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ABSTRACT:
A time-domain effective model for acoustic wave propagation through a two-dimensional periodic array of gas

bubbles embedded in a liquid is presented. The model is expressed as transmission conditions: pressure remains con-

tinuous, whereas the normal velocity exhibits a jump induced by the internal pressure of the bubbles. This internal

pressure follows a damped mass–spring equation, with damping arising solely from radiative coupling to the sur-

rounding liquid, which makes the resonance frequency and quality factor of the array emerge unambiguously. Aside

from the bubble density in the lattice, these quantities are fully governed by two independent geometric parameters:

a dimensionless capacitance, depending solely on bubble shape, and a lattice coefficient, depending solely on lattice

geometry. For plane wave scattering, comparisons with direct numerical simulations demonstrate that the model

accurately reproduces the resonant behavior of bubble screens across a range of configurations, including spherical,

spheroidal, and cylindrical bubbles, as well as square and rectangular lattices. This generalizes the classical model of

Leroy et al. [Eur. Phys. J. E 29(1), 123–130 (2009)] for spherical bubbles in square lattices. Notably, the model

reveals—and simulations confirm—that the resonance frequency shift relative to an isolated bubble, usually positive

(blue shift), can become negative (red shift) in rectangular lattices with aspect ratios exceeding seven.
VC 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
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I. INTRODUCTION

Gas bubbles embedded in a liquid exhibit remarkable

acoustic properties, especially near their Minnaert reso-

nance, attributable to the large contrast in compressibility

between gas and liquid (Minnaert, 1933). An original and

insightful historical review of studies on scattering by single

bubbles, including foundational works and those conducted

during World War II, is provided by Martin (2019).

Building on this property, bubble-based acoustic metasurfa-

ces, which are also referred to as bubble metascreens, have

attracted increasing attention because of their ability to

manipulate sound at deeply subwavelength scales (Hladky-

Hennion and Decarpigny, 1991; Leroy et al., 2009;

Bretagne et al., 2011). Such systems, consisting of two-

dimensional, periodic or quasiperiodic arrays of air bubbles

in water, form ultrathin interfaces capable of achieving

functionalities such as superabsorption (Leroy et al., 2015;
Ammari et al., 2017a), coherent perfect absorption (CPA;

Lanoy et al., 2018), and subwavelength focusing (Lanoy

et al., 2015; Ammari et al., 2017b). These effects arise from
the collective dynamics of the bubbles, which are governed

by various mechanisms related to array density, bubble

shape, and lattice geometry.

Although most studies have focused on spherical bub-

bles, it is now well established that bubble shape plays a criti-

cal role in modulating the resonance. For a single bubble,

deviations from sphericity alter the pressure and velocity dis-

tribution at the interface, leading to measurable shifts in reso-

nance frequency—theoretically and experimentally—for

shapes such as spheroidal (Strasberg, 1953; Ye, 1997; Spratt

et al., 2017) or toroidal/polyhedral bubbles (Boughzala et al.,
2021; Alloul et al., 2022; Bouchet et al., 2024). These geo-

metric effects can be described quantitatively through the con-

cept of capacitance, borrowed from electrostatics (Smythe,

1950), which characterizes how bubble shape influences the

pressure–volume response and, thus, shifts its Minnaert reso-

nance frequency. A rigorous connection between the scatter-

ing properties of a bubbly metascreen and the capacitance of

its resonators was established in Ammari et al. (2017a),

employing layer potential techniques and asymptotic expan-

sions to analyze bubbles mounted on a Dirichlet surface; see

also Martin and Skvortsov (2020) for sound-hard and sound-

soft scatterers. Another factor affecting the array’s response,

in terms of resonance frequency and quality factor, is the geo-

metric effect of the lattice arrangement, independent of
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bubble shape. To our knowledge, this influence has not been

investigated in the literature, where the square arrangement is

always assumed by default.

In this work, we develop a model that faithfully

describes the response of a bubble array for arbitrary bubble

shapes and lattice arrangements. In particular, we show that

the array’s resonance frequency can be expressed as

xr ¼ x1
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� C�CLðd=hÞ
p for a screen; (1)

where

x1
r ¼ cg

d

ffiffiffiffiffiffiffiffiffiffiffi
C�

qg
q‘

r
for a single bubble: (2)

Here, ðqg; q‘Þ denote the gas and liquid densities, respec-

tively, cg is the sound speed in the gas, d3 ¼ V is the bubble

volume, and h2 ¼ S is the lattice surface of the array. Next,

C� > 0 is the dimensionless bubble capacitance, influencing
x1

r , the Minnaert resonance frequency of a single bubble in

free space, and CL is the lattice parameter, which depends

only on the lattice geometry and produces an additional fre-

quency shift. Importantly, we will show that CL can be

either positive or negative. As a result—challenging the

common perception in the literature that lattice effects

invariably cause a blue shift (upshift) of the array resonance

compared to an isolated bubble—we show that the bubble

array can also exhibit a red shift (downshift).

