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Non-linear coupling in two non-linear delayed acoustic
resonatorsa)

Jana Reda, Mathias Fink, and Fabrice Lemoultb)

Institut Langevin, ESPCI Paris, Universit�e PSL, CNRS, 75005 Paris, France

ABSTRACT:
Building on our previous work on a Hopf resonator that mimics the cochlear amplifier from Reda, Fink, and Lemoult

[(2023). Europhys. Lett. 144(3), 37001], we now turn to the fact that the inner ear comprises thousands of such

resonators, which interact through coupling mechanisms. To gain insight into these interactions, we investigate the

coupling of two acoustic resonators with slightly detuned resonance frequencies, interacting through time-delayed

feedback loops. By modulating the gain of the loop and the coupling strength, we demonstrate the emergence of fre-

quency synchronization at low amplitudes and bifurcations leading to desynchronization at higher amplitudes. This

tunable non-linear interaction offers insights into resonance phenomena in coupled systems, with potential implica-

tions for auditory modeling and complex acoustic systems.
VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0038955

(Received 14 March 2025; revised 13 June 2025; accepted 17 July 2025; published online 16 September 2025)
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I. INTRODUCTION

The study of resonances is fundamental to advancing

our understanding of a wide range of wave-based physical,

biological, and engineering phenomena (Hamilton, 1986).

For example, in the field of metamaterials, the introduction

of sub-wavelength resonators has proven to be a powerful

approach for shaping dispersion relations and engineering

unique wave propagation properties (Lemoult et al., 2011;
Brunet et al., 2015; Cummer et al., 2016; Craster, 2024).
Furthermore, by introducing a gradient in resonance fre-

quencies, via detuning, it is possible to design gradient-

index media, which have enabled effects such as rainbow

trapping (Zhu et al., 2013; Ni et al., 2014; Tian and Yu,

2017) and perfect absorption (Jim�enez et al., 2017; Meng

et al., 2020), to cite only a few examples. These phenomena

arise from multiple scattering and thus rely on the coupling

between resonators, despite the subwavelength scales at

play (Kaina et al., 2015; Lemoult et al., 2016).
However, these approaches remain within the frame-

work of linear physics. Introducing active and non-linear

mechanisms brings us closer to biological and living sys-

tems (Plac‚ais et al., 2009; Crauste, 2009; Marsden and

McCracken, 2012). In a previous work, we explored how a

single nonlinear delayed resonator operating near a Hopf

bifurcation can act as a cochlear amplifier (Reda et al.,
2023). More broadly, based on the work of Duke and

J€ulicher (2003), a full cochlear wave model requires an

array of Hopf resonators with a gradient in their properties.

Additionally, we demonstrate in a separate experiment

(Rupin et al., 2019) that a set of such nonlinear resonators,

distributed in frequency, could reproduce key features of

cochlear wave amplification at low amplitudes.

Here, we investigate the non-linear coupling between

two Hopf resonators with slightly detuned frequencies,

interacting through time-delayed feedback loops. Non-linear

delayed feedback is known to induce a bifurcation: as the

loop gain increases, a stable fixed point loses stability and

self-sustained oscillations emerge (Rupin et al., 2019; Reda
et al., 2023). Each resonator in our setup is independently

programmed to operate near a Hopf bifurcation by carefully

adjusting the dependence on the intensity. We demonstrate

that when the coupling coefficient a reaches its maximum,

the resonators synchronize and converge toward almost a

common limit cycle whose amplitude matches that of the

uncoupled Hopf oscillation. The system can therefore be

modeled as a pair of coupled Hopf resonators. In this frame-

work, we examine how non-linearity influences the amplifi-

cation gain—defined as the system’s ability to enhance the

input signal—and the resonance frequencies of the coupled

system. Our goal is to elucidate the mechanisms driving their

interaction. This study provides valuable insight into the

dynamics of coupled non-linear resonators, akin to Gomez

et al. (2016), with potential implications for auditory model-

ing, metamaterials, and complex wave-based systems.

While Gomez et al. (2016) studied injective coupling

with enhanced amplification, our system uses diffusive,

time-delayed feedback, which stabilizes dynamics and

delays self-oscillations. Unlike the sharper response from

injective coupling, our scheme produces distinct dynamics.

