is an eigenvalue of B, see, e.g., [16,
Thm. 4.4.6]. We could apply (7) to numerically solve (6),
but this is not efficient since it, in general, leads to complex-
ity O(m3n?) due to a matrix of size mn x mn in (7).
There exist more efficient numerical methods for the Syl-
vester equation, for instance, the Bartels-Stewart algorithm
[3], which is appropriate in our setting, where we have to
solve many Sylvester equations with the same matrices
A, B and different right-hand sides C'. In the Bartels-Stew-
art algorithm, we first compute two Schur decompositions
A=URU", B=VSVH
where matrices U, V' are unitary, and matrices R, S are
upper triangular. Applying the above Schur decompositions
to (6), we obtain a new Sylvester equation with upper trian-
gular matrices

RY +YS =D, (3
where D =UHCV and Y = URXV. The columns of

Y=[mn Yn| can now be computed from left to right
as solutions of upper triangular linear systems

i—1
(R+sul)yi=di =Y spiye, i=1,....n,
k=1

and then X = UY VY, If the Sylvester equation is nons-
ingular, then R + s;;I is nonsingular for all ¢ = 1,... n.
With the above approach, we can efficiently solve the Syl-
vester equation (6) in complexity O(m? + n?), which is
much less than O(m3n?), the complexity of solving (7) as
a large linear system.

3.2 Multiparameter eigenvalue problems

A d-parameter eigenvalue problem has the form

@ Springer
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Az = MAnz + -+ AgAiax

: )]
Agoxg = MAnxg+ -+ AgAdaxa,

where A;; is ann; x n,; complex matrix, and 2; # 0 are vec-
tors for i = 1,...,d. If (9) holds, then (\q,...,\q) € C¢
is an eigenvalue, and x1 ® --- ® x4 is the corresponding
eigenvector. A generic multiparameter eigenvalue problem
(MEP) (9) has N = n; - - - ng4 eigenvalues, which are roots
of a system of d multivariate characteristic polynomials

pi()\h ey )\d) = det(Aio — )\114“ (10)
— = AgAi) =0, i=1,...,d
The problem (9) is related to a system of GEPs
Az =MDz, ..., Agz= Doz, (1)
where z = 21 ® - - - ® x4, and the N x N matrices
Ay oo A
Bo=| :
An - Aadlg (12)
= Z sgn(o) Aig, ® Azg, ® -+ @ Ado,
oc€Sq
All e Al,i—l AlO Al,H—l e Ald
Ai=| : : : S i=Lhend
Apn -+ Agior Aao A+ Adalg,

where the Kronecker product is used instead of the standard
multiplication, are called operator determinants. For details
see, e.g., [2]. If A is nonsingular, then we say that (9) is reg-
ular. In such cases, the matrices I'; := AglAi,i =1,...,d,
commute, and the eigenvalues of (9) are the joint eigenval-
ues of commuting matrices I';, ..., I'y. Hence, if N is not
too large, a standard numerical approach to computing the
eigenvalues of (9) is to explicitly compute I';, ..., I’y and
then solve a joint eigenvalue problem. Alternatively, if we
prefer not to multiply by Ag !, we may solve a joint system
of GEPs (11), see, e.g., [15].

If all linear combinations of matrices Ag, Ay, ..., Ay are
singular, then (9) is a singular MEP, which is much more
difficult to solve. In such case, it is still possible that the
polynomial system (10) has finitely many roots that are the
eigenvalues of (9). Then, (11) is a joint system of d singular
matrix pencils whose regular eigenvalues are the solutions
of (9). For more details, see, e.g., [25]. To solve a singular
MEP numerically, we can apply a generalized staircase-
type algorithm [32], which returns matrices () and Z with
orthonormal columns that yield projected smaller matrices

@ Springer

3,; =Q*A;Z fori=0,...,d such that 30 is nonsingular,
matrices AglAi, t=1,...,d, commute, and their joint
eigenvalues are the eigenvalues of (9).

The above approach for singular problems is used in
[24], where it is shown that ZGV points of (1) correspond
to the eigenvalues of a singular three-parameter eigenvalue
problem (3EP)

(7702 + \Cq + CQ)’U) =0
(nLg 4+ ALy + Lo + pM)u =0 (13)
(nZQ + )\zl + EO + ;LM)’U = 0,

where \ = ik, u = w?, n = (ik)?,

N_LQ 0 ’”_Ll 0 N_LO 0 "/’_]\[ 0
L?‘{O L2]’L1—[2L2 LJ’LO_[Ll Lol M=10 M|

@:b@,azplﬁy%zmg] (14)

Note that the matrices (14) incorporate the relation between
A and 7 since det(nCy + ACy + Co) = n — A2, This gives
the first known numerical method that can compute all ZGV
points without any initial approximations. However, since
we first have to explicitly compute the corresponding A
matrices of size 4n? x 4n? and then use expensive numeri-
cal methods for singular problems, this approach is feasible
only for problems (1) with small matrices.

