REMINISCENCE - REflection Matrix ImagiNg in wave SCiENCE

European Union’s Horizon 2020 research and innovation programme under the grant agreement No 819361.

ERC Consolidator Grant of ALEXANDRE AUBRY (2019 - 2024)

REMINISCENCE - REflection Matrix ImagiNg in wave SCiENCE
In wave imaging, we aim at characterizing an unknown environment by actively probing it and then recording the waves reflected by the medium. It is, for example, the principle of ultrasound imaging, optical coherence tomography for light or reflection seismology in geophysics. However, wave propagation from the sensors to the focal plane is often degraded by the heterogeneities of the medium itself. They can induce wave-front distortions (aberrations) and multiple scattering events that can strongly degrade the resolution and the contrast of the image. Aberration and multiple scattering thus constitute the most fundamental limits for imaging in all domains of wave physics.

However, the emergence of large-scale sensors array and recent advances in data science pave the way towards a next revolution in wave imaging. In that context, I want to develop a universal matrix approach of wave imaging in heterogeneous media. Such a formalism is actually the perfect tool to capture the input-output correlations of the wave-field with a large network of sensors. This matrix approach will allow to overcome aberrations over large imaging volumes, thus breaking the field-of-view limitations of conventional adaptive focusing methods. It will also lead to the following paradigm shift in wave imaging : Whereas multiple scattering is generally seen as a nightmare for imaging, the matrix approach will take advantage of it for ultra-deep imaging. Besides direct imaging applications, this project will also provide a high-resolution tomography of the wave velocity and a promising characterization tool based on multiple scattering quantification. Based on all these advances, the ultimate goal of this project will be to develop an information theory of wave imaging. Throughout this project, I will apply all these concepts both in optics (for in-depth imaging of biological tissues), ultrasound imaging (for medical diagnosis) and seismology (for monitoring of volcanoes and fault zones).

Members

 Post-Docs : Victor Barolle (since 2021), Paul Balondrade (since 2022), Nicolas Guigui (since 2022)

 PhD students : Ulysse Najar (since 2019), Elsa Giraudat (since 2020), Arthur Le Ber (since 2020), Jad Aoun (since 2021)

Former Members

 Post-Docs : Rita Touma (2022-2023), Antton Goicoechea (2021-2022), Justine Robin (2021), Sergey Vilov (2020)

 PhD Students : William Lambert (2019-2020), Paul Balondrade (2019-2021), Flavien Bureau (2019-2023)

Scientific output (until now...)

 A. Goïcoechea, C. Brütt, A. Le Ber, F. Bureau, W. Lambert, C. Prada, A. Derode, A. Aubry,
Reflection Measurement of the Scattering Mean Free Path at the Onset of Multiple Scattering, hal-04372441, 2024

 E. Giraudat, A. Burtin, A. Le Ber, M. Fink, J.-C. Komorowski and A. Aubry,
Unveiling the Deep Plumbing System of a Volcano by a Reflection Matrix Analysis of Seismic Noise, hal-04268602, 2023

 P. Balondrade, V. Barolle, N. Guigui, E. Auriant, N. Rougier, A. C. Boccara, M. Fink and A. Aubry,
Multi-Spectral Reflection Matrix for Ultra-Fast 3D Label-Free Microscopy, arXiv : 2309.10951, 2023

 U. Najar, V. Barolle, P. Balondrade, M. Fink, A. C. Boccara and A. Aubry,
Non-invasive Retrieval of the Time-Gated Transmission Matrix for Optical Imaging Deep Inside a Multiple Scattering Medium, preprint hal-03981863, 2023

 R. Touma, A. Le Ber, M. Campillo and A. Aubry, Imaging the crustal and upper mantle structure of the North Anatolian Fault : A Transmission Matrix Framework for Local Adaptive Focusing, J. Geophys. Res. : Solid Earth 128, e2023JB026704, 2023

 F. Bureau, J. Robin, A. Le Ber, W. Lambert, M. Fink and A. Aubry, Three-Dimensional Ultrasound Matrix Imaging, Nature Communications 14, 6793, 2023

