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P H Y S I C S

Guiding waves through chaos: Universal bounds for 
targeted mode transport
Cheng-Zhen Wang1†, John Guillamon1†, Ulrich Kuhl1,2, Matthieu Davy3, Mattis Reisner1,  
Arthur Goetschy4*, Tsampikos Kottos1*

Controlling wave propagation in complex environments is a central challenge across wireless communications, 
imaging, and acoustics, where multiple scattering and interference obscure direct transmission paths. Coherent 
wavefront shaping enables precise energy delivery but typically requires full knowledge of the medium. Here, we in-
troduce a universal statistical framework for targeted mode transport (TMT) that circumvents this limitation and vali-
date it on various platforms including microwave networks, two-dimensional chaotic cavities, and three-dimensional 
reverberation chambers. TMT quantifies the efficiency of transferring energy between specified input and output 
channels in multimode wave-chaotic systems. We develop a diagrammatic theory that predicts the eigenvalue distri-
bution of the TMT operator and identifies the macroscopic parameters—coupling strength, absorption, and channel 
control—that govern performance. The theory provides explicit bounds for optimal TMT wavefronts and captures 
phenomena like statistical transmission gaps and reflectionless states. These findings establish design principles for 
energy delivery and information transfer in complex environments, with broad implications for adaptive signal pro-
cessing and wave-based technologies.

INTRODUCTION
Delivering energy or information through complex enclosures, such 
as reverberant electromagnetic environments, is complicated due to 
multiple scattering, modal overlap, and sensitivity to small perturba-
tions. These features, although fundamental to chaotic wave dynam-
ics, severely limit the effectiveness of conventional communication 
or energy transfer strategies (1, 2). Over the past decade, coherent 
wavefront shaping (CWS) has emerged as a powerful approach to 
exploit rather than avoid this complexity (3–5). By tailoring the spa-
tial or spectral structure of the input field, CWS can focus or steer 
waves deep into scattering systems. However, most implementations 
rely on detailed knowledge of the medium’s scattering matrix and 
assume a stable environment (6–13). In realistic environments, such 
as indoor wireless settings or enclosed industrial spaces, even small 
temporal or spatial variations in system geometry, frequency, or an-
tenna coupling can lead to large changes in wave behavior, under-
mining deterministic control.

Moreover, existing CWS methods typically optimize local field 
enhancements or global transmission (3–5) but do not directly address 
the task of targeted mode transport (TMT): the coherent delivery of 
energy from a specific subset of input channels to a disjoint set of out-
put channels. This task is central to applications in wireless Multiple-
Input Multiple-Output (MIMO) systems, imaging, and energy routing 
but remains largely unexplored under realistic constraints like losses 
(14–17), imperfect antenna coupling (18–20), and limited access to 
input/output modes (21, 22).

To clarify the challenge, consider a simple yet fundamental ques-
tion: In a reverberant room with 10 antennas, if one can control the 

phases and amplitudes on 4 of them, what is the maximum energy 
that can be delivered to 3 others? Would the result be notably differ-
ent if we targeted 6 others instead? Such scenarios are increasingly 
relevant in practice, yet no general framework exists to answer them 
without detailed modeling.

In this work, we develop a statistical theory for the TMT operator 
that provides such a framework. The TMT operator quantifies the effi-
ciency of energy transfer from one subspace of input channels to a 
distinct set of output channels in multimode wave-chaotic systems. 
Although similar transport operators have been studied in diffusive me-
dia (22–27), our focus is on chaotic cavities, where the system size is 
comparable to the mean free path and ergodicity arises primarily from 
the hypersensitive nature of classical ray scattering from complex bound-
aries, not from disorder-induced diffusion (which is typically char-
acterized by the ratio between the mean free path and the system size).

Using a diagrammatic approach, we derive the statistical distribu-
tion of the TMT eigenvalues and identify the key macroscopic param-
eters that control TMT efficiency. These include the degree of channel 
control, the antenna-medium coupling, and internal losses. Our pre-
dictions are independent of the microscopic details of the system, 
enabling universal, system-agnostic design principles. Our frame-
work further reveals nonintuitive strategies for improving TMT, such 
as tuning the number of controlled channels or adjusting coupling 
asymmetries to maximize delivery performance.

We validate this theory through full-wave simulations and ex-
periments in quasi-one-dimensional (1D) microwave networks, 2D 
chaotic cavities, and 3D reverberation chambers. In all cases, the 
observed transport behavior is captured by our statistical formalism, 
demonstrating that optimal targeted energy delivery is governed by 
macroscopic system properties.

By harnessing rather than mitigating the richness of multimode in-
terference, the TMT framework opens exciting possibilities for robust 
and scalable wave control in complex media. Its generality makes it 
broadly applicable to fields including wireless communication, directed 
microwave energy delivery, ultrasonic imaging in heterogeneous 
tissues, and seismic wave control in geophysical environments.
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RESULTS
Physical platforms for TMT
The experimental platforms used for the statistical analysis of TMTs 
included complex networks and 2D and 3D chaotic cavities, as shown 
in Fig. 1 (A to C), respectively. Complex networks of coupled coaxial 
microwave cables (Fig. 1A) have proven to be both simple and versatile 
platforms for experimentally demonstrating and theoretically ana-
lyzing wave phenomena in systems with underlying classical chaotic 
dynamics (28–33). These networks are frequently used as models for 
mesoscopic quantum transport, sound propagation, and electro-
magnetic wave behavior in complex interconnected structures such 
as buildings, ships, and aircrafts (34–39). The scattering matrix S 
was measured by connecting the network to transmission lines (TLs), 
which were coupled to the ports of a vector network analyzer (VNA). 
To enable statistical processing of TMTs, multiple network configu-
rations were generated by scanning the interrogation frequency over the 
range [ 1.5 GHz, 4. 5 GHz ] and systematically exploring all possible 
configurations among the available channels for each TMT scenario 
(for details, see Materials and Methods and section S1).