Our model is derived using homogenization combined

with matched asymptotic expansions, a powerful framework

for obtaining effective descriptions of wave scattering by thin,

structured arrays in the low-frequency regime. This combined

homogenization–asymptotic framework was initially devel-

oped in the quasi-static context and later extended to dynamic

problems in acoustics and elasticity (Delourme et al., 2012;
Marigo and Maurel, 2016; Pham et al., 2021a). It has since

been applied to ultrathin resonant metasurfaces operating in

the deep-subwavelength regime, including acoustic, optical,

elastic, and water-wave configurations (Tachet et al., 2025;
Lebbe et al., 2023; Marigo et al., 2021; Euv�e et al., 2021;
Schnitzer and Brand~ao, 2022). Earlier homogenization-based

approaches were developed for three-dimensional bubbly

media, most notably the effective propagation models of

Caflisch et al. (1985) and their extension by Miksis and Ting

(1989) to thin bubbly layers. These treatments rely on volume

homogenization and do not resolve the microscopic structure

of a two-dimensional bubble screen. In the context of bubbly

screens, a fully matched asymptotic treatment was introduced

in Pham et al. (2021b) to derive nonlinear jump conditions and

a nonlinear resonator equation for a square array of spherical

bubbles. The present work revisits the problem in the linear

regime and significantly extends its scope by capturing bubble

shape and lattice-arrangement effects. A key strength of the

approach lies in its generality: the array density is an explicit

parameter, the bubble shape enters exclusively through its

capacitance, and the lattice arrangement is encoded in the lat-

tice parameter—determined from auxiliary static problems.

The paper is organized as follows. Section II introdu-

ces the physical configuration and summarizes the main

asymptotic results, including the damped-oscillator equa-

tion governing the bubble pressure, where the damping

originates from the array’s radiative losses (thus, defining,

unambiguously, the resonance frequency and quality fac-

tor). Section III details the derivation of the effective model

via matched asymptotic expansions and homogenization,

leading to the results stated in Sec. II. Section IV examines

the bubble screen’s scattering behavior and validates the

model against direct numerical simulations for a variety of

array densities, bubble shapes, and lattice arrangements.

Conclusions and perspectives are given in Sec. V. In two

appendixes, we collect (i) technical results and remarks on

the parameters ðC�;CLÞ, in particular, how they are

computed numerically; and (ii) a comparison with the well-

established model of Leroy et al. (2009) for spherical bub-
bles in a square lattice.

II. SETTING OF THE PROBLEM AND SUMMARY
OF THE MAIN RESULTS

We consider a two-dimensional array of gas bubbles

embedded in a liquid, periodically distributed on the plane

x ¼ 0; see Fig. 1. The cross-sectional area of the unit cell is

S and the volume of each bubble is V. In the actual configu-

ration, the velocity u and pressure p satisfy the linearized

Euler equations

q
@u

@t
¼ �$p; divuþ 1

qc2
@p

@t
¼ 0; (3)

where ðq; cÞ ¼ ðq‘; c‘Þ in the liquid and ðq; cÞ ¼ ðqg; cgÞ
inside the gas. At the bubble–liquid interfaces, the pressure

and normal velocity are continuous.

FIG. 1. Wave scattering by an acoustic bubble screen, consisting of a periodic

array of gas bubbles in a liquid governed by Eq. (3). We denote V ¼ d3 for the
volume of each bubble and S ¼ hyhz ¼ h2 for the lattice surface of the array.
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A. Effective behavior of the pressure field in the liquid
and gas

The homogenization of the above system in the subwa-

velength regime yields an effective problem posed solely in

the liquid, where the bubble screen is replaced by homoge-

nized jump conditions across the interface x ¼ 0. Let ðu; pÞ
denote the homogenized velocity and pressure fields in the

liquid. These satisfy

q‘
@u

@t
¼ �$p; divu þ 1

q‘c
2
‘

@p

@t
¼ 0 for x 6¼ 0; (4)

together with the continuity of pressure across x ¼ 0 and a

jump in the normal velocity coupled to a mass-spring reso-

nator equation

½½ p �� ¼ 0; ½½ux�� ¼ � d3

qgc2gh
2

@pr
@t

;

@2pr
@t2

þ x2
r pr ¼ x2

r pjx¼0;

8>>><>>>: (5)

where ½½v�� ¼ vjx¼0þ � vjx¼0� and

xr ¼ cg
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�

1� C�CLðd=hÞ
qg
q‘

s
(6)

is the resonance frequency of the bubble screen, as intro-

duced in Eqs. (1) and (2). Here, h ¼ S1=2 and d ¼ V1=3 are

the characteristic length scales associated with the array

periodicity and bubble size, respectively. The auxiliary field

prðy; z; tÞ in Eq. (5), defined along the screen, represents the

homogenized gas pressure inside the bubbles under the

action of the pressure p in the liquid (where pjx¼0 is its

restriction to the plane x ¼ 0).