Yet, in both cases, signal-coupled subthreshold Hopf-type

systems show a collective response.

We begin by presenting the experimental and theoreti-

cal frameworks governing the dynamics of two coupled

a)This paper is part of a special issue on Active and Tunable Acoustic

Metamaterials.
b)Email: fabrice.lemoult@espci.fr
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Hopf resonators, detailing the mathematical models and

assumptions underlying our study. Subsequently, we describe

the experimental setup, emphasizing the implementation of

time-delayed feedback loops and the methods employed to

achieve precise frequency detuning between the resonators.

Our results section then elucidates the observed phenomena,

including the merging of resonance frequencies at low excita-

tion amplitudes, as well as the modulation of system gain in

response to varying coupling strengths and the constant gain of

each resonator.

II. EXPERIMENT

A. Experimental design

Our experiment, illustrated in Fig. 1, consists of cou-

pling two Hopf resonators to investigate their nonlinear

interactions. To achieve this, we build upon the design intro-

duced in Reda et al. (2023), where a single quarter-

wavelength acoustic resonator was rendered nonlinear via a

feedback loop. Each resonator consists of a 1-cm-diameter

Plexiglas tube, closed at one end and open at the other. The

nonlinearity is introduced through a real-time feedback

mechanism: a microcontroller processes the acoustic signal

captured by a microphone inside the resonator and injects a

modified response via a speaker. This setup allows precise

control over the gain and nonlinearity applied to the system.

In the present study, rather than working with a single

nonlinear resonator, we fabricate two such resonators and

introduce coupling between them. The first resonator is 9 cm

long, while the second, slightly longer, measures 9.5 cm,

leading to a small detuning between their resonance fre-

quencies. Instead of relying on physical coupling, we lever-

age the digital processing capabilities of our setup by

coupling the resonators via their microcontrollers, where the

microphone of the first resonator is connected to the analog

read pin of the second resonator, and vice versa. This way,

each microcontroller now not only processes its own resona-

tor’s signal but also reads the signal from the neighboring

resonator, enabling controlled interaction. This coupling is

achieved through additional wired connections, represented

by the reddish-pink lines in Fig. 1.

From a mathematical point of view, the pressure field

piðtÞ near the closed end of each resonator is governed by

p00i ðtÞ þ
xi

2Qi
p0iðtÞ þ x2

i piðtÞ ¼ SðtÞ þ eiðtÞ; (1)

where i indexes the resonators (1 or 2), xi denotes their nat-

ural resonance frequencies, and Qi is their quality factors.

The term SðtÞ represents an external excitation applied via a

speaker near the open ends, while eiðtÞ accounts for the

feedback-induced source term. In this study, the feedback

incorporates both the self-interaction within each resonator

and the coupling to its neighbor. Given the inherent delays

si introduced by the analog-to-digital conversion and proc-

essing, eiðtÞ takes the form
eiðtÞ ¼ f ðpiðt� siÞ; pjðt� siÞÞ; (2)

where j refers to the neighboring resonator, and f is a nonlin-
ear function that determines the relative contribution of self-

feedback and cross-feedback from the two resonators. By tun-

ing the function f, we aim to reproduce the key characteristics

of systems operating near a Hopf bifurcation, including non-

linear amplitude compression near resonance, frequency

selectivity with sharp tuning, and such behaviors typical of

systems near a Hopf bifurcation (Duke and J€ulicher, 2003;
Rupin et al., 2019; Reda et al., 2023), while also introducing

nonlinear coupling between the two resonators.

Before introducing the coupling, we first need to cali-

brate the response of each individual resonator to be linearly

active. We start by selecting a feedback function f that

depends only on the acoustic field within the same resonator

and with a constant gain,

eiðtÞ ¼ Gipiðt� siÞ: (3)

With this choice of feedback function, the system’s

behavior is governed by two key parameters: the delay si

FIG. 1. Two quarter-wavelength acoustic resonators are converted into two

coupled nonlinear delayed resonators. A 9-cm blue Plexiglas tube is placed

next to a 9.5-cm red Plexiglas tube, both terminated by three-dimensional-

printed caps. The microcontrollers (Adafruit Trinket M0, Adafruit, New

York) create a feedback loop between the microphones and the speakers,

while additional reddish-pink wired connections between the microcontrol-

lers enable coupling. Measurements inside the tubes are taken using two

electret microphones connected to an external soundboard (PreSonus

44VSL, PreSonus, Baton Rouge, LA).
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and the gain Gi. As described in a previous work (Reda

et al., 2023), when Gi exceeds a critical threshold, the

feedback loop compensates for the intrinsic losses of

the system, leading to an exponential increase in ampli-

tude and ultimately resulting in self-sustained oscilla-

tions of the resonator, indicating a linear instability.