Let us remark that solvers for MEPs are not included in
standard numerical packages for problems in linear algebra,
but several numerical methods, also for singular problems,
are implemented in the Matlab toolbox MultiParEig [35].

3.3 Method of fixed relative distance

Instead of solving (13), which gives exact solutions, we can
solve a simpler regular 3EP that returns approximations of
candidates for ZGV points. From each individual candidate,
we can then compute the exact ZGV point by applying the
locally convergent Gauss—Newton method that we provide
in Sect. 5.1. This approach, presented first in [24] for Her-
mitian problems, is based on Lemma 2.1 and the method of
fixed relative distance (MFRD) from [19].

We know from Lemma 2.1 that at w, corresponding to
a ZGV point, the QEP in the variable A\ = ik with fixed

— 2
/1’* - w*; l'e"

(MLy 4+ ALy + Lo + M) u =0, (15)
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has a multiple (generically double) eigenvalue A\, = ik,. o= M= (23)

Therefore, for certain 1 # p, but close to i, the QEP ZHAg 2

(MLy + ALy + Lo+ iM) u =0 (16)

has at least two different solutions close to A.. The MFRD,
adapted to (15) in [24], introduces the 3EP

(1702 + AC1 + Co)w =0
(nL2 + ALy + Lo + pM)u =0
(n(1+6)*La + A1+ )Ly + Lo+ uM)v =10

(17)

in u=w? A=ik, n =A% and Cy,C1,C5 as in (14).
Therein, 6 > 0 specifies the relative distance between the
sought A and serves as a regularization parameter. The 3EP

(17) has an eigenvalue (X, i, 1), where (\/ﬁ, fiX) is close

to a ZGV point, such that A and A(1 + &) are cigenvalues of
the initial problem (16).

Solutions of (17) can be obtained from a transformation
into the corresponding system of GEPs (11). The problem
(17) is regular since the corresponding 2n? x 2n? matrix

Cs C1 0
Ay = L22 Ly M (18)
(1+0)*Ly (146)Ly M ®

is nonsingular for § > 0. Hence, we can solve the GEP
given by

A1Z = )\Aoz, (19)
where
Cy Co O
A =(—1 Lo Lo M| | (20)
1+ 5)2L2 Lo M ®

by a standard numerical method for GEPs. In the ensuing,
the obtained eigenvector z is used in the GEP associated
with p, namely,

Az = puloz, (21)

with Aq defined before and

Cs Ch Co
Ay = (-1) Ly Ly Lo| (22)
(1407, (1+0)Li Lo,

to obtain p from the Rayleigh quotient

Even for small values of n, computing all eigenvalues of
(19) is very demanding. Instead, we can apply a subspace
iterative method (for instance, eigs in Matlab) to find eigen-
values of (19) close to a target ikg. We can apply this several
times using different targets ko and, thus, scan an inter-
val [kq, ky] for ZGV points (k.,ws); for more details, see
Sect. 5 and [24]. In the next section, we will show how we
can exploit the structure of the matrices (18) and (20) to
find eigenvalues of (19) close to a target ikg much more
efficiently. This improvement enables the computation of
ZGV points for much larger matrices than in the original
algorithm from [24].

We remark that it is not possible to apply a similar
approach with a subspace iteration to the 3EP (13) because
this problem is singular.

4 Exploiting the structure

When employing a subspace iterative method such as
the Krylov-Schur method [38] or the implicitly restarted
Arnoldi method [26] for the solution of the GEP (19), the
computational bottleneck in each step is the solution of a
linear system of the form

(A1 —0lg)z = Agy, (24)

where we assume that the shift o is not an eigenvalue of
(19), i.e., the matrix A; — oA is nonsingular. Even for
sparse matrices Lo, L1, Lo, M, which we obtain using, e.g.,
the finite element method, this makes the computation slow
already for modest matrix size n. By exploiting the structure
of the matrices Ay and A; in a similar way as in [29], we
can solve the linear system (24) much more efficiently.
First, we note the block structure

_|G1 Ga _ |=Go
A0—[6;2 0], A1—{0 Gzi|7 (25)

where

Go=Ly® M — M ® Ly,
Gi=Li®M—(1+6)M ® Ly, (26)
Go=Ly @M — (1+0)*M ® L.

Introducing the block notation z = {2] and y = {Zy/;] » WE

can rewrite (24) as

@ Springer
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—Go—0G1 —0Ga| |z1| _ |Gy + Gaya 27
—0Gs Go Zo| Gan ’ 27)

If we add the second block row, multiplied by o, to the
first block row, we get an equivalent lower block triangular
system

—Go—0Gy1 —0?Gy 0| |21] _ [(G1+0G2)y1 + Gaya 28
—0Gs Gal 22| = Gay - (@8

Hence, we can compute z; using the first block row

(Go +0G1 +0°Ga)zy = —(G1 + 0Ga)ys — Gaya,  (29)

and it follows from the second equation and the nonsingu-
larity of G that zo =y + 021.