In Eq. (5), the effective jump conditions are precisely

the linearized counterparts of those derived in our previous

homogenization study (Pham et al., 2021b), and the resona-

tor equation governing pr is the linearized form of the non-

linear Rayleigh–Plesset equation obtained in that same

work. In that earlier work, these relations were established

for spherical bubbles arranged in a square lattice; the present

study generalizes them to bubbles of arbitrary shape and

arbitrary lattice geometries. Equations (4) and (5) apply in

the subwavelength regime, meaning that the lattice spacing

h is small compared with the characteristic acoustic wave-

length. They also assume a sparse array, i.e., a bubble size d
that is much smaller than h. This is not a restriction of the

homogenized model itself but rather a physical requirement

for the Minnaert-type resonance to be observable: dense

(non-sparse) arrays suppress the resonance and behave,

instead, as nearly perfectly reflecting surfaces because of the

strong density contrast of the bubbles.

B. Definitions of C� and CL

The parameters C� and CL are dimensionless geometric

quantities obtained from the asymptotic analysis presented

in Sec. III. The capacitance C� > 0 depends solely on the

shape of the bubbles, whereas the lattice parameter CL

depends only on the lattice arrangement (e.g., square, rect-

angular, or hexagonal). Their computation relies on the reso-

lution of two independent elementary problems:

• Lattice parameter CL:

Let Xm be a guide of unitary cross-sectional area Rm,

matching the cross section of the considered lattice, and

let rm ¼ r=h denote the associated rescaled coordinate

[Fig. 2(a)]. We define the Green’s function GL : Xm ! R
for the guide Xm with a singularity at the origin as the unique

solution of the Laplace boundary-value problem such that

DGL ¼ 0 inXm;

GL periodic; $GL � n anti� periodic on @Xm;

lim
xm!61 GL � jxmj

2

� �
¼ 0; $GL �

rm!0

er
4pr2m

;

8>>>><>>>>: (7)

where n is the outward unit normal to the lateral boundary

@Xm, xm ¼ rm � ex and rm ¼ jrmj. Then, the constant CL

is defined as

CL ¼ lim
rm!0

GL þ 1

4prm

� �
: (8)

Note. Because the singularity is located at the origin, GL

is, by construction, an even function of ym and zm. This
symmetry simplifies the computation of GL as the peri-

odic boundary conditions on @Xm in Eq. (7) may be

replaced with homogeneous Neumann conditions, $GL �
n ¼ 0 on @Xm.

• Bubble parameter (capacitance) C�:
Let Xgas

l be a bubble of unit volume embedded in

Xl ¼ R3, and rl ¼ r=d are the associated rescaled coordi-

nates [Fig. 2(b)]. We define the field G� : Xliq
l ! R, where

Xliq
l ¼ XlnXgas

l is the surrounding liquid region, as the

unique solution of the Laplace boundary-value problem

DG� ¼0 in Xliq
l ; G� ¼0 on @Xgas

l ;

lim
rl!þ1$G� ¼ er

4pr2l
;

8>><>>: (9)

FIG. 2. (a) Mesoscopic domain Xm is a guide of unitary cross section, infi-

nite along ex with periodic boundary conditions on its lateral boundaries;

rm ¼ ðxm; ym; zmÞ where rm ¼ r=h. (b) Microscopic domain is a gas bub-

ble Xgas
l of unitary volume surrounded by an infinite liquid region Xliq

l ;

rl ¼ r=d.
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with r� ¼ jr�j. The constant �� is then given by

1

C�
¼ lim

rl!þ1 G� þ 1

4prl

� �
� 0 (10)

(see Appendix A 1 for its correspondence with the elec-

trostatic capacitance of a conductor and for the proof of

its positivity).

Appendix A 2 details how C� and CL are computed

numerically using standard finite element method.