To further test our theory on the statistical properties of TMTs in 
complex systems, we conducted additional experiments using 2D 
chaotic cavities (see Fig. 1B; for details, see Materials and Methods). 
Metallic cylinders were placed at random positions inside the cavity, 
and the scattering matrix was measured using a VNA connected to 
matched coax-to-waveguide antennas attached to the cavity. A sta-
tistical ensemble has been produced by tuning the frequency in the 
range [8 GHz, 15 GHz] and creating all possible configurations among 
the available channels.

Last, we analyzed the TMT statistics in 3D chaotic enclosures 
(reverberation chambers; Fig. 1C). Here, the scattering matrix was 
measured using commercial Wi-Fi antennas. The reverberation 
chamber was equipped with two mechanical stirrers, one horizontal 

and one vertical, allowing us to generate a random ensemble of scat-
tering matrix configurations (for details, see Materials and Methods). 
Additional statistics were generated by measuring the matrix S over 
the frequency range [2 GHz, 3 GHz].

In all these systems, the TMT process is characterized by the ef-
ficient coupling of a specific subset of scattering channels, controlled 
by another subset among the M available channels. The portion of 
the total scattering matrix describing the TMT process is given by 
S̃ = PtarSPin , where Pin and Ptar

 are M ×Min and Mtar ×M projection 
matrices. These matrices define the subspaces of Min controlled in-
put channels and Mtar targeted output channels, respectively. Here, 
we require that these subspaces are distinct, as is typical in wireless 
communication protocols, which is expressed by the orthogonality 
condition Ptar ⋅ Pin = 0.

For an incident wavefront ∣ψ
in
⟩ confined to the Pin subspace, the 

outgoing signal measured in the Ptar
 subspace after propagation 

through the complex multimode cavity is 
⟨
ψ

in
∣S̃

†
S̃∣ψ

in

⟩
 . Conse-

quently, the eigenvalues τ of the TMT matrix T=S̃†S̃ govern the ef-
ficiency of the process. Specifically, the extremal eigenvalues (and 
their corresponding eigenvectors) represent the maximum and mini-
mum achievable TMT processes in such setups, enabling the design 
of wavefront schemes with extreme transport characteristics.

An example of a TMT wavefront for the system in Fig. 1A, connected 
to M = 4 antennas, is illustrated in Fig. 1 (D and E). Here, the wavefront 
is designed to inject an incident wave into the network via antennas 
α = 1, 2 , aiming to maximize the transmittance to the targeted port α = 
3. Because of ohmic losses in the coaxial cables and nonideal coupling 
between the antennas and the network, the maximum achievable 
transmittance for this TMT process is τmax ≈ 0.65 , occurring at 
f ≈ 6.39 GHz (see Fig. 1D). This is achieved by injecting a wavefront at 
ports α = 1, 2 with the relative amplitude and phase determined by the 
eigenvector components of the 2 × 2 TMT matrix T, as shown in Fig. 1E.

Fig. 1. TMT across physical platforms and the effects of losses in the TMT eigenvalue statistics. (A) Quasi-1D complex network of coaxial cables. (B) 2D microwave 
chaotic cavity. (C) 3D reverberation chamber. (D) Experimental maximum eigenvalue of the TMT matrix as a function of input wave frequency for a network with M = 
4 channels. The TMT process involves two input channels and one targeted output channel. The frequency at which the overall maximum TMT occurs within the analyzed 
frequency range is f ≈ 6.39 GHz, indicated by the dashed vertical line. (E) Corresponding transmittance of the network used in (D) as a function of the relative amplitude 
and phase of a two-port injected wavefront at the TMT frequency f ≈ 6.39 GHz. (F) Simulated TMT eigenvalues versus frequency (blue lines) for a network of 300 vertices 
coupled to M = 80 channels with Min = 40 input channels and Mtar = 40 targeted channels. The coupling parameter is Γ ≈ 0.49 . Each vertex is coupled to six other, ran-
domly chosen vertices, with bond lengths randomly sampled from a uniform distribution in the range [ 0.1 m, 0. 4 m ]. The probability density function PDF (red line) is 
generated over frequencies in the range [ 3.5 GHz, 4. 5 GHz ]. The bimodal distribution is also shown for comparison (black dashed line). (G) Same plot as (F), but with 
uniform loss added to the cables, represented by an imaginary part of the refractive index ni = 2 × 10−3.
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The number of controlled ( Min ) and targeted ( Mtar ) channels, 
along with imperfect coupling and inherent losses, impose an upper 
limit on the efficiency of optimal TMT processes. This challenge is 
particularly pronounced in systems with many channels ( M ≫ 1 ), 
where the statistical behavior of the eigenvalues of the TMT matrix 
is governed by complex correlations, as illustrated by the blue lines 
in Fig. 1 (F and G). To gain deeper insight into this phenomenon, we 
conducted extensive simulations of wave dynamics in random networks 
and cavities and developed an analytical framework to describe the 
eigenvalue distribution of the TMT matrix, as detailed below.