To solve (29) efficiently, we transform it into a Sylves-
ter equation using the equalities from Subsection 3.1. First,
let w:= 7(G1 + O'Gg)yl — Ggyg. If Y1 = VeC(Yl) and
y2 = vec(Y3), then it follows from (26) that the right-hand
side of (29) is w = vec(W), where

W =MY1(Ly + oLy)T
— (A + 8Ly + (14 6)2Ly) YT MT
— MYyLy + (1+06)2LyYo M™T.

In a similar way, we get from (26) that
Go+ oG+ 02Gy = L(0) ® M — M ® L(6), (30)

where L(6) := Lo+ (1 +6)oLy + (1 +6)%?0%Ly. Thus,
(29) is equivalent to

MZ L0)T — L(§)Z,M™ =W, (31)

where z; = vec(Z1). Since M is nonsingular, we can write
the above as a Sylvester equation

ZiLO) "M — MTYL(5)Z, = W, (32)

where ~ W =M"WMT =Y;(Li +0Ly)TM-T—

M= (14 6)Ly + (1 +6)%La); — YoLoM~ T + M1

Y (1 + 6)?LyY>. As we can solve the above Sylvester equa-
tion in complexity O(n?), this is also the complexity of
solving (24). Note that it follows from (28) and (30) that
nonsingularity of A; — oAy implies the nonsingularity of
the Sylvester equation (32).

Let us remark that we can exploit the structure of Ag

and A s to compute g in (23) in complexity O(n?) as well.
Namely, we have

@ Springer

_ |Gz Gy
A = {G4 G5]

with

Gs=—-L1®Lo+ (14+0)Lo® Ly,
Gy=(1+0)%Lo® Ly — Ly ® Ly,
Gs=—(1+0)Ly® Ly + (14 6)*L; ® Ly.

To obtain (23), we compute matrices

Ty = —LoZy LT + (1 + 8) L1 Zy LY + (1 + 6)?LoZo LY — LoZo LY,

Ty = (140)*LaZi LY — LoZ1 LY — (1 +8)L1Zo LT + (1 +6)?LaZs LT,
T3 =MZ LT — 1+ 8) L1 ZyMT + MZoLY — (14 6)2LyZoMT™,
Ty=MZ LY — (1+68)2LyZyiM™

and compute p as

o Z{Itl + Z;Itg

= = 33
z{{t3+z§t4 (33)

where t; = vec(T;) for i = 1,...,4. As this computation
involves only multiplications by n X n matrices, its com-
plexity is O(n?).

5 Algorithm

For large problems, we suggest applying the MFRD to pro-
vide good initial approximations, which we subsequently
refine using the local convergent method presented next.

5.1 Gauss-Newton method

If we introduce A = ik and p = w? similarly to (15), then
we know from Sect. 2 that for a ZGV point of (1), we have
to find A\, 4 € C and u, z € C™ such that

(ML + ALy + Lo + uM)u =0
MN2Ly + ALy + Lo + M) =0

ZM2NLy + L) u =0 (34)
(uu —1)/2=0
Mz —1)/2=0.

The number of equations exceeds the number of unknowns
by one in (34); hence, this is an overdetermined nonlinear
system. However, it is a zero-residual system because if
(k,w) is a ZGV point, and u and z are the corresponding
right and left eigenvectors, then all equations in (34) are
satisfied.
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For solving (34) from a good initial approximation, we
apply the Gauss—Newton method [5, 34]. To overcome the
obstacle that the third equation in (34) is not complex differ-
entiable in z, we define y = Z, where ® denotes the complex
conjugate, and rewrite (34) as

(/\2L2 + ALy + Lo + u]W)u
()\2[/2 =+ /\L1 + Lo + [J,]\/I)Ty

F(u,y,\, 1) == yT(2ALs + Ly)u =0. (35)
(ufly —1)/2
(y"'y —1)/2

Suppose that (ug,yk, Ak, pir) is an approximation to
the solution of (35). If F(u,y, A\, pu) =0 then also
F(au,By, A\, u) =0 for arbitrary «,8 € C such that
|a| = |B] = 1. Because of that, the vectors u and y are not
uniquely defined, and although the last two equations in (35)
are not complex differentiable, as explained in [27], we can
obtain a correction (Aug, Ayk, ANk, Apuy) for the update

(kg 1, Ykt 15 Mt 1s it 1) = (Uke, Uk, Mkey i) + (Aug, Ay, ANk, Apig)

as a solution of the (2n+ 3) x (2n+ 2) least squares
problem

I (Uk, Yie, Moy o) Ase = —F (U, Yies Mk, fokc) s
where Asp = [Aul  Ayf  AXg Auk]T
bian Jp(uk, Yk, Mk, fik) is

, and the Jaco-

MLy + MLy + Lo+ mM 0 (2\eLs + L)ux  Muy

0 (AiLz + ALy + Lo+ M) 2Lz + L) ye - My,

UF(2MeLz + L) uf 2\ Ly + L1)T 2y Louy 0 (36)
ull 0 0

0 Yt 0 0

Besides an initial approximation (kq, wq) for the ZGV point,
the method requires initial approximations for the right and
left eigenvectors as well. If we do not have them, then usu-
ally a good choice is to use a random vector from the space
spanned by the right and left singular vectors that belong to
a few of the smallest singular values of W (kq, wo).