C. Resonance quality factor

In Eq. (5), pr represents the homogenized version of the

pressure inside the bubbles. Because these bubbles are coupled

to the surrounding liquid, a radiative damping term is expected

to appear. This term is actually “hidden” in pjx¼0 (which

depends on pr), but it can be made explicit by considering a

wave propagating in the direction ðcos h; sin h cos u;
sin h sin uÞ of the form p incðt� xþ=c‘Þ, where xþ ¼ x cos h
þ sin hðy cos uþ z sin uÞ. Then, the solution can be

written as

pðx; y; z; tÞ ¼ p inc t� xþ=c‘
� �þ f tþ x�=c‘ð Þ; x� 0;

f t� xþ=c‘
� �

; x> 0;

(
(11)

where x� ¼ x cos h� sin hðy cos uþ z sin uÞ. By using

the same function f for x > 0 and x < 0, the pressure p is

continuous at x ¼ 0 as required by Eq. (5). Applying the

jump condition on the normal velocity component ux given
in Eq. (5) then leads to

f 0 ¼ � 1

2 cos h
q‘c‘
qgc2g

d3

h2
pr; (12)

where f 0 denotes the derivative of f. Substituting this expres-

sion of p into the resonator equation in Eq. (5) then yields

the equivalent form

@2pr
@t2

þ 2xr

Q

@pr
@t

þ x2
r pr ¼ x2

r p inc
jx¼0; (13)

with, now, a source term independent of pr. The quality factor

Q appears explicitly, measuring the radiative damping caused

by the coupling between the resonator and surrounding liquid,

Q ¼ 4 cos h

ffiffiffiffiffiffiffiffiffi
qgc

2
g

q‘c
2
‘

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C�CLðd=hÞ

C�

s
h

d

� �2

: (14)

The quality factor increases when moving from a compact

array to a sparse arrat, whereas the resonance frequency of the

bubble screen approaches that of a single, isolated bubble—

an expected and general result (see, for example, Maurel

et al., 2019, and Tachet et al., 2025). This behavior has been
associated with super-radiation (Leroy et al., 2009; Leroy

et al., 2015) as the quality factor is larger by a factor of

ðh=dÞ2 	 1 compared to the quality factor q ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qgc2g=q‘c

2
‘

q
of an isolated bubble (Devin, 1959; Prosperetti, 1977).

III. ASYMPTOTIC DERIVATION OF THE EFFECTIVE
PROBLEM

We begin by introducing the nondimensional form of

the governing equations through the change of variables

t ! xt; r ! kr; q ! q=q‘; c ! c=c‘;

u ! u=c‘; p ! p=ðq‘c2‘Þ;
(15)

where x denotes the typical excitation frequency and k
¼ x=c‘ is the corresponding wavenumber. Defining the

dimensionless parameters A ¼ q‘=q and B ¼ q‘c
2
‘=qc

2,

the linearized Euler equations take the form

@u

@t
¼ �A$p; divuþ B

@p

@t
¼ 0; (16)

where ðA;BÞ ¼ ð1; 1Þ in the liquid and ðA;BÞ ¼ ðq‘=qg;
q‘c

2
‘=qgc

2
gÞ in the gas. Because our objective is to derive the

homogenized description in the low-frequency regime—rel-

evant here because the Minnaert resonance occurs in the

subwavelength domain—we introduce the small parameter

g ¼ kh 
 1:

Following the scaling assumptions of Pham et al. (2021b),
we adopt

qg
q‘

� g4;
d

h
� g;

and cg=c‘ ¼ Oð1Þ. These scalings, corresponding to a dilute

array of bubbles with a strong density contrast, ensure

that the analysis remains in the resonant regime as g ! 0,

where xrh=c‘ ¼ OðkhÞ ¼ OðgÞ. In this regime, the bubble

array operates near its Minnaert resonance, as xrh=c‘

� ðh=dÞðcg=c‘Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
qg=q‘

q
from Eqs. (1) and (2). Accordingly,

we write the nondimensional constitutive parameters as

ðA;BÞ ¼
ð1; 1Þ in the liquid;

a
g4

;
b
g4

� �
; ða; bÞ ¼ Oð1Þ in the gas:

8>><>>:
A. Multiscale setting

We distinguish three spatial scales: macroscopic, meso-

scopic, and microscopic. The corresponding coordinates are

defined as

macro : r; meso : rm ¼ r

g
; micro : rl ¼ r

‘g2
;

where ‘ ¼ d=ðghÞ ¼ Oð1Þ is chosen such that the bubble has

unit volume at the microscopic scale. In other words, r is
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scaled with the typical wavelength 1=k, rm is scaled with the

periodicity h, and rl is scaled with the bubble size d.
The macroscopic domain – At the macroscopic scale,

the fields are expanded as follows:

u ¼
X
n�0

gnu nð Þðr; tÞ; p ¼
X
n�0

gnp nð Þðr; tÞ; (17)

where ðuðnÞ; pðnÞÞ is defined for x 6¼ 0. Substituting these

expansions into Eq. (16) yields, at each order, the macro-

scopic equations

@u nð Þ

@t
¼ �$p nð Þ; divu nð Þ þ @p nð Þ

@t
¼ 0; (18)

supplemented by transmission conditions for ðuðnÞx ; pðnÞÞ
across the interface x ¼ 0, which remain to be determined.