Conversely, when Gi remains below this threshold, the

losses dominate, and the feedback is insufficient to

maintain oscillations. To ensure stable operation, we

must carefully determine the operating point of our reso-

nators by appropriately setting both the delay and this

constant gain.

The total delay in the system arises from the analog-to-

digital conversion, digital processing, and digital-to-analog

conversion within the microcontroller. In addition to these

inherent delays, we can introduce an adjustable software

delay, corresponding to different sampling intervals within

the microcontroller. Given the 48 kHz sampling frequency,

the system’s time resolution is approximately dt ¼ 21 ls. To
select an appropriate delay, we define it as the smallest soft-

ware delay ss ¼ N dt, with N an integer, for which the oscil-

lation frequency just above the critical gain matches the

resonator’s passive resonance frequency. Increasing N grad-

ually increases the software delay, allowing fine-tuning of

the oscillation frequency until it matches the natural reso-

nance frequency xi. The minimum possible software delay

yields 36 dt for the first resonator, corresponding to f1 ¼ 973

Hz, and 4 dt for the second resonator, corresponding to

f2 ¼ 907 Hz.

Once the delay is established, we determine an appro-

priate constant gain Gi by applying short pulses at the natu-

ral frequency xi of each resonator. The gain of each

resonator must remain below the critical threshold; exceed-

ing this value would cause self-sustained oscillations. To

maximize the response while avoiding instability, we select

the highest gain values that do not trigger sustained oscilla-

tions. This leads to final values of G1 ¼ 1 and G2 ¼ 1:18 in

the software, with comparable amplifier gains in both feed-

back loops.

After calibrating the system, we introduce two key

modifications: (i) introducing nonlinearity to study resona-

tors operating near a Hopf bifurcation, and (ii) adding a cou-

pling term to investigate the behavior of two coupled

nonlinear resonators. To understand how a single cubically

nonlinear delayed acoustic resonator (Reda et al., 2023)

behaves when coupled with a second one, we first reintro-

duce the same cubic nonlinear gain as originally proposed.

The transition between low- and high-amplitude oscillations

follows a cubic nonlinearity (Nin et al., 2012), which leads

to a variation in the resonator’s quality factor with excitation

amplitude, thereby amplifying low-amplitude signals. To

account for coupling, we modify the gain function f to

numerically link the resonators in real time via the micro-

controllers. So it is now modified to include Yi, the coupled

pressure in resonator i:

YiðtÞ ¼ apjðt� siÞ þ ð1� aÞpiðt� siÞ: (4)

The parameter a controls the balance between self-

feedback (pi) and cross-feedback (pj), effectively setting

the strength of the coupling. When a ¼ 0, resonator i relies
entirely on its own feedback; when a ¼ 1, it depends only

on the neighboring resonator j. Intermediate values of a
between 0 and 1 represent a mixture of the two.

As a result, each resonator now operates with its own

loop function eiðtÞ, and dynamically controls the feedback

according to

eiðtÞ ¼ GiYiðtÞ 1� YiðtÞ
P0

� �2
 !

if jYiðtÞj < P0;

0 otherwise:

8><
>: (5)

Here, P0 defines the amplitude threshold above which the

gain is turned off, while YiðtÞ in Eqs. (4) and (5) represents

the delayed self- and cross-feedback pressure input, which

shapes the nonlinear response.

B. Experimental method

The experiment then consists of emitting monochro-

matic sound waves for one second using an external loud-

speaker and measuring the pressure inside the tubes

with electret microphones connected to the soundboard (see

Fig. 1). For each excitation, we analyze only the system’s

response at the same frequency as the excitation by perform-

ing a Fourier transform on the recorded time-domain signal

and retaining only the coefficient corresponding to the cho-

sen frequency. These measurements are conducted while

varying both the excitation amplitude and the frequency

around f1 and f2. The entire procedure is then repeated for

different values of the coupling parameter a.