Statistical theory and wave simulations
To efficiently solve the wave equation for random networks and 
multimode cavities, we consider systems with N ≫ 1 modes (or ver-
tices) coupled to M TLs that are used to inject and receive mono-
chromatic waves of frequency ω. The coupling is characterized by a 
set of parameters γα ( α = 1, … ,M ). The incident ∣ψ

in
⟩ and outgoing 

∣ψ
out
⟩ waves are related by the equation ∣ψ

out
⟩ = S ∣ψ

in
⟩ . For both 

complex networks and chaotic cavities, the scattering matrix S can 
be expressed as (40)

where D is the coupling matrix with elements Dnα =
√
γα for a mode 

n coupled to a TL, and Dnα = 0 otherwise. The coupling strength with 
the TLs is also characterized by the parameters Γα = 1− ∣⟨Sαα⟩∣

2 , 
with Γα = 1 indicating a perfect (impedance-matched) coupling. Last, 
M(ω) represents the internal Hamiltonian dynamics within the com-
plex isolated ( γα = 0 ) system.

Complex networks and cavities differ in their internal matrix  
M(ω) and coupling matrix D. For cavities, M(ω)=ω1−H

0
  where 

the N × N  effective Hamiltonian H0 represents the wave propaga-
tion inside the isolated cavity. In general, H0 is non-Hermitian due to 
(ohmic or radiative) losses within the cavity. These losses are mod-
eled by introducing an imaginary part γ� (loss rate) in the diagonal 
elements of H0 . For chaotic cavities, H0 is statistically modeled as a 
random matrix taken from the Gaussian orthogonal ensemble (GOE) 
with elements that are drawn from a Gaussian distribution, with the 
variance given by 

⟨(
H

0

)2
nm

⟩
=

1

N

(
1+δnm

)
 (in units of a central fre-

quency ω
0
 around which the measurements are performed). Fur-

thermore, the coupling considered in this work is of the form γα = γ 
for all TLs, so that Γ = 1 −

(1−γ)2

(1+γ)2
 (41).

In contrast, for complex networks, M(ω) explicitly depends on the 
adjacency matrix of the network (see Materials and Methods), which 
need not be fully connected, as well as on the losses introduced through 
the imaginary part of the refractive index within the cables. The matrix D 
is defined such that γα = 1 when TL α is attached to a node. Note that, in 
this case, traces of system-specific features (e.g., scar effects or Anderson 
localization) may appear in the distribution of TMT eigenvalues and are 
not captured by the universal diagrammatic approach. Nevertheless, 
we will show that, even under these conditions, the overall qualitative 
agreement with the diagrammatic predictions remains strong. The 
estimated optimal TMT bounds and the upper edge of the transmis-
sion gap are well captured by our theory.

In Fig. 1 (F and G), we presented numerical results for the distribu-
tion (τ) of TMT eigenvalues (red line) for a network operating in the 
range [ 3.5 GHz, 4.5GHz ]. The network consists of N = 300 vertices, 
each randomly connected to 6 others, on average, via coaxial cables 

with random lengths uniformly chosen in the range [0.1 m,0.4 m] . 
The total numbers of controlled and targeted channels are Min = 40 
and Mtar = 40 , selected from M = 80 available channels. In this exam-
ple, the imperfect coupling to the TLs is characterized by Γ ≈ 0.49 . The 
distribution (τ) is compared with the well-known bimodal predic-
tion (τ) =

1

π

1
√
τ(1−τ)

 (black dashed line), which corresponds to a sym-
metric TMT process ( Min =Mtar ≫ 1 ) under conditions of perfect 
coupling ( Γ = 1 ) and no absorption (42). Figure 1F demonstrates that 
imperfect coupling skews the distribution toward smaller τ values while 
preserving the maximum transmittance τmax ≈ 1 . Conversely, the 
impact of absorption, shown in Fig. 1G, compresses the spectrum of 
eigenvalues, pushing the entire distribution toward smaller τ values. 
This leads to an unimodal structure in (τ) and a reduced maximum 
transmittance, τmax < 1.

To gain deeper insight into the parameters governing the distri-
bution (τ) in the limit where Min,Mtar ≫ 1 , we turn to an analyti-
cal approach. In the simplest case of perfect coupling ( Γ = 1 ) and no 
absorption, all scattering channels of the matrix S are statistically 
equivalent. Under these conditions, the filtered random matrix (FRM) 
theory (21), which has been successfully implemented in various 
disordered systems in recent years (22, 23, 43–46), can be applied 
directly to the matrix S (see section S2.B). In the regime of a small 
number of controlled channels ( min ≪ 1 ), the distribution (τ) , pa-
rametrized by the ratios min =Min ∕M and mtar =Mtar ∕M , is con-
centrated around its mean ⟨τ⟩ = mtar with a finite support 

[
τ−, τ+

]
 , 

where τ− > 0 and τ+ < 1 . As min increases, the distribution begins to 
spread and eventually reaches the upper limit τ+ = 1 when the com-
plementary channel condition (CCC) min +mtar = 1 is satisfied. Un-
der this condition, τ− > 0 for all mtar except for the symmetric case 
min = mtar = 1∕2 , where the bimodal distribution is recovered.