The truncation of the series [Eq. (17)] at order one yields

the macroscopic (homogenized) fields ðu; pÞ introduced in

Eq. (5).

The mesoscopic domain – The mesoscopic domain

Xm, illustrated in Fig. 2(a), is obtained by zooming in by a

factor of 1=g around a point of the interface located at

r ¼ ð0; rkÞ, where rk ¼ ðy; zÞ denotes the coordinates tan-

gential to the screen. Using the rescaled coordinates

rm ¼ ðxm; ym; zmÞ, the domain is defined as

Xm ¼ rm 2 R3 j xm 2 ð�1;þ1Þ; ðym; zmÞ 2 Rm

� �
;

where Rm is the periodic cross section of unitary area. At

this scale, the pressure and velocity fields are expanded as

u ¼
X
n�0

gnu nð Þ
m ðrm; �Þ; p ¼

X
n�0

gnp nð Þ
m ðrm; �Þ; (19)

where all fields are taken to be periodic on @Xm. To sim-

plify the notation, we have defined

f ðrm; �Þ ¼ f ðrm; rk; tÞ:

Following the chain rules, the differential operator is

expressed as

$ ! $k þ 1

g
$m;

where $k ¼ ð@=@rkÞ and $m ¼ ð@=@rmÞ.
Substituting Eq. (19) into Eq. (16) yields, on collecting

terms of equal order in g, a hierarchy of equations. At lead-

ing orders, these equations read

0 ¼ �$mp
0ð Þ
m ;

@u 0ð Þ
m

@t
¼ �$kp 0ð Þ

m � $m p 1ð Þ
m ; (20a)

divmu
0ð Þ
m ¼ 0; divku 0ð Þ

m þ divmu
1ð Þ
m þ @p 0ð Þ

m

@t
¼ 0: (20b)

At the mesoscopic scale, the bubble reduces to a point

at the origin rm ¼ 0, such that the behavior of the fields in

its vicinity is governed by singular spherical harmonics. In

particular, at the dominant orders, the velocity field near the

origin is expected to have the form

u 0ð Þ
m ðrm; �Þ �

rm!0
U 0ð Þð�Þ er

4pr2m
;

u 1ð Þ
m ðrm; �Þ �

rm!0
U 1ð Þð�Þ er

4pr2m
þ w 1ð Þðhm;um; �Þ

r3m
; (21)

where er is the radial unit vector in the spherical coordinate

system ðrm; hm;umÞ centered at the bubble. The scalars

UðnÞðrk; tÞ, n ¼ 0; 1, depend only on the macroscopic tan-

gential position rk and time t, whereas the vector

wð1Þðhm;um; rk; tÞ also depends on the angular variables.

The latter satisfies the zero-mean conditionðp
hm¼0

ð2p
um¼0

w 1ð Þðhm;um;rk; tÞ �er sin hm dhmdum ¼ 0:

The microscopic domain – The microscopic domain is

obtained by zooming in on the origin rm ¼ 0 of the meso-

scopic scale, with a magnification factor of 1=ð‘gÞ. At this
scale, the bubble region Xgas

l has unit volume and is sur-

rounded by an unbounded liquid region Xliq
l , which extends

infinitely in all three spatial directions. We denote by Xl ¼
Xgas

l [ Xliq
l ¼ R3 the union of these two regions, which

together constitute the microscopic domain, and rl is the

spatial coordinate associated with this scale. In this region,

the fields are expanded as

inXliq
l :

u ¼ 1

g2
X
n�0

gnu nð Þ
l ðrl; �Þ; p ¼

X
n�0

gnp nð Þ
l ðrl; �Þ;

inXgas
l :

u ¼ 1

g2
X
n�0

gneu nð Þ
l ðrl; �Þ; p ¼

X
n�0

gnep nð Þ
l ðrl; �Þ: (22)

As previously, we have defined

f ðrl; �Þ ¼ f ðrl; rk; tÞ:
To simplify the presentation, we have anticipated in Eq.

(22) that the velocities in Xgas
l and Xliq

l begin at order g�2.