The Gauss—Newton method converges locally quadrati-
cally for a zero-residual problem if the Jacobian J has full
rank at the solution, see, e.g., [5, Sect. 4.3.2] or [34, Sect.
10.4]. We can show that the Jacobian Jg (uy, Yx, Ax, i« ) has
full rank at a generic ZGV point, where k. = —i\, is a dou-
ble eigenvalue of (4) for w = /jix, and u, and ¥, are the
corresponding right and left eigenvector. For the proof, see
Lemma A.1 in the appendix. If ZGV points exist where the
multiplicity of k.. is higher than two, then, at such points, we
can expect a linear convergence.

Let us note that the above Gauss—Newton method also
converges to points (A, ) where there exists a solution
of (34), and these include the points where the dispersion
curves cross. At such points, we can also expect a linear

convergence. If the method has converged to a zero-residual
solution, then we can verify if a computed point is a ZGV
point by checking if w, is indeed a simple eigenvalue of
W (ky,w).

We also remark that for a special case when W (k,w)
is Hermitian for real values £, the left eigenvector corre-
sponding to a right eigenvector u is u", which happens, for
example, in the case when the matrices L; are alternately
symmetric/anti-symmetric and M is symmetric positive
definite. For such problems, we can use a more efficient
Newton’s method, see [24, Sec. IV].

5.2 Scanning method

The following algorithm uses the MFRD from Sect. 3.3
to scan a wavenumber interval [k,, ky] and compute ZGV
points (k, w,) such that k € [kq, kp]. The matrices Ag, Ay
and Ay refer to (18), (20) and (22), respectively, but we do
not have to compute them explicitly.

Algorithm 1 Scanning method for ZGV points

Input: n X n matrices Lo, L1, Lo, M, interval [kq, k], default step size Ak

Output: ZGV points (ks, ws)

1 set ko = ko

2. while kg < ky

3 find m eigenvalues of A1z = AAyz closest to o = ikg
4

for each A and eigenvector =
5 compute p = 2T Ayz/2M A2
o if [Re(A)| and [Im(y)| are both small then
; apply Gauss-Newton method to solve (34) with initial guess (Im()), Re(s1))
8 if the method converged to (A, j.). and (3) holds then
9. add (k. w.) = (=i, /1) to the list of ZGV points
10: set ko = max(ko + Ak, 0.95 - max{k. € ZGV points})

In the following, we provide additional details about
Algorithm 1.

e In line 3, we can apply any subspace method, for in-
stance eigs in Matlab. Thereby, it is important that we
do not generate the matrices Ag and A; explicitly. In-
ternally, the eigs function iteratively solves the linear
system (A; — 0Ag)z = Agy, and it is possible to pro-
vide a pointer to a custom implementation thereof. We
do so, thereby exploiting the relation with the Sylvester
equation from Sect. 4. If the shift o is too close to an
eigenvalue of (19), which is very unlikely to happen in
practice, then the subspace method will fail because the
linear system with the matrix A; — 04 is singular or
too ill-conditioned. A simple remedy is to modify the
shift o.

e Alternatively, if n is small enough, we can compute all
eigenvalues of Ajz = AAgz. This approach gives all
ZGV points in just one run; hence, the scanning is not
needed, and it could be more efficient than solving the
related singular 3EP (13).

e In line 5, we compute £ using (33), which avoids gen-
erating Ag and Ajs. Note that this expression might
not return correct p if A is a multiple eigenvalue of
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Aiz = Mgz, e.g., when there exist different ZGV
points with the same & = —i\. This is very unlikely to
occur, except for the trivial ZGV points at A = 0. This
makes ZGV points with k. close to zero very difficult
to compute.

e For an initial approximation for the left and right eigen-
vectors, we take the left and right singular vectors for
the smallest singular value of 2Ly + AL1 + Lo + uM.

e In line 10, we update the target k¢ in such a way that it is
unlikely that the method will miss ZGV points in the in-
terval. We assume that if the subspace iteration method
in line 3 returns some approximations, it does not miss
any of the closest ZGV points. The idea is to increase the
target either for a default step Ak or use a larger step if
some ZGV points were found in the last loop.

It is difficult to provide the best values for the parameters
kq, ky, Ak, m, as they are problem-dependent. For a sen-
sible choice when treating guided waves in plates, see
the implementation in the package GEWtool [21] and the
numerical examples in Sect. 7.

