REMINISCENCE - REflection Matrix ImagiNg in wave SCiENCE

European Union’s Horizon 2020 research and innovation programme under the grant agreement No 819361.

ERC Consolidator Grant of ALEXANDRE AUBRY (2019 - 2024)

REMINISCENCE - REflection Matrix ImagiNg in wave SCiENCE
In wave imaging, we aim at characterizing an unknown environment by actively probing it and then recording the waves reflected by the medium. It is, for example, the principle of ultrasound imaging, optical coherence tomography for light or reflection seismology in geophysics. However, wave propagation from the sensors to the focal plane is often degraded by the heterogeneities of the medium itself. They can induce wave-front distortions (aberrations) and multiple scattering events that can strongly degrade the resolution and the contrast of the image. Aberration and multiple scattering thus constitute the most fundamental limits for imaging in all domains of wave physics.

However, the emergence of large-scale sensors array and recent advances in data science pave the way towards a next revolution in wave imaging. In that context, I want to develop a universal matrix approach of wave imaging in heterogeneous media. Such a formalism is actually the perfect tool to capture the input-output correlations of the wave-field with a large network of sensors. This matrix approach will allow to overcome aberrations over large imaging volumes, thus breaking the field-of-view limitations of conventional adaptive focusing methods. It will also lead to the following paradigm shift in wave imaging : Whereas multiple scattering is generally seen as a nightmare for imaging, the matrix approach will take advantage of it for ultra-deep imaging. Besides direct imaging applications, this project will also provide a high-resolution tomography of the wave velocity and a promising characterization tool based on multiple scattering quantification. Based on all these advances, the ultimate goal of this project will be to develop an information theory of wave imaging. Throughout this project, I will apply all these concepts both in optics (for in-depth imaging of biological tissues), ultrasound imaging (for medical diagnosis) and seismology (for monitoring of volcanoes and fault zones).

Members

- Post-docs : Antton Goicoechea (since 2021), Victor Barolle (since 2021), Justine Robin (since 2021)

- PhD students : Paul Balondrade (since 2019), Flavien Bureau (since 2019), Ulysse Najar (since 2019), Elsa Giraudat (since 2020), Arthur Le Ber (since 2020)

- Master Students : Nathan Rougier (2021), Jad Aoun (2021)

Former Members

- Post Doc : Sergey Vilov (2020)

- PhD Student : William Lambert (2019-2020)

Scientific output (until now...)

- W. Lambert, L. A. Cobus, M. Fink, and A. Aubry, Ultrasound matrix imaging. II. The distortion matrix for aberration correction over multiple isoplanatic patches, arXiv no. 2103.02036, 2021

- W. Lambert, L. A. Cobus, M. Fink, and A. Aubry, Ultrasound Matrix Imaging. I. The focused reflection matrix and the F-factor, arXiv no. 2103.02029, 2021

- V. Barolle, J. Schoeller, P. Mecê, K. Groux, J.-M. Chassot, M. Fink, A. C. Boccara, and A. Aubry, Manifestation of aberrations in full-field optical coherence tomography, arXiv no. 2101.09996, 2021

- R. Touma, T. Blondel, A. Derode, M. Campillo, and A. Aubry, A distortion matrix framework for high-resolution passive seismic 3D imaging : Application to the San Jacinto fault zone, California, arXiv no. 2008.01608, 2020

- W. Lambert, L. A. Cobus, T. Frappart, M. Fink, A. Aubry, Distortion matrix approach for ultrasound imaging of random scattering media, Proc. Natl. Ac. Sci. U. S. A. 117, 14645-14656, 2020

- W. Lambert, L. A. Cobus, M. Couade, M. Fink, A. Aubry, Reflection matrix approach for quantitative imaging of scattering media, Phys. Rev. X 10, 021048, 2020

- A. Badon, V. Barolle, K. Irsch, A. C. Boccara, M. Fink, A. Aubry, Distortion matrix concept for deep optical imaging in scattering media, Sci. Adv. 6, eaay7170, 2020.

In the press

- Les Echos : Le microscope optique reboosté

- Techniques de l’ingénieur : Repousser la limite de pénétration d’un microscope optique dans un tissu biologique

- Photoniques : Towards digital transparency of biological tissues

- CNRS - Actualités INSIS/CNRS : Augmenter la profondeur de pénétration des microscopes optiques

- CNRS - La lettre Innovation : Augmenter la profondeur de pénétration des microscopes optiques

- Physics World : Matrix approach removes distortions in ultrasound images

- Phys.org : Matrix imaging : an innovation for improving ultrasound resolution

- EurkAlert ! : Matrix imaging : An innovation for improving ultrasound resolution

- The Medical News : Non-invasive ultrasound method prevents aberrations of ultrasound wavefronts

- ScienMag : Matrix imaging : An innovation for improving ultrasound resolution

- AlphaGalileo : Matrix imaging : An innovation for improving ultrasound resolution

- La Gazette du Laboratoire : L’imagerie matricielle : une innovation pour améliorer la résolution des échographies

Haut de page