Applying the chain rule, the differential operator becomes

$ ! $k þ 1

‘g2
$l;

where $l ¼ @=@rl.
Substituting the expansions [Eq. (22)] into Eq. (16) and

collecting terms of equal powers in g yields the leading-

order systems

inXgas
l :

$lep nð Þ
l ¼ 0; divleu nð Þ

l þ ‘b
@ep nð Þ

l

@t
¼ 0; n ¼ 0; 1; (23)
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inXliq
l :

‘
@u

nð Þ
l

@t
¼ �$lp

nð Þ
l ; divlu

nð Þ
l ¼ 0; n ¼ 0; 1; (24)

together with continuity conditions at the interface between

the liquid and gas such that

p nð Þ
l ¼ ep nð Þ

l ; ul � n ¼ eul � n on @Xgas
l ; (25)

where n is the outward normal to @Xgas
l .

B. The connection between the
macro- and meso-scales: Jump conditions

To derive the transmission conditions at x ¼ 0 on the

macroscopic scale, we connect the macroscopic and meso-

scopic regions by matching their respective expansions

[Eqs. (22) and (19)] in an intermediate region where x ! 06

and xm ! 61 such that

p 0ð Þðr; tÞ þ gp 1ð Þðr; tÞ þ � � �
�

x ! 06

xm ! 61

p 0ð Þ
m ðrm; �Þ þ gp 1ð Þ

m ðrm; �Þ þ � � � :

Recalling that x ¼ gxm and expanding the macroscopic

fields in Taylor series near x ¼ 06 for small g, we obtain

p 0ð Þð06;�Þ¼ lim
xm!61p 0ð Þ

m ðrm;�Þ;

p 1ð Þð06;�Þ¼ lim
xm!61 p 1ð Þ

m ðrm;�Þ�xm
@p 0ð Þ

@x
ð06;�Þ

� �
; (26)

and analogous relations hold for the velocity, where pðnÞ is
replaced by uðnÞ and p

ðnÞ
m is replaced by u

ðnÞ
m for n ¼ 0; 1.

Jumps at order 0 – We begin by determining the order-

zero transmission conditions for pressure and velocity at x ¼
06 starting from the mesoscopic problem. From Eq. (20a), it

follows that p
ð0Þ
m does not depend on rm. Using the matching

condition [Eq. (26)], we deduce that pð0Þ is continuous across
x ¼ 0, namely,

½½p 0ð Þ�� ¼ 0; p 0ð Þ
m ¼ p 0ð Þð0; rk; tÞ ¼ P 0ð Þðrk; tÞ; (27)

where Pð0Þðrk; tÞ denotes the well-defined (unambiguous)

value of the macroscopic pressure field at x ¼ 0. Next, inte-

grating the divergence equation divmu
ð0Þ
m ¼ 0 in Eq. (20b)

over XmnBm, where Bm is a sphere of vanishing radius bm

centered at rm ¼ 0, and taking into account the singular

behavior [Eq. (21)] near the origin together with the match-

ing condition [Eq. (26)] on u
ð0Þ
m , we pass to the limit bm ! 0

and obtain a relation between the velocity jump and the

amplitude of the mesoscopic singularity such that

½½u 0ð Þ
x �� ¼ U 0ð Þðrk; tÞ: (28)

At this stage, Uð0Þðrk; tÞ remains an unknown field, whose

determination requires coupling the mesoscopic and micro-

scopic scale.

Jumps at order 1 – Using Eq. (28), the velocity at x ¼ 0

can be decomposed as

u 0ð Þð06; �Þ ¼ U 0ð Þ
x ð�Þ6 1

2
U 0ð Þð�Þ

� �
ex þ u 0ð Þ

k ð�Þ;

where Uð0Þ
x ðrk; tÞ ¼ 1=2ðuð0Þx ð0þ; �Þ þ uð0Þx ð0�; �ÞÞ is the aver-

age normal velocity across x ¼ 0, and u
ð0Þ
k ðrk; tÞ is the tan-

gential velocity component [u
ð0Þ
k � ex ¼ 0]. In particular,

from the first equation of Eq. (18), we obtain

@

@t
U 0ð Þ

x ð�Þ6 1

2
U 0ð Þð�Þ

� �
¼ � @p 0ð Þ

@x
ð06; �Þ;