6 Waveguide model

While the proposed approach can be applied, quite gener-
ally, to compute critical points on eigencurves of parame-
ter-dependent quadratic eigenvalue problems, this work is
motivated by a particular application, namely the model-
ing of elastic waves propagating along structures of con-
stant cross-section, commonly referred to as waveguides.
In this context, a finite-element discretization of the cross-
section yields matrices with the properties discussed above.
Hence, we will briefly summarize the formulation that has
been deployed to obtain the matrices used in our numeri-
cal experiments. Consider a waveguide of linearly elastic
material and arbitrary cross-section I' as depicted in Fig. 2a.
Its mass density is denoted as p, and its 4*"-order stiffness

T~ o'y
€,
& K r
e, ey @
l'p \_] C, p €n

(a) arbitrary 2d cross-section
Fig.2 Waveguide geometries. The waveguides extend infinitely along

e., which corresponds to the wave vector orientation. a Arbitrary
two-dimensional cross-section. b A plate confines waves only in the
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tensor c is of arbitrary anisotropy. In absence of external
loads, the mechanical displacements a(z,y, 2,t) are gov-
erned by the boundary-value problem

V-c:Vii—pd?a=0 in RxT, (37)
u=0 on RxJl'p, (38)
e,rc:Va=0 on Rx0l'y. (39)

Therein, 0; is the partial derivative with respect to time ¢,
and V = e;0; is the Nabla operator. 9I'p and OI' y denote
the parts of the cross-sectional boundary where Dirichlet
and Neumann boundary conditions are imposed, respec-
tively. Lastly, e, is the outward unit normal vector.

Due to the translational invariance in time ¢ and the
axial coordinate x, modal solutions are of the form
a(z,y, z,t) = u(k,y, z,w) e#*=“ Inserting into (37)-
(39), we obtain the waveguide problem

[(ik)°Ls +ikLy + Lo+ w’plju=0 in T, (40)
u=0 on JI'p, 41)
[ikBi1 4+ BoJu=0 on 'y, (42)

which describes the plane harmonic guided wave solutions
(k,w,u) of interest. In the above, £; and B; are differential
operators, which are explicitly given, using the 2"d-order
tensors c;; = €; - C - €5, as

LQ = Cyz (43)
Ly = (ny + Cyac)ay + (Cacz + Cza:)az s (44)
Ly = nyas + (cyz + €2y)0y0; + szag ) (45)
and
— Oy
€y
e g)—> <— " —> k C,pP | h
z (S2%
— JI'p

(b) plate (1d cross-section)

one-dimensional thickness direction. I': cross-sectional domain, OI' p
Dirichlet boundary, OT" ;y: Neumann boundary, en: unit normal to the
boundary, c: stiffness tensor, p: density, k: wave vector, h: thickness
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Bi = cpa, (46)

By = ¢pyOy + €20 . @7

Equations (40)-(47) are also valid for the special case of the

infinite plate as depicted in Fig. 2b (the reader may refer to
[24] for a succinct derivation). A plane strain field should be
assumed in this case, i.e., all terms in 0, vanish while the
equations remain otherwise unaffected. The waveguide’s
cross-section can thereby be modeled by a one-dimensional
discretization, as the displacements do not depend on z.
Furthermore, by expressing the problem in cylindrical coor-
dinates, a similar formulation can be obtained for waves
propagating along full or hollow cylinders. We also note
that the above vector-field problem can be reduced to the
scalar wave equation representing waves in a fluid medium,
i.e., scalar acoustics.

The waveguide problem in (40)-(42) represents a dif-
ferential eigenvalue problem, which we discretize using a
Galerkin finite-element procedure [6, 11, 14, 17, 20].% This
numerical formulation yields matrices L;, M € R™*™ such
that

W (k,w)u := [(ik)>La +1ikLy 4+ Lo + w’M]u =0 (48)

approximates the original problem (40) and respects the
boundary conditions (41) and (42). Therein, u is the vector
of coefficients corresponding to the chosen discretization.
We remark that the polynomial characteristic equation of
(48) can never exactly represent the transcendental charac-
teristic equation of the original problem. The accuracy of
the discrete approximation increases rapidly with the chosen
number of nodes and needs to be selected in such a way as
to appropriately represent the full frequency range of inter-
est. Only ZGV points in this frequency range correspond to
physically meaningful ZGV points of the waveguide. Note
that, for a nondissipative material and real-valued parame-
ters k and w, the waveguide operator W (k, w) is Hermitian,
and, furthermore, M is positive definite.