III. RESULTS

Results for three different values of a are summarized

in Figs. 2(a)–2(c), where the raw data are represented, with

the signal from resonator 1 shown in blue and the signal

from resonator 2 in red. The intensity of the color indicates

the amplitude, with lighter colors corresponding to lower

excitation levels and gradually transitioning to darker colors

as the excitation increases. By extracting the maximum

value of these curves for each resonator, we construct the

corresponding sensitivity curves in Figs. 2(d)–2(f), which

reveal the maximum response of each resonator as a func-

tion of the excitation amplitude. It is important to note that

the definition of decibels here is arbitrary and does not cor-

respond to absolute sound pressure levels. Instead, we use

normalized units, setting 0 dB as the reference for the maxi-

mum recorded measurement.

For a ¼ 0, meaning there is no coupling, we analyze

the experimental results shown in Figs. 2(a) and 2(d).

Starting with Fig. 2(a) at low excitation amplitudes (light

red and blue), both resonators exhibit sharp frequency

responses, indicative of high-quality factors. This behavior

is expected, as for small pressure amplitudes jYiðtÞj � P0,

so following our definition for the gain, Eq. (5), it remains

2132 J. Acoust. Soc. Am. 158 (3), September 2025 Reda et al.
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close to its nominal value Gi, ensuring sustained amplifica-

tion near the bifurcation. Consequently, the resonance peak

is well defined and located near the expected eigenfrequency

of the resonator.

As the excitation amplitude increases (the shades of red

and blue gradually become darker), we observe a progres-

sive broadening and flattening of the resonance peak.

This trend corresponds to a gradual reduction in the signal

injected into the loop, following the cubic dependence

on instantaneous pressure. At very high amplitudes jYiðtÞj
� P0, the gain effectively drops to zero, and the resonators

behave as passive quarter-wavelength resonators with sig-

nificantly lower quality factors. In this regime, the resonance

peaks become much less pronounced, and the system no lon-

ger provides selective amplification (dark red and dark

blue). A careful inspection of the data reveals a slight drop

in the response of resonator i at the resonance frequency of

resonator j for low excitation amplitudes. This effect results

from the physical coupling between the two resonators

through their open ends.

Examining the corresponding sensitivity curves in Fig.

2(d), we retrieve the three different regimes in both resona-

tors. For low excitation amplitudes, both resonators exhibit

linear amplification of the response, whereas at high excita-

tion levels, the response increases passively, i.e., without

amplification. The transition between these two regimes is

governed by the cubic nonlinearity of the loop function,

leading to a change in the observed slope in the log-log

representation: the slope transitions from 1 to 1/3, a charac-

teristic signature of cubic nonlinearity; the gain is repre-

sented in the gray-shaded region and is equal to 26 (a full

study and more details on the gain are provided in the last

section). However, this value corresponds to the same as in

Fig. 4 when G0 ¼ 1:18 and a ¼ 0. Such sensitivity curves

reveal the amplification of the low-amplitudes, similar to the

cochlear amplifier in the inner ear (Martin and Hudspeth,

2001; Barral and Martin, 2012).

This behavior serves as a reference case before intro-

ducing coupling (a 6¼ 0), which will modify the response of

both resonators.

When the coupling is activated and a is increased to 0.2

[Fig. 2(b)], we observe significant modifications in the reso-

nators’ responses. First, a shift in the resonance frequencies

occurs at low excitation amplitudes: the frequency of the

first resonator increases from 907 to 916Hz, while that of

the second resonator decreases from 973 to 965Hz. This

shift indicates the onset of coupling-induced interactions

between the resonators. Second, the resonance peaks at low

amplitudes appear broader and less sharp compared to the

uncoupled case (a ¼ 0). This effect is quantitatively

reflected in the corresponding sensitivity curve [Fig. 2(e)],

which shows a reduced gain in the gray-shaded region, indi-

cating the intermediate regime between the two linear

behaviors observed at low and high amplitudes. The gain

decreases from 26 to 15, which is the data point in Fig. 4

for G0 ¼ 1:18 and a ¼ 0:2. As a result, the inverse cubic

FIG. 2. Active resonators transition from an uncoupled state to maximum coupling near a Hopf bifurcation. Figures (a)–(c) show the frequency response of

resonator 1 (blue) and resonator 2 (red) for various excitation amplitudes, with lighter colors indicating lower amplitudes. In (a), with no coupling (a ¼ 0),

the resonators oscillate at their uncoupled natural frequencies. As the coupling increases to a ¼ 0:2 in (b), their frequencies begin to converge. At a ¼ 1 in