@u 0ð Þ
k

@t
ð0; �Þ ¼ �$kP 0ð Þð�Þ; (29)

where we have used the continuity of pð0Þ across x ¼ 0 from

Eq. (27). Consequently, the problem [Eq. (20b)] set on

ðuð0Þm ; p
ð1Þ
m Þ, together with the matching condition [Eq. (26)]

applied to u
ð0Þ
m as xm ! 61 and the near-origin singular

behavior of u
ð0Þ
m in Eq. (21), can be reformulated as the fol-

lowing auxiliary problem set on ðvð0Þm ; p
ð1Þ
m Þ:

divmv
0ð Þ
m ¼ 0; v 0ð Þ

m ¼ �$mp
1ð Þ
m in Xm;

v 0ð Þ
m �

rm!0

@U 0ð Þ

@t

er
4pr2m

;

p 1ð Þ
m periodic; v 0ð Þ

m � n anti-periodic on @Xm;

lim
xm!61 v 0ð Þ

m ¼ @U 0ð Þ
x

@t
6

1

2

@U 0ð Þ

@t

� �
ex;

8>>>>>>>>>><>>>>>>>>>>:
(30)

where v
ð0Þ
m ¼ @tðuð0Þm � u

ð0Þ
k Þ. Because Eq. (30) is linear with

respect to the fields @tU
ð0Þ and @tU

ð0Þ
x , the general solution

can be written as

p 1ð Þ
m ðrm; �Þ ¼ P 1ð Þð�Þ � xm

@U 0ð Þ
x

@t
ð�Þ � @U 0ð Þ

@t
ð�ÞGLðrmÞ;

(31)

where GL is the Green function defined in Eq. (7). In this

definition, the Neumann boundary conditions on @Xm are

equivalent to periodic boundary conditions, owing to the

symmetry of GL with respect to ym and zm. From the far-

field behavior of GL, Eq. (31) yields

P 1ð Þð�Þ ¼ lim
xm!61 p 1ð Þ

m ðrm; �Þ þ @

@t
U 0ð Þ

x ð�Þ6 1

2
U 0ð Þð�Þ

� �
xm

	 

;

which, combined with the first relation in Eq. (29) and the

matching relation [Eq. (26)] for pð1Þ, leads to the order-one

continuity condition on pressure

½½ p 1ð Þ�� ¼ 0; p 1ð Þð0; rk; tÞ ¼ P 1ð Þðrk; tÞ: (32)
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The jump of uð1Þx is obtained by integrating the second

equation of Eq. (20b), as was performed previously for uð0Þx .

To that end, we need to determine u
ð0Þ
m ðrm; �Þ explicitly from

the second equation of Eq. (20a). Using the second equation

of Eq. (29) together with Eq. (31), we obtain

u 0ð Þ
m ðrm; �Þ ¼ u 0ð Þ

k ð�Þ þ U 0ð Þ
x ð�Þ ex � U 0ð Þð�Þ$mGLðrmÞ:

Applying the operator divk to the above expression and

substituting the result into Eq. (20b) yields

divmu
1ð Þ
m � @u 0ð Þ

x

@x
ð0; �Þ � $kU 0ð Þ � $mGL ¼ 0; (33)

where we have used the relation �@xu
ð0Þ
x =@xð0; �Þ

¼ divku
ð0Þ
k ð0; �Þ þ @tp

ð0Þð0; �Þ from Eq. (18).

We now integrate Eq. (33) over Xm n Bm, where Bm is

a sphere of vanishing radius bm centered at rm ¼ 0. The
contribution of the last term in Eq. (33) vanishes becauseÐ
Xm

ea � $mGL drm ¼ 0 for a ¼ y; z, as a result of the even

symmetry of GL in ðym; zmÞ. Applying the divergence theo-

rem to the first term and using the singular behavior given

by Eq. (21) at the origin—in particular, that the integral of

the r�3
m term vanishes [see the remark following Eq. (21)]—

together with the matching condition [Eq. (26)] written for

ux at order one in the limit bm ! 0, we obtain

½½u 1ð Þ
x �� ¼ U 1ð Þðrk; tÞ: (34)

As in the leading-order case, Uð1Þðrk; tÞ remains an unknown

field that will be determined in Sec. III C by coupling the

mesoscopic and microscopic scales.