Elastic guided waves as described by (48) usually exhibit
several ZGV points (k,,w.). As the A-matrices scale as
4n? x 4n? (in eq. (13)) or 2n? x 2n? (in eq. (17)), large
waveguide problems quickly lead to prohibitively large
computational demands, effectively rendering the methods
from [24] unusable. There are mainly two crucial situations
where this is the case: (i) plates and cylinders with many

2 Specifically, we opt, in this work, for a particular type of high-order
polynomial interpolation (sometimes referred to as spectral elements)
for one-dimensional cross-sections [7, 11] and for nonuniform ratio-
nal B-splines (NURBS) [8] to discretize complex 2D cross-sections.
A review of various shape functions in the context of semi-analytical
methods is given in [10].

layers, and (ii) waveguides of two-dimensional cross-sec-
tion. In the following, we demonstrate that the method pre-
sented in Sect. 4 is capable of computing ZGV points even
for such complex structures.

7 Numerical experiments

All numerical experiments are performed on an Apple M1
Pro notebook with 32 GB of memory. The regularization
parameter of the MFRD method is chosen as § = 10~2 for
all computations.

7.1 Austenitic steel plate

An orthotropic austenitic steel plate exhibits many ZGV
points. They were computed in [24] with an MFRD algo-
rithm that uses eigs from Matlab to compute eigenvalues
of (19) close to a target iko. The matrices A; and Ay were
computed explicitly and are represented as sparse matrices.
The method in Matlab first computes an LU sparse factor-
ization, which is then used to solve (24) in each step of the
method. The example given in the mentioned reference is of
size n = 39, which yields A;-matrices of size 3042 x 3042.
The computational time with the old method was 12 s.

Instead, we can use the approach proposed in Sect. 4 to
solve (24) without explicitly constructing the matrices A
and Ag. In the initial phase, we compute the Schur decom-
positions of L(0)TM~T and M~1L(5) from (32) and then
use them to solve (32) and, thus, obtain the solution of (24).
In this way, we never use matrices larger than n x n. Apply-
ing this procedure to the numerical example of [24] with
n = 39 finds all 18 ZGV points in 0.5 s, which is more than
twenty times faster than with the previous method. Note
that the computational times are difficult to compare, as
the strategy to update the target wavenumber also changed.
More importantly, our new procedure scales favorably with
the problem size, which is demonstrated by the following
examples.

7.2 Fluid-filled pipe

The following example, taken from Cui et al. [4], con-
sists of a water-filled steel pipe with a wall thickness of
h = 0.5 mm and an inner radius of 9.5 mm, see Fig. 3a. The
steel pipe is characterized by shear and longitudinal wave
speeds of ¢ = 3200 %, ¢, = 5900 ¥ and a mass density
of 7900 ;—%. The water inside the pipe has a mass density
of 1000 III{T% and a bulk wave speed of 1500 2. As the fluid
domain is relatively large compared to the bulk wavelength
in water, this problem requires a considerable number of
degrees of freedom. Specifically, we used one element of
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7t order (eight nodes) to discretize the pipe wall, while the
fluid domain required a polynomial degree of 140 to yield
accurate results within the selected frequency range.’ In the
pipe wall, we assume displacements u(r) e (ke +neetwt) of
integer circumferential order n,, (similarly for the acous-
tic pressure in the fluid). This enables us to discretize
only a radial line as sketched in Fig. 3a. As an additional
challenge, the pressure-displacement formulation leads
to non-Hermitian matrices, and a complex formulation of
the Newton-iteration refinement as described in Sect. 5.1
is required. For comparison with the literature, we choose
n, = 0 and u = uze; + u,e, to obtain the so-called longi-
tudinal modes L(0, m) [4]. Overall, this results in matrices
L; and M in (48) of size 157 x 157 and A-matrices of size
49298 x 49298. As demonstrated by Cui et al. [4], multiple
ZGYV points are found in the frequency region close to the
backward wave of the empty pipe, i.¢., the curve with nega-
tive slope in Fig. 3b. Using parameters m = 8, k,h = 0.01,
kyh = 2, Akh = 0.05, our algorithm locates all 15 ZGV
points in 11 s. The result is depicted in Fig. 3b.

7.3 Composite plate

A plate consisting of many layers requires a large number
of degrees of freedom to describe guided waves since each
layer is represented by at least one finite element. We use
the proposed method to compute ZGV points in a compos-
ite plate consisting of 400 layers with a total thickness of
h = 50 mm. Such materials are used in the acrospace indus-
try, and this particular example is taken from [18]. The plate
is composed of a symmetric layup of a T800/913 carbon
fiber reinforced polymer (CFRP) as depicted in Fig. 4a. The
mass density is given as p = 1550 %, and the stiffness in
Voight notation reads

154 3.7
9.5

Lot
I RN
mooco

ot
SO oo

GPa.

)
cocococo

sym.
4.2

In order to consistently nondimensionalize the results, we
define the smallest shear wave velocity as ¢, = 1/Cuys/p.