The more complex and realistic scenario of imperfect coupling 
and finite absorption cannot be addressed using the same FRM formal-
ism. This is primarily because selecting a subset of injection channels 
disrupts the equivalence among the outgoing channels of the scat-
tering matrix S when Γ ≠ 1 . In particular, the matrices Pin and Ptar are 
no longer statistically equivalent under the orthogonality constraint 
Ptar ⋅ Pin = 0 . To address these scenarios, which frequently arise in 
wireless communication frameworks, a diagrammatic approach is 
required (see sections S2.A and S2.C). In the limit Min,Mtar ≫ 1 , we 
derive the distribution as (τ) = −

1

π
limη→0+ Im

[
g(τ+ iη)

]
 , where the 

resolvent g(z) of the TMT operator T is expressed as

The terms Σin and Σtar are complex self-energy elements that en-
capsulate the effects of multiple scattering within the complex medium. 
These terms account for partial reflections induced by the effective 
barriers at the interfaces between the inner medium and the TLs, as 
well as absorption effects during propagation. They are determined 
as solutions of two coupled nonlinear equations (see Materials and 
Methods), only parameterized by the channel ratios min and mtar , 
the coupling strength Γ and the absorption factor a = 4(N∕M)γ�. 
The latter is related to the total absorption A ≡ 1 −

⟨
Tr
(
S
†
S
)⟩
∕M 

as A = a∕(1+a∕Γ) (see section S2.D). Such a physically relevant 
parameter is not taken into account in a recent work (47) where the 
density of transmission eigenvalues has been rigorously derived for 
chaotic cavities described by random matrices H0 with elements given 

S(ω) = − I + 2iD† 1

M(ω) + iDD
†
D (1)

g(z) =
1

z

1 − (1−Γ)Σin
Σ
tar

1 − (1−Γ)Σin
Σ
tar

− ΓΣ
in
∕
√
z

(2)
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by a general distribution and within the constraint of the CCC. We 
note, in particular, that the distribution (τ) is not parameterized by 
the mean free path, the system size, or the spatial dimension, in con-
trast to predictions established for open diffusive systems (23, 24, 46).

The analytical predictions for (τ) based on Eq. 2 are shown as 
black lines in Fig. 2 for various min,mtar configurations. For com-
parison, the same figure also includes simulation results for a com-
plex microwave network (blue lines) and a 2D chaotic cavity (red 
lines), both coupled to M = 80 TLs. Figure 2 (A to C) corresponds 
to lossless systems, whereas Fig. 2 (D and F) account for uniform 
losses. The microwave network simulations were performed with 
the same parameters as in Fig. 1 (F and G), except for Min and Mtar . 
To demonstrate the universality of our predictions, which depend 
only on a few macroscopic parameters and not on the microscopic 
details of the system, we also analyzed chaotic cavities with the same 
coupling parameter Γ = 1− ∣⟨Sαα⟩∣

2 ≈ 0.49 . Similarly, for the lossy 
case, the loss rate γ� = 0.016 in the chaotic cavity was tuned to match 
the total absorption, A ≈ 0.13 , of the network. In the network simu-
lations, ohmic losses were modeled by including an imaginary part 
in the refractive index, ni = 2 × 10−3.

Figure 2 demonstrates that random networks and chaotic cavi-
ties, despite their structural differences, exhibit a distribution (τ) 
for the nonzero TMT eigenvalues whose main characteristics are well 
captured by the diagrammatic approach. The agreement is particu-
larly notable when small eigenvalues—associated with localization 
effects in sparsely connected networks (i.e., networks with low ver-
tex valency) or system-specific phenomena such as scars, which can 
inhibit the development of fully ergodic dynamics (28–33)—are ex-
cluded from the analysis (see blue lines in Fig. 2). We stress that the 
diagrammatic approach provides, in all cases, excellent predictions 
for the optimal TMT statistical bound and upper transmission gap.

In greater detail, Fig. 2 (A and B) represents scenarios under the 
CCC ( min +mtar = 1 ), differing only in the asymmetry between the 
interrogating and targeted channels. Under this condition, the bimodal 
statistics expected for ideal coupling are skewed toward smaller trans-
mittance eigenvalues. The scattering process still supports open chan-
nels, with τmax ≈ 1 , although each of the 80 TLs individually reflects 
~50% of the injected signal. This constructive interference effect can 
be viewed as an ergodic analog of the resonance condition found in 
simple geometries, such as Fabry-Pérot cavities. For min = mtar = 1∕2 

mm m

mmmmmm

τττ

τττ

BA C

D E F

mm m

Fig. 2. Comparison of TMT eigenvalue distributions from diagrammatic theory and simulations for complex network and cavity models, with and without losses 
and varying degrees of channel control. Probability density function (PDF) of TMT eigenvalues τ evaluated from wave simulations of a complex network (gray lines) and 
a cavity model (red lines). The blue lines indicate the PDF of the TMT eigenvalues of the network system after removing the lowest 18% of eigenvalues, which are associ-
ated with suppressed transmission due to semiclassical effects (scarring) and other localization phenomena specific to the network model (32, 33). The ensemble has been 
generated from random configurations of cable lengths uniformly distributed in the interval [ 0.1 m, 0. 4 m ] over the frequency range [ 3.5 GHz, 4. 5 GHz ] for the net-
works and from random GOE matrices for the cavity model. (A to C) TMT eigenvalue distributions for lossless systems with varying input ( min ) and output ( mtar ) channel 
ratios. (D to F) TMT eigenvalue distributions in the presence of losses for the same systems. For the complex network, the imaginary part of the cable refractive index is 
2 × 10−3 , corresponding to absorption A ≈ 0.13 . For the lossy cavity model, the loss in the diagonal elements of the Hamiltonian matrix is γ� = 0.016 corresponding to the 
same A ≈ 0.13 . In all cases, the complex network consists of 300 vertices and is attached to 80 TLs. Each vertex is randomly coupled to six others. The cavity model consists 
of 300 modes and is attached to 80 TLs. Both systems are characterized by a coupling parameter Γ ≈ 0.49 . In all subfigures, the predictions of the diagrammatic theory are 
shown (black lines). In (D) to (F), the absorption factor is a ≈ 0.17.
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and no absorption (Fig. 2A), Eq. 2 simplifies to an explicit solution, 
(τ) =

1

π

Γ(2−Γ)
√
τ(1−τ) (Γ2−4Γτ+4τ)

 , whose support covers the full range 
τ ∈ [0, 1] (see section S2.C).