C. The connection between the meso- and micro-scales

To identify the unknown fields ðUð0Þ;Uð1ÞÞ in Eqs. (28)

and (34), we must transfer information from microscopic

scale, i.e., the scale of the individual bubbles, up to the

mesoscopic level. As before, this is achieved by matching

the meso-scale expansions [Eq. (19)] with the micro-scale

expansions [Eq. (22)] in an intermediate region where rm !
0 and rl ¼ jrlj ! þ1. For the velocity, the matching con-

ditions read

u 0ð Þ
m ðrm; �Þ þ gu 1ð Þ

m ðrm ; �Þ þ � � �
�

rm ! 0

rl ! þ1

1

g2
u 0ð Þ
l ðrl; �Þ þ gu 1ð Þ

l ðrl; �Þ þ � � �
� �

;

which, combined with the singular behavior of u
ðnÞ
m ,

n ¼ 0; 1, at the origin given by Eq. (21) and the change of

variable rm ¼ ‘grl, imposes the following behavior at infin-

ity of uðnÞl :

u nð Þ
l ðrl; �Þ �

rl!þ1U nð Þð�Þ er

4p‘2r2l
; n ¼ 0; 1: (35)

Elementary problem at order n ¼ 0; 1—From the first

equation in Eq. (23), we deduce that for n ¼ 0; 1, the pres-

sures epðnÞl in the bubble Xgas
l do not depend on rl and take

the form

ep nð Þ
l ¼ p nð Þ

r ðrk; tÞ; n ¼ 0; 1; (36)

where the pressures p
ðnÞ
r are yet unknown. In the liquid region

Xliq
l , the fields ðuðnÞl ; pðnÞl Þ, for n ¼ 0; 1, satisfy the governing

equations [Eq. (24)], subject to the continuity condition [Eq.

(25)] with the bubble pressure [given in Eq. (36)] and the far-

field condition [Eq. (35)]. The resulting problem is

divlu
nð Þ
l ¼ 0;

@u
nð Þ
l

@t
¼ � 1

‘
$lp

nð Þ
l in Xliq

l ;

p
nð Þ
l ðrl; �Þ ¼ p

nð Þ
r ð�Þ on @Xgas

l ;

u
nð Þ
l ðrl; �Þ �

rl!þ1U nð Þð�Þ er

4p‘2r2l
:

8>>>>>>>><>>>>>>>>:
Because this problem is linear in the macroscopic quantities

p
ðnÞ
r ðrk; tÞ and @tU

ðnÞðrk; tÞ, the general solution can be writ-

ten as

p nð Þ
l ðrl; �Þ ¼ � 1

‘

@U nð Þ

@t
ð�ÞG�ðrlÞ þ p nð Þ

r ð�Þ; (37)

where G�ðrlÞ is the fundamental solution of the capacitance

problem defined in Eq. (9), independent of macroscopic

variables.

We shall now establish the following result:

@U 0ð Þ

@t
¼ ‘C� p 0ð Þ

r � P 0ð Þ
� �

;

@U 1ð Þ

@t
¼ ‘C� p 1ð Þ

r � P 1ð Þ þ CL

@U 0ð Þ

@t

� �
;

(38)

where C� is the bubble capacitance [Eq. (10)] and CL is the lat-

tice parameter [Eq. (8)]. To do so, we match the microscopic

and mesoscopic pressures as we did for the velocities, namely,

p 0ð Þ
l ðrl; �Þ þ gp 1ð Þ

l ðrl; �Þ þ � � �
�

rm ! 0

rl ! þ1

p 0ð Þ
m ðrm; �Þ þ gp 1ð Þ

m ðrm; �Þ þ g2p 2ð Þ
m ðrm; �Þ þ � � � :

(39)

Using p
ð0Þ
m from Eq. (27) and p

ð1Þ
m from Eq. (31) together

with Eq. (7) and rm ¼ ‘grl, yields the asymptotic behavior

near the mesoscopic origin

p 0ð Þ
m ð‘grl; �Þ þ gp 1ð Þ

m ð‘grl; �Þ þ g2p 2ð Þ
m ðrm; �Þ þ � � �

�
g!0

P 0ð Þð�Þ þ @U 0ð Þ

@t
ð�Þ 1

4p‘rl
þ g

�
P 1ð Þð�Þ

� CL

@U 0ð Þ

@t
ð�Þ þ @U 1ð Þ

@t
ð�Þ 1

4p‘rl

�
þ � � � ;
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where the term @tU
ð1Þð1=4p‘rlÞ originates from the singular

behavior of p
ð2Þ
m ðrm; �Þ associated with the order-1 singular

velocity term in Eq. (21) through the equation @tu
ð1Þ
m

¼ �$kp
ð1Þ
m � $mp

ð2Þ
m [which corresponds to Eq. (20a) pushed

at the next order]. Coming back to Eq. (39), we deduce the

following behavior at infinity for ðpð0Þl ; pð1Þl Þ:

p 0ð Þ
l ðrl; �Þ �

rl!þ1P 0ð Þð�Þþ@U 0ð Þ

@t
ð�Þ 1

4p‘rl
;

p 1ð Þ
l ðrl; �Þ �

rl!þ1P 1ð Þð�Þ�CL

@U 0ð Þ