(c), they fully merge into a single synchronized response at 939Hz. Figures (d)–(f) present the corresponding sensitivity curves, obtained by retaining only

the maximum response at each excitation amplitude revealing three distinct response regimes: linear, inverse cubic, and linear again. These curves corre-

spond to the same experimental conditions as (a)–(c), respectively. The gray-shaded region highlights the gain.
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regime, characteristic of the cubic nonlinearity, is less pro-

nounced than in the uncoupled case.

As the coupling parameter is further increased to its

maximum value, a ¼ 1, where the resonator is exclusively

coupled to its neighbor, we observe a striking phenomenon:

the two resonance peaks fully merge at low excitation

amplitudes, forming a single resonance, as shown in Fig.

2(c). This merged resonance occurs at 939Hz, a frequency

approximately midway between the natural frequencies of

the uncoupled resonators. The corresponding sensitivity

curve in Fig. 2(f) further supports this observation, revealing

that the gain in the intermediate regime (shaded gray region)

has nearly returned to its original value, reaching 25. This

point is represented in Fig. 4 for G0 ¼ 1:18 and a ¼ 1.

IV. DISCUSSION

A. Syncrhonization

To further analyze the merging of resonance frequen-

cies, Fig. 3 presents the experimental results from a different

perspective, showing the maximum of the response ampli-

tude as a function of frequency, focusing specifically on

how the resonance frequencies of the two resonators evolve

as the coupling coefficient a increases. At low excitation

amplitudes, the two frequencies gradually approach each

other (see the response in light red and blue), while at higher

excitation amplitudes, they revert to their original uncoupled

values (see dark red and blue). This behavior is characteris-

tic of nonlinear synchronization (Pikovsky et al., 2003;

Strogatz, 2003), where coupled oscillators tend to lock onto

a common frequency in a certain parameter range. The

observed frequency locking aligns with canonical models of

coupled nonlinear oscillators, such as the Kuramoto model

and its extensions, which describe how oscillators with dif-

ferent natural frequencies adjust their rhythms through cou-

pling (Kuramoto, 1975; Acebr�on et al., 2005). Here, at

higher energies, they recover their independent dynamics

because the gain function saturates, which limits the

feedback strength and consequently leads to the suppression

of both nonlinearity and coupling.

In the absence of coupling (a ¼ 0), as shown in Fig. 3(a),

the resonance frequencies remain fixed at their natural values,

f1 ¼ 907 Hz and f2 ¼ 973 Hz, for all excitation amplitudes,

indicating no interaction between the resonators. As coupling

is introduced [a ¼ 0:2, Fig. 3(b)], the frequencies start to

converge, shifting to f1 ¼ 916 Hz and f2 ¼ 965 Hz at low

excitation levels. However, as the excitation amplitude

increases, the frequencies gradually return to their

initial uncoupled values. With a stronger coupling of a ¼ 0:3
[Fig. 3(c)], the resonance frequencies move even closer, reach-

ing f1 ¼ 927 Hz and f2 ¼ 945 Hz at low excitation. Yet again,

as the excitation increases, the system transitions out of the

synchronized regime, and the resonance frequencies revert to

their original values. At a ¼ 0:4 [Fig. 3(d)], the resonance

frequencies become nearly identical at low excitation, with

f1 ¼ 937 Hz and f2 ¼ 939 Hz, indicating a near-complete syn-

chronization of the two resonators. However, as the excitation

amplitude increases, the system departs from the synchronized

state, and the frequencies separate again. Finally, at maximum

coupling (a ¼ 1) [Fig. 3(e)], the two frequencies fully merge

at low excitation amplitudes, forming a single resonance at

f1 ¼ f2 ¼ 939 Hz. This corresponds to a complete synchroni-

zation of the two resonators in this regime. As the excitation

intensity increases, gain saturation weakens both nonlinear

amplification and inter-resonator coupling, breaking the syn-

chronization and restoring the original frequency separation.