A noteworthy difference between Fig. 2 (A and B) is the marked 
suppression of (τ) near τ ∼ 0 when min ≠ mtar , accompanied by an 
enhancement elsewhere, whereas τmax remains very close to unity. 
This implies that 100% reflection is statistically improbable when the 
number of input channels differs from the number of remaining 
(target) channels. This effect is reminiscent of what is found in sim-
pler geometries, such as Fabry-Pérot cavities or Bragg stacks with a 
limited number of layers, with the notable distinction that ergodic-
ity introduces a difference between reflection gap and transmission 
gap only when min ≠ mtar . Furthermore, when the CCC is broken 
( min +mtar < 1 ), open channels are strongly suppressed, leading to 
a transmission gap near τ ∼ 1 in the (τ) distribution and the break-
down of its bimodal structure, as shown in Fig. 2C.

Including ohmic losses further accentuates the gap in (τ) , even 
under the CCC, as illustrated in Fig. 2 (D and E). Despite this, the 
bimodal structure observed in Fig. 2 (A and B) remains. The emer-
gence of the gap near τ ∼ 1 can be qualitatively understood by consid-
ering that losses effectively introduce additional uncontrolled output 
channels. However, unlike perfectly coupled uncontrolled channels, 
absorption channels partially backscatter the outgoing waves into the 
cavity (see section S2.A). Violation of the CCC primarily affects open 
channels (i.e., those with τ ≈ 1 ), whereas absorption has a more uni-
form impact across all channels. In the combined presence of the bro-
ken CCC and absorption, the bimodal nature of (τ) is entirely lost, 
and the gap is further enlarged, as seen in Fig. 2F.

Comparison with experimental measurements
Next, we compare the results of our theoretical model with experimental 
measurements conducted in complex networks, 2D chaotic cavities, and 
3D reverberation chambers. To facilitate the comparison, all cases in-
volved M = 8 channels. We first consider the microwave network con-
sisting of 28 coaxial cables, as shown in Fig. 1A. To achieve maximum 
all-to-all connectivity and ensure chaotic wave dynamics, we designed 
eight-port “supervertices”—each consisting of a combination of six Tee 
junctions. Each supervertex was coupled to a TL. In the frequency range 
[ 1.5 GHz, 4.5 GHz] where the measurements were performed, the aver-
age coupling parameter was estimated as Γ = 1− ∣⟨Sαα⟩∣

2 ≈ 0.97 (see 
Materials and Methods and section S1). From the measured scattering 
matrices, we extracted the TMT matrices T and evaluated their eigenval-
ues τ. Some typical TMT distributions (τ) for various min , mtar config-
urations are shown in Fig. 3 (A to C) (blue lines). For comparison, we 
also report the results of simulations for the corresponding network with 
the same values of M = 8 channels, coupling Γ , and absorption A ≈ 0.35 
as in the experiment (orange lines). The diagrammatic predictions, for-
mally derived in the limit Min,Mtar ≫ 1 , for a = A∕(1−A∕Γ) ≈ 0.55 
are also shown (black lines) in the same figures. The good agreement 
reveals the robustness of the analytical theory even for a moderate num-
ber of channels.

The same experimental analysis was carried out for the 2D chaotic 
cavity shown in Fig. 1B. Statistics (blue lines in Fig. 3, D to F) were 
generated from scattering measurements in the frequency range 
[8 GHz, 15 GHz]. Simulation results for the cavity, based on ran-
dom matrix modeling (see orange lines in Fig. 3), indicate that the 
microscopic model parameters that best fit the experimental data 
are 

(
γ, γ�

)
= (0.56,0.003) , corresponding to the ensemble-averaged 

macroscopic model parameters (Γ,A) ≈ (0.92,0.1) . These values 
have to be compared with the experimentally estimated parameters 
(Γ,A) ≈ (0.95,0.1) . In the simulations, the ensemble average was 
performed over realizations of  100 × 100 random Gaussian matrices, 
whereas in the experiment, the ensemble was constructed over different 
frequencies. In the same figure, we also report the predictions of the 
diagrammatic approach (black lines), using a = A∕(1−A∕Γ) ≈ 0.11 . 
Overall, good agreement is observed between the experimental, nu-
merical, and theoretical results.

A prominent feature in all cases shown in Fig. 3 is the suppression of 
open channels and the emergence of a statistical gap, driven by absorp-
tion in both setups and, in the last column, also by the breakdown of the 
CCC. The greater absorption in the network compared to the cavity is 
evident from the more pronounced contraction of the eigenvalue spec-
trum toward smaller τ values. It is also worth highlighting the asym-
metric case of Fig. 3 (B and E), where the distribution (τ) peaks near 
the upper bound of the TMT eigenvalues. A comparison with the anal-
ogous case in Fig. 2E reveals that the critical factor here is the increased 
coupling parameter Γ , which approaches perfect coupling.

When strong incomplete channel control or substantial losses 
arise, as in the 3D cavity shown in Fig. 1C, the correlations in the 
TMT matrix T are progressively lost (see section S3 and fig. S3). 
In such cases, we find that the distribution of eigenvalues normal-
ized by their mean, (x=τ∕⟨τ⟩) , derived using the diagrammatic 
approach, converges to the Marchenko-Pastur law for rectangu-
lar random matrices with uncorrelated Gaussian elements (48, 49), 

(x) =
√
(x+−x)(x−x−)

2π(min∕mtar)x
 , where x± =

�
1±

√
min∕mtar

�2

 . This result is 
independent of both the coupling strength Γ and absorption. 
In addition, as derived in section S2.D, the average transmis-
sion coefficient is given by ⟨τ⟩ = mtarΓ∕(1+a∕Γ) = mtar(Γ−A) , 
implying that the largest and smallest accessible transmission 
coefficients are τ± =

�√
min±

√
mtar

�2

(Γ−A) , covering a range 
τ+ − τ− = 4

√
minmtar(Γ−A) . These results have been confirmed by 

measurements in the 3D reverberation chamber (see section S3 and 
fig. S4). Even when the total mean absorption is as high as A = 83% 
and only 50% of the channels are detected, it is still possible to find 
a wavefront that achieves 25% targeted transmission.