 W. Lambert, L. A. Cobus, J. Robin, M. Fink, and A. Aubry, Ultrasound matrix imaging—Part II. The distortion matrix for aberration correction over multiple isoplanatic patches, IEEE Trans. Med. Imag. 41, pp.3921-3938, 2022

 W. Lambert, J. Robin, L. A. Cobus, M. Fink, and A. Aubry, Ultrasound Matrix Imaging—Part I. The focused reflection matrix, the F-factor and the role of multiple scattering, IEEE Trans. Med. Imag. 41, pp.3907-3920, 2022

 C. Brütt, A. Aubry, B. Gérardin, A. Derode, and C. Prada, Weight of single and recurrent scattering in the reflection matrix of complex media, Phys. Rev. E 106, 025001, 2022

 L. A. Cobus, G. Maret, A. Aubry, Crossover from renormalized to conventional diffusion near the 3D Anderson localization transition for light, Phys. Rev. B 106, 014208, 2022

 S. Gigan, O. Katz, H. B. de Aguiar, E. R. Andresen, A. Aubry et al., Roadmap on wavefront shaping and deep imaging in complex media, J. Phys. Photonics 4, 042501, 2022

 R. Touma, A. Aubry, Y. Ben-Zion, and M. Campillo, Distribution of seismic scatterers in the San Jacinto Fault Zone, southeast of Anza, California, based on passive matrix imaging, Earth Planet. Sci. Lett. 578, 117304, 2022

 R. Touma, T. Blondel, A. Derode, M. Campillo, and A. Aubry, A distortion matrix framework for high-resolution passive seismic 3D imaging : Application to the San Jacinto fault zone, California, Geophys. J. Int. 226, 780-794, 2021

 V. Barolle, J. Schoeller, P. Mecê, K. Groux, J.-M. Chassot, M. Fink, A. C. Boccara, and A. Aubry, Manifestation of aberrations in full-field optical coherence tomography, Opt. Express 29, 22044-22065, 2021

 W. Lambert, L. A. Cobus, T. Frappart, M. Fink, A. Aubry, Distortion matrix approach for ultrasound imaging of random scattering media, Proc. Natl. Ac. Sci. U. S. A. 117, 14645-14656, 2020

 W. Lambert, L. A. Cobus, M. Couade, M. Fink, A. Aubry, Reflection matrix approach for quantitative imaging of scattering media, Phys. Rev. X 10, 021048, 2020

 A. Badon, V. Barolle, K. Irsch, A. C. Boccara, M. Fink, A. Aubry, Distortion matrix concept for deep optical imaging in scattering media, Sci. Adv. 6, eaay7170, 2020.

In the press

 Futura Sciences : Écouter le bruit de la Terre pour en construire une image précise

 Techno-Science.net : Une échographie pour les failles sismiques

 CNRS - Actualités INSIS/CNRS : Une échographie pour les failles sismiques

 Les Echos : Le microscope optique reboosté

 Techniques de l’ingénieur : Repousser la limite de pénétration d’un microscope optique dans un tissu biologique

 Techno-Science.net : Augmenter la profondeur de pénétration des microscopes optiques

 Photoniques : Towards digital transparency of biological tissues

 CNRS - Actualités INSIS/CNRS : Augmenter la profondeur de pénétration des microscopes optiques

 CNRS - La lettre Innovation : Augmenter la profondeur de pénétration des microscopes optiques

 CORDIS : Novel approach improves resolution in ultrasound images

 Physics World : Matrix approach removes distortions in ultrasound images

 Phys.org : Matrix imaging : an innovation for improving ultrasound resolution

 EurkAlert ! : Matrix imaging : An innovation for improving ultrasound resolution

 The Medical News : Non-invasive ultrasound method prevents aberrations of ultrasound wavefronts

 ScienMag : Matrix imaging : An innovation for improving ultrasound resolution

 AlphaGalileo : Matrix imaging : An innovation for improving ultrasound resolution

 Techno-Science.net : L’imagerie matricielle : une innovation pour améliorer la résolution des échographies

 La Gazette du Laboratoire : L’imagerie matricielle : une innovation pour améliorer la résolution des échographies


Haut de page