In summary, increasing a enhances the coupling

strength and progressively brings the resonance frequencies

closer together, ultimately leading to frequency synchroni-

zation at low amplitudes. However, at higher excitation

amplitudes, the system moves out of this synchronized state

due to the saturation of the gain function, causing the fre-

quencies to revert to their original values. This behavior

highlights a transition from a synchronized regime at low

amplitudes to a desynchronized regime at high amplitudes.

This transition is consistent with nonlinear oscillator theory,

FIG. 3. Synchronization of nonlinear resonators as a function of coupling - Graphs showing the evolution of the resonance frequency in each resonator as a func-

tion of excitation amplitude and coupling coefficient. (a) For the uncoupled case (a ¼ 0), the resonance frequencies remain constant regardless of excitation level.

(b) With weak coupling (a ¼ 0:2), the frequencies begin to converge at low excitation but revert to their uncoupled values at high excitation. (c) Increasing the

coupling further (a ¼ 0:3) narrows the frequency gap at low amplitudes. (d) At intermediate coupling (a ¼ 0:4), the frequencies nearly align under low excitation,

while (e) under strong coupling (a ¼ 1), the resonances merge completely at low amplitudes and return to their initial values at high excitation.

2134 J. Acoust. Soc. Am. 158 (3), September 2025 Reda et al.

https://doi.org/10.1121/10.0038955

 24 Septem
ber 2025 10:33:38

https://doi.org/10.1121/10.0038955


where the interplay between coupling strength and

amplitude-dependent gain determines synchronization sta-

bility (Strogatz, 2000; Rosenblum et al., 1996). The syn-

chronization observed in our coupled resonators recalls a

landmark historical observation by Christiaan Huygens in

1665 (Huygens, 1665). Huygens noted that two of his pen-

dulum clocks, when mounted on the same wooden beam,

gradually synchronized their oscillations in opposite direc-

tions—an anti-phase relationship. In his arrangement, the

weak mechanical coupling through the shared beam favored

a stable configuration in which the pendulums swung out of

phase, thereby minimizing the beam’s motion and allowing

both clocks to run more steadily. Huygens reported that,

regardless of their initial states, the pendulums inevitably

settled into this synchronized pattern. This “sympathy of

clocks” is now recognized as one of the earliest recorded

examples of synchronization in coupled oscillators, a con-

cept that has since become central across physics, engineer-

ing, biology, and neuroscience. The behavior we observe in

our acoustic resonators follows the same principles, where

weak coupling leads to a gradual frequency adjustment,

which, as the coupling strength reaches its maximum, culmi-

nates in full synchronization under specific conditions.

B. Gain

A new series of experiments is motivated by our initial

observation that, for the uncoupled resonators (a ¼ 0) just

below the threshold for self-sustained oscillations, increas-

ing the coupling parameter (a 6¼ 0) leads to a reduction in

the amplification of low amplitudes [Figs. 2(b) and 2(e)]. To

systematically investigate this effect, we conduct multiple

experiments to examine how the system’s gain evolves as a

function of both the coupling coefficient a and the value of

the constant gain Gi. Thus, G1 and G2 will also change, but

in the same proportion for both. Hence, for the rest of this

article, we introduce the parameter G0 as G0 ¼ G2 and

G0 ¼ 1:18G1, with G0 being the variable that changes. In

this set of experiments, we investigate how the gain of the

second resonator, specifically the amplification of low

amplitudes, depends on both the parameter G0 and the cou-

pling coefficient a.
The results, shown in Fig. 4, clearly reveal the depen-

dence of the second resonator’s gain on these two parame-

ters. Each time, we emit monochromatic sound waves for

one second and measure the pressure inside the tubes, thus

exciting the system in the same monochromatic manner as

before. This time, the coupling coefficient a is incrementally

varied from a ¼ 0 (no coupling) to a ¼ 1 (fully coupled),

while the parameter G0 is also decreased.

We selected G0 ¼ 1:18 as the highest value tested since

the system enters the oscillatory regime above this threshold

for a ¼ 0, as we explained. At this level, the gain—quantify-

ing the amplification at low excitation amplitudes—was mea-

sured at 26 for a ¼ 0 and slightly decreased to 25 at a ¼ 1.