Extreme TMT bounds
Our diagrammatic approach takes advantage of the complex nature 
of scattering processes in wave-chaotic environments to derive a 
universal description of the dependence of the TMT eigenvalue 
density on intrinsic losses, coupling strength between the scattering 
domain and the interrogating/targeted antennas, and incomplete 
channel control—factors often present in realistic operational sce-
narios, such as indoor wireless communications.

The main findings of our analysis are as follows. For lossless systems, 
the bimodal eigenvalue statistics predicted for perfect and symmetric 
coupling ( Γ = 1 , min = mtar = 1∕2 ) becomes increasingly skewed to-
ward smaller TMT eigenvalues as the coupling parameter decreases. 
In scenarios where the CCC is preserved ( min +mtar = 1 ), the TMT 
eigenvalue distribution extends up to unity. A statistical gap near the 
open channels forms only for very weak coupling Γ in asymmetric 
channel scenarios ( min ≠ mtar ). This gap widens in cases of the broken 
CCC, where the bimodal nature of the statistics is entirely suppressed. 
In the presence of losses, the statistical gap becomes even more pro-
nounced and is observed even under the CCC. An important result 
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of our analysis is the identification of conditions under which the TMT 
distribution develops a skewed bimodal shape, peaking around the 
maximum eigenvalues. This optimal TMT scenario occurs when 
Γ→ 1 and the number of injected and targeted channels are un-
equal. We note that, because of reciprocity, all results remain valid for 
min > mtar , except for the emergence of Min −Mtar zero TMT eigen-
values. These contribute an additional delta function term to the prob-
ability density, with a statistical weight of 

(
Min−Mtar

)
∕
(
Min+Mtar

)
.

The extreme TMT eigenvalues provide a direct estimate of the 
efficiency of CWS schemes. In our simulations, where finite-size matrices 
are used, we have identified the upper bound of the TMT eigenvalues 
τmax , via the following operational definition � τmax

0
(τ)dτ = 1 − ε 

where ε = 10−3. Figure 4 summarizes the dependence of the upper 
bound τmax on the absorption parameter a, the coupling parameter 
Γ , and the degree of channel control determined by min and mtar . 
These extreme eigenvalues are predicted by our diagrammatic theo-
ry as the solutions of an explicit set of analytical equations (see Ma-
terials and Methods and section S2.E).

Figure 4 (A and B) illustrates the scenario of the CCC, where the 
maximum eigenvalue τmax achieves near-perfect TMT for Γ ≈ 1 , 
even as losses increase. In addition, symmetric channel control 
( min → mtar ) enhances the perfect TMT scenario. We predict that 

any nonabsorbing complex cavity will exhibit reflectionless states—
as studied in refs. (8, 9, 13) and defined as states with τmax = 1 under 
the CCC—irrespective of the fraction min of injected channels and 
for almost any coupling strength Γ.

Figure 4 (C and D) shows the case of noncomplementary chan-
nel configurations ( min +mtar < 1 , with mtar = 0.5 ). Here, perfect 
TMT is achieved when Γ→ 1 , but incomplete channel control ( min → 0 ) 
becomes detrimental even under ideal coupling ( Γ = 1 ). Nonethe-
less, the theory reveals that good TMT performance, characterized by 
τmax ≳ 0.6 , remains accessible under moderate conditions: min ≳ 0.2 , 
Γ ≳ 0.5 and a ≲ 0.1.

DISCUSSION
We have presented a statistical theory of TMT that captures univer-
sal features of wave control in chaotic environments dominated by 
multimode interference and partial channel access. Our diagrammatic 
approach, supported by numerical simulations and experimental 
validation, provides a predictive framework for understanding and 
optimizing energy delivery in complex systems. In particular, the 
theory provides closed-form expressions for the mean absorption, 
transmittance, and the eigenvalue distribution of TMTs for both 

m m m m m m 

m m m m m m 

τττ

τττ

A B C

D E F

Fig. 3. Comparison of experimental, simulated, and theoretical TMT eigenvalue distributions for complex networks and 2D cavity models. (A to C) PDF of TMT 
eigenvalues of a fully connected network consisting of eight “supervertices” (see Materials and Methods and fig. S1), each connected to a TL with a coupling parameter 
Γ ≈ 0.95 . Various channel ratios min and mtar are considered. Experimental results (blue lines) and simulations (orange lines) are shown. Intrinsic cable losses are modeled 
with an imaginary part of the refractive index of ≈ 2 × 10−3 , corresponding to absorption A ≈ 0.35 . The statistical analysis is performed over the frequency range [ 1.5 GHz, 
4.5 GHz]. Predictions from the diagrammatic approach are shown (black lines), with an absorption factor a = A∕ (1−A∕Γ) ≈ 0.55 . (D to F) The same analysis as in (A) to (C), 
but for the 2D cavity shown in Fig. 1B attached to eight TLs. Experimental results (blue lines) and simulations (orange lines) are presented. Statistics for the experimental 
data are collected over the frequency range [8 GHz, 15 GHz], whereas simulations use effective Hamiltonians H0 taken from the GOE with dimensionality N = 100. The 
simulated system is characterized by a coupling parameter Γ ≈ 0.92 and absorption A ≈ 0.1 . Predictions from the diagrammatic approach are shown (black lines), with an 
absorption factor a = A∕ (1−A∕Γ) ≈ 0.11.