6.6 T T T ‘
empty pipe |1
. . L e, 6.4 water-filled
line of discretization I ey '\Gg o ZGV points
e 6.2 0 ]
O\
O——
O—
= O
/
3 5.8 MDY —
pipe wall ~_, 5.6
5.4 -
/
5.2 T | 4
0 0.5 1 1.5 2 2.5
kh
(a) (b)

Fig. 3 Longitudinal waves in a water-filled steel pipe. a Geometry:
cross-section of the water-filled circular steel pipe of inner radius
9.5 mm and outer radius 10 mm. b Dispersion curves of longitudi-

3 While such large polynomial degrees are generally uncommon in the
Finite Element Method, they have been found to be remarkably effi-
cient in this particular context of waveguide modeling. This is because
the bottleneck in the computation of the dispersion relations is the
(complete) solution of an eigenvalue problem. The costs for this solu-
tion for moderate matrix sizes depend mainly on the matrix size rather
than its sparsity. Hence, in contrast to most finite element applications,
which require mainly the solution of linear systems of equations, it is,
in this case, desired to obtain small matrices, even if they are dense.
The advantage of such large element orders was described in [11] and
discussed in more detail in [7].
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nal modes, i.e., uz-ur-polarized waves. The dispersion curves of the
empty pipe are shown for comparison. The fluid-filled pipe exhibits 15
ZGV points close to the backward wave of the free pipe

For the frequency range of interest, it is sufficient to dis-
cretize each layer with one linear finite element. Symmetric
and anti-symmetric waves decouple, and we consider sym-
metric waves only. This is achieved by representing one-half
of the geometry and fixing the u,, displacement at the center
node. Lamb and shear-horizontal polarizations are coupled
due to anisotropy. This requires modeling all three displace-
ment components in the equations of motion (40)-(42).
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ZT [0/90/45 /-45] 505

—— S-waves

¢ ZGV points

(a)

Fig.4 Composite plate of symmetric layup [0/90/45/-45]50s. a Geome-
try: the fibers in each layer are oriented at angle 6 as indicated; thereby,
0 represents the angular coordinate rotating around e, and measured
from e,. All 400 layers are of the same thickness and amount to a total

Proceeding as described previously yields the matrices L;
and M from (48) of size 602 x 602. Note that the corre-
sponding A;-matrices are of size 724 808 x 724 808, which
is considerable.

The dispersion curves corresponding to propagation
along e, are shown in Fig. 4b. There exists a point where
Ow/0k = 0, and it is marked therein. Using the parameters
m=38, ksh=0.2, kyph =2, Akh =0.1, our algorithm
was able to successfully locate it in 43 s. It is important to
remark that the group velocity is a vector parallel to the xz-
plane. For anisotropic plates, it is not necessarily collinear
to the wave vector k and this has important consequences,
see [23] for a detailed discussion. Here, it is of importance
that the derivative dw/0k represents the group velocity
component along the wave vector k. Since our numerical
methods compute points such that dw/0k = 0, we find the
waves whose group velocity is orthogonal to the wave vec-
tor or vanishes altogether. This was exploited in [22, 23] to
find waves with a power flux transverse to their wave vector.
As a side note, we also remark that the dispersion curves in
Fig. 4b do not exhibit crossings. Instead, they get very close
and then veer apart; see [9] for details on this phenomenon.

7.4 Rail

In this numerical experiment, we compute ZGV points of
a relatively complex three-dimensional structure, namely, a
rail with the cross-section depicted in Fig. Sa, subject to trac-
tion-free boundary conditions. Rails are typical examples of
guided wave propagation in three-dimensional structures,

kh
(b)

of 50 mm. b Dispersion curves for wave vectors k = ke, i.e., 0 = 0°.
One point exists where the axial group velocity component dw/dk
vanishes, and it is marked in the plot

and their dynamic properties are often investigated due to
the relevance of acoustic emission and ultrasonic material
testing, see, e.g., [6, 13, 39, 40] and the references therein.
This particular geometry has been studied in [8], where dis-
persion curves have already been computed based on the
semi-analytical formulation outlined in Sect. 6. Instead of
conventional finite elements, the cross-section is discretized
by means of non-uniform rational B-splines (NURBS),
which allow for the exact description of this shape without
introducing geometry approximation errors. Furthermore,
NURBS are very robust at high frequencies. However, for
the discussion in this paper, these differences are of lesser
significance, as the obtained matrices possess the same rel-
evant properties compared to using high-order polynomials.
For computing the ZGV points, we use the discretization
suggested in [8] for computing dispersion curves for the first
nine modes up to a frequency of 10 kHz. Specifically, the
interpolation relies on the 30 patches shown in Fig. 5a, each
of them locally refined using NURBS of the third order,
resulting in matrices of size 1020 x 1020. For clarity, the
figure only includes the minimal number of control points
required to describe the geometry. A simple isotropic lin-
early elastic material is assumed with a Poisson's ratio of
v = 0.2. To nondimensionalize the results for consistency
with the other examples, we define A = 172mm as the
height of the rail, i.e., the largest extent in the y-direction.
The dispersion curves are displayed in Fig. 5b, together with
the two ZGV points found within the selected frequency
range. Using m =6, k,h =0.1, kyh =2, Akh =0.2,
Algorithm 1 locates the two ZGV points in 545 s (9 min).
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-100 -50 0 50 100