The variation in gain follows a convex shape, reaching a min-

imum value of 14 at an intermediate coupling of a ¼ 0:3.
To further probe this effect, we repeat the experiment

with a lower G0 of G0 ¼ 1:13, chosen because it accentu-

ated the observed trends. At this level, the maximum gain at

a ¼ 0 is 23, decreasing to a minimum of 13 at a ¼ 0:3
before recovering to 22 at a ¼ 1. This experiment is

repeated for five additional values of G0, each time decreas-

ing G0 until G0 ¼ 0:48. As G0 decreases, the convex behav-

ior in the gain becomes progressively weaker, eventually

leading to a constant gain equal to almost 5 across all cou-

pling values at G0 ¼ 0:48. At the extreme case of G0 ¼ 0,

the gain remains zero, independent of a.
These results highlight the relationship between

the coupling strength and the constant gains Gi. The gain

exhibits a non-monotonic dependence on a, with a marked

suppression at intermediate coupling values (a � 0:3),

FIG. 4. The dependence of the second resonator’s gain on the coupling

coefficient a and the variable gain G0. As G0 is decreased, the gain at low

excitation amplitudes decreases, following a convex shape with a minimum

at a ¼ 0.3, indicating that the coupled system reaches the threshold for self-

sustained oscillations less easily than isolated subsystems. At lower G0 values,

the gain becomes constant. These results demonstrate the interplay between

coupling strength and gain. The figure shows the dependence of the second

resonator’s gain on the coupling coefficient a and the variable gain G0. As G0

is decreased, the gain at low excitation amplitudes decreases, following a con-

vex shape with a minimum at a¼ 0.3. Then it becomes constant at lower G0

values, indicating that the coupled system reaches the threshold for self-

sustained oscillations less easily than isolated subsystems. The results demon-

strate the interplay between coupling strength and gain.
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followed by a recovery at stronger coupling. As G0

decreases, this non-monotonic trend fades, and the gain

becomes independent of a. This behavior shows that a cou-

pled system, depending on its coupling, can reach the

threshold for self-sustained oscillations less easily than two

isolated subsystems, specifically for a¼ 0.3, where the sys-

tem is particularly less sensitive to perturbations.

V. CONCLUSION

Our investigation into the nonlinear coupling dynamics

between two delayed acoustic resonators has deepened our

understanding of complex resonator interactions. By varying

the coupling coefficient and systematically adjusting the feed-

back gain, we observed frequency synchronization at low exci-

tation amplitudes and desynchronization at higher ones. At low

amplitudes, the resonance frequencies of the coupled resona-

tors converged, while at higher amplitudes, they remained

close to their intrinsic values, demonstrating the critical inter-

play between coupling strength and nonlinear response. The

experiments also underscored the fundamental role of the con-

stant gain, G0, and the coupling coefficient, a, in shaping reso-

nator behavior, particularly when operating near the threshold

for self-sustained oscillations in the uncoupled system. Full

synchronization—occurring just before the reemergence of

self-sustained oscillations—was observed only at maximum

coupling. This work, building on our previous exploration of

Hopf resonators mimicking the cochlear amplifier (Reda et al.,
2023), offers valuable insights into the nonlinear dynamics of

coupled systems.

The digital coupling that synchronized the resona-

tors’ frequencies exemplifies how chaotic systems can

transition into coherent states, reflecting a broader phe-

nomenon in nature where disorder often gives way to

spontaneous order. From Huygens’ pendulums to syn-

chronized firefly flashes, planetary orbits, and neuronal

oscillations, these examples of synchronization reveal a

fundamental principle of coherence in both biological

and physical systems. While the cochlea relies on passive

mechanical coupling (Ranke, 1950; Weiss, 1982; Jean

et al., 2020), our system implements nonlinear coupling

via active digital feedback.

This study not only advances our understanding of

nonlinear coupling in acoustic delayed systems but also

lays the groundwork for future research into resonator

dynamics, acoustic signal processing applications, and

simulations of auditory mechanisms. The integration of

digital feedback and nonlinear gain modulation in our

experimental framework marks a key step toward design-

ing controllable acoustic systems that emulate the cochlear

amplifier.
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