D
ow

nloaded from
 https://w

w
w

.science.org on February 11, 2026



Wang et al., Sci. Adv. 12, eaeb1158 (2026)     28 January 2026

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 10

balanced and imbalanced channel control. Also, it allows us to avoid 
computationally expensive matrix manipulations and their statistical 
processing that are typically needed for evaluating the optimal bounds. 
Instead, one has to solve numerically two nonlinear equations.

An important conclusion of our work is the prediction that near-
optimal transmission remains feasible even under realistic constraints, 
including internal losses, limited coupling, and incomplete control. 
This means that, when probing a wave-chaotic scattering setup over a 
certain bandwidth Δω , there is a high probability to find TMT exci-
tations that transmit energy from a controlled set of input channels 
Min to another set of targeted channels Mtar with near-unity efficiency. 
Our theoretical analysis provides a statistical estimation of the num-
ber of such near-unity TMT excitations  ∼ Δω

ξ
∫ 1
1−ε

P(τ)dτ  where ξ is the 
correlation bandwidth (Ericson width) that characterizes the frequency 
scale over which the scattering matrix remains statistically correlated.

Our framework accurately predicts the emergence of reflectionless 
states, statistical transmission gaps, and skewed bimodal eigenvalue dis-
tributions. The generality of these findings has been confirmed across 
diverse experimental platforms, including quasi-1D microwave net-
works, 2D chaotic cavities, and 3D reverberation chambers. This robust-
ness suggests that the theory extends naturally beyond electromagnetic 
systems to optical, acoustic, and mechanical wave domains. It is im-
portant to emphasize, however, that our results apply specifically to 

wave-chaotic systems (that is, systems smaller than the mean free path, 
where ergodicity arises from complex boundaries) and are fundamen-
tally distinct from predictions for diffusive transport, which explic-
itly depend on the mean free path, system size, and dimensionality.

It will be interesting to extend our analysis beyond the ergodic 
constraints underlying the theoretical modeling and incorporate 
semiclassical features (like short orbits, scars, etc.) and localization 
effects. Looking ahead, the statistical perspective developed here 
opens promising directions for controlling waves in nonlinear, time-
varying, or dynamically reconfigurable media. More broadly, this 
work provides a practical and predictive foundation for designing 
wave-based technologies, from communication and imaging to energy 
delivery, embracing complexity rather than resisting it.

MATERIALS AND METHODS
Description of the experimental microwave network
The microwave network is formed by coaxial cables (bonds) with 
physical lengths between 10 and 50 cm that are incommensurate 
with one another. These cables are connected with one another via 
N = 8 supervertices. Each supervertex is characterized by its valency 
vn ( n = 1 ⋯ N ) indicating the number of cables that emanate from 
it and are connected to other supervertices of the network. In our 

Fig. 4. Extreme TMT bounds. (A) Maximum transmission τmax as a function of the input channel ratio min and the coupling parameter Γ for a complementary channel 
configuration ( min + mtar = 1 ) and for three representative absorption factors: a = 0, 0.1, and 0.5 (left to right). (B) Representative case comparing numerically extracted 
values of τmax (points) with diagrammatic predictions for the edge of the marginal distribution in the large-N,M limit (solid lines), for min = 0.25,mtar = 0.75 . (C) Same as 
in (A) but for a noncomplementary case with a fixed output channel ratio mtar = 0.5 . (D) Same as in (B) but for a noncomplementary case with min = 0.25,mtar = 0.5 . 
The simulations shown here are based on a chaotic cavity modeled by an ensemble of 1000 realizations of effective Hamiltonians H0 of dimensionality N = 600 and 
M = 160 number of TLs.
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case, all supervertices have been constructed to have v = 7 and were 
assembled using six Tee junctions (see section S1 for details). Five of 
these Tee junctions have one female connector, whereas the sixth 
Tee-junction consists of all male connectors. This setup results in a 
fully connected chaotic microwave network. At each supervertex, 
we have attached one TL supporting a single propagating mode con-
nected to one port of a VNA, which is used to measure the scattering 
parameters. The 8 × 8 scattering matrix has been measured via mul-
tiple measurements using a two-port VNA. Each measurement used 
the two channels attached to the VNA, whereas the remaining six 
channels were connected to 50-ohm loads.

The network was interrogated in the frequency range [ 1.5 GHz, 
4.5 GHz ], where the 8 × 8 scattering matrix that describes the scatter-
ing process at the supervertex has matrix elements that are approxi-
mately constant. Within this range, the average coupling parameter Γ 
between the network and the leads is constant and takes the approxi-
mate value Γ ≈ 0.97 . The high value of Γ is associated with strong inter-
nal interferences occurring when the six Tee junctions are combined 
together to create the supervertex (see section S1 for more details).

The experimental setup involves ohmic losses occurring at the 
cables. The loss of the cables is encoded in the imaginary part of its re-
fractive index, which could be obtained via a best fitting of the measured 
frequency-dependent transmission [ t(ω) = eiω∕c(nr+ini)L ] through a cable 
of a specific length. Best fitting analysis indicated that ni ≈ 2 × 10−3 
whereas nr ≈ 1.212.