Fig. 5 Wave propagation along a free rail. a Discretization of the cross-section, showing a division into 30 patches and the control points for
describing the contour. b Dispersion curves of all propagating modes and the two ZGV points found within the chosen frequency range

8 Possible generalizations

It is possible to define ZGV points for similar two-param-
eter eigenvalue problems. For example, in [36], the criti-
cal points of dispersion curves for the eigenvalue problem
(A+ AB + uC)zx = 0 are discussed. The obtained numeri-
cal methods for this problem are very similar, and we can
apply the MFRD and the Gauss—Newton method, suitably
modified to the structure of the eigenvalue problem. Specifi-
cally, we need to modify the approach in Sect. 4 so that we
can use a subspace method in the MFRD without explic-
itly constructing large A matrices for the related MEP. In a
similar way, it would be possible to define a ZGV point and
extend the theory and numerical methods for a parameter-
dependent polynomial eigenvalue problem of the form

P(k,w)u =((ik)"La + (k)" La1 +--- (49)
+ikLy + Lo + w?M) u =0,

or for a nonlinear parameter-dependent eigenvalue problem
N(k,w)u = 0, where N : C? — C"*",

9 Conclusion

The improved approach enables us to tackle significantly
larger problems and compute more accurate solutions in
cases where it was previously either impossible to construct
the matrices Ag, Ay, Aps explicitly, or the computation
was unfeasibly slow. For even larger n, the improved algo-
rithm also eventually reaches its limits due to the consider-
able memory requirements. Namely, vectors that span the
search subspace in the subspace iteration method for the
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eigenvalue problem (18) are of size 2n2. If the matrices L;
and M are large, the memory required for saving a sufficient
number of vectors of this size can become prohibitively
large. A possible solution that could extend the approach to
large and sparse matrices L; and M would be to generalize
the subspace iteration methods from [29], which exploit the
low-rank format of the vectors and work only on vectors of
size n.

Quadratic convergence of the Gauss-
Newton method

Lemma A.1 Let & € (2 be an eigenvalue of algebraic mul-
tiplicity two and geometric multiplicity one of a nonlinear
eigenvalue problem N(A)u = 0, where N : 2 — C"*"
is holomorphic on a domain 2 C C. Let nonzero vectors
u, 2, 8,p € C™ be, respectively, the right and left eigenvec-
tor and the right and left root vector of height two such that

N(§u =0, (50)
N(&)s+ N'(§u =0, (51)
ANE =0, (52)
PIN(€) +2"N'(§) = 0. (53)
Then

N (€)s + p" N'(€)u+ 2 N"(&)u # 0.
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Proof If we multiply (51) by pf from the left and
(53) by s from the right, we observe the equality

MN(€)s = p"N'(€)u. Since it follows from [30,
Thm. 1.6.5], see also [12, Thm. 2.5], that
N//
HAN(€)s 4 M 2(5)11 #£0,
this completes the proof. O

Lemma A.2 Let (ki,ws) be a ZGV point of (1), such that
the algebraic multiplicity of k. as an eigenvalue of the
QEP (4) is two, and the geometric multiplicity is one. Let
U and z, be the corresponding right and left eigenvectors,
Ye = Zs, and let a and b be such vectors that au, = 1 and
by, = 1. The Jacobian Jr(us, Y, As, lix), given in (36),
where \, = ik, and p1, = w?, has full rank.

Proof Suppose that the Jacobian Jg (., Yx, s, f1+) is rank
deficient. Then, there exist vectors s, ¢ and scalars «, 3, not
all being zero, such that

TE (Usey Yuey Ay ) [sT T« B]T:().

Then

(A2Lo + ALy + Lo + M) s + a(2M Lo + L1 )us + SMu, = 0, (54)
(A2Ly + ALy + Lo + M)t + 020 Ly + Ly )y + BM Ty, =0, (55)
YT (2ALa + L1)s + ud (2\ Lo + L1) ™t + 2ayT Loug = 0, (56)
ulls =0, (57)
yi't =0. (58)

First, we show that 8 = 0. If we multiply (54) by 2,
then it follows that 5 = 0 because z§(2)\*L2 + Li)up=0
due to a ZGV point and zMu, # 0 because we require
that w, is a simple eigenvalue of W (k.,w).

If a # 0, then it follows from (54) and (55) that (1/«)s
and (1/a)t are left and right root vectors of height 2 of the
QEP N(/\)u = (/\2L2 + )\Ll + L() + ,LL*M)U =0 for the
eigenvalue A.. But then it follows from Lemma A.2 that
(56) is not zero. Therefore, o = 0.

Since o = 8 = 0 it follows from (54) that s = yu, for a
scalar v and then s = 0 because of (57). In a similar way we
get from (55) and (58) that t = 0. This shows that the kernel
Of J7 (U, Ysey Ax, ) 18 trivial. O
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