Description of the experimental microwave cavities
An image of the quasi-2D cavity of dimensions L = W = 205.74 mm 
and h = 10.16 mm is shown in Fig. 1B. The cavity is 2D as only a 
single vertical polarization can propagate within the frequency range 
of interest [8 GHz, 15 GHz]. In random positions inside the cavity, 
we have placed metallic cylinders that act as scatterers. The cavity is 
interrogated with eight antennas. We measure the 8 × 8 scattering 
matrix using a VNA between eight antennas that are matched coax-
to-waveguide transitions attached to the cavity. A statistical ensem-
ble of TMT eigenvalues is constructed by measuring the scattering 
matrix at various frequencies inside the operational frequency range 
with a frequency step of 0.28 MHz.

An image of the 3D chaotic enclosure (reverberation chamber) 
of dimensions 1.75 m by 1.5 m by 2 m is shown in Fig. 1C. The scat-
tering matrix is measured between eight antennas that are commercial 
Wi-Fi antennas (ANT-24G-HL90-SMA) matched at 2.4 GHz. Two 
groups of four antennas are aligned and regularly spaced by 6.5 cm, 
which is ∼ λ∕2 of the central frequency. The orientation of the two 
groups is orthogonal to suppress direct paths. The reverberation 
chamber is equipped with two mechanical stirrers (a horizontal and 
a vertical one) that allow us to generate an ensemble of random con-
figurations of the scattering matrix. An ensemble of 40 random con-
figurations is obtained from the rotation of the stirrers by steps of 3°. 
For better statistical processing of TMT eigenvalues, we have gener-
ated, for each cavity configuration, a number of scattering matrices 
corresponding to different frequencies in the range [2 GHz, 3 GHz].

Scattering theory of networks
Microwave networks, consisting of n = 1, … ,N vertices, are proto-
type systems that have been used successfully for the study of the 
universal properties of wave-chaotic systems. Two vertices n,m are 
coupled together via coaxial cables (bonds) of length lnm . In the 
studies of wave-chaos, it is typically assumed that the bond lengths 

are incommensurate with one another (29). The position xnm on a 
b ≡ (n,m) bond is defined to be xnm = 0 

(
lnm

)
 on vertex n (m). The 

field ψb

(
xnm

)
 on each bond satisfies the Helmholtz equation

where k = ωn∕c
0
 is the wave number, ω is the angular frequen-

cy, c0 is the speed of light in vacuum, and n = nr + ini is the 
complex-valued relative refraction index with imaginary part 
ni indicating the losses of the coaxial cables. The solution of 
Eq. 3 is ψb

(
xnm

)
= ϕn

sink(lb−xnm)
sinklb

+ ϕm
sinkxnm
sinklb

 , where ψb(0) = ϕn and 
ψb

(
lb
)
= ϕm are the values of the field at the vertices.

We turn the compact network to a scattering setup by attaching 
TLs α = 1, ⋯ ,M to M ≤ N vertices. The field at the α − th TL takes 
the form ψα(x) = αe

−ikx +αe
+ikx for x ≥ 0 where x = 0 is the posi-

tion of the vertex and α,α indicate the incoming and outgoing 
wave amplitudes at the αth TL.

The field and current continuity on each vertex n could be com-
bined to give the scattering matrix Eq. 1 (29) where the N × N matrix 
M(ω) encodes the topology of the network (connectivity and length 
of bonds) and has elements

where the adjacency matrix nl takes the values 1(0) when two ver-
tices n,l are (not) connected. Last, the N ×M matrix D describes the 
connection between the TLs α = 1, ⋯ ,M and the specific vertices 
where the TLs are attached. It has matrix elements D

nα = 1 if the αth 
TL is attached to vertex n and zero otherwise.

Analytical solutions for the eigenvalue probability 
density function
The theoretical curves for the TMT eigenvalue distributions in Figs. 2 
and 3 have been obtained by solving the equations Fin(z) = 0 and 
Ftar(z) = 0 for the self-energy components Σin and Σtar , where

with α =
ΓΣtar ∕

√
z

1−(1−Γ)ΣinΣtar

 , β = ΓΣin ∕
√
z

1−(1−Γ)ΣinΣtar

 , and inserting their values 
into Eq. 2.

In addition, the upper bound τmax shown in Fig. 4 can be obtained by 
solving the system of equations composed of F

in

(
τ
max

)
= 0 , F

tar

(
τ
max

)
= 0 , 

d2

dx2
nm

ψb

(
xnm

)
+ k2ψb

(
xnm

)
= 0 (3)

Mnm(ω) =

⎧
⎪
⎨
⎪
⎩

−
�

l≠n

nlcotklnl, if n=m


nm

cscklnm, if n≠m

(4)

F
in(z)=

Σ
in

1−Σ
in
Σ
tar

−
aΣ

in

�
1−Σ

in
Σ
tar

�2

−
1−Γ

1−(1−Γ)Σin
Σ
tar

��

1+
αm

in

1−α
+
βm

tar

1−β

�

Σ
in
+

Γ
√
z(1−Γ)

m
in

1−β

�

(5)

F
tar(z)=

Σ
tar

1−Σ
in
Σ
tar

−
aΣ

tar

�
1−Σ

in
Σ
tar

�2

−
1−Γ

1−(1−Γ)Σin
Σ
tar

��

1+
αm

in

1−α
+
βm

tar

1−β

�

Σ
tar
+

Γ
√
z(1−Γ)

m
tar

1−β

�

(6)
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and �Σin
F
in

(
τ
max

)
�Σtar

F
tar

(
τ
max

)
= �Σtar

F
in

(
τ
max

)
�Σin

F
tar

(
τ
max

)
 . These 

results are demonstrated in section S2.

Supplementary Materials
This PDF file includes:
Sections S1 to S3
Figs. S1 to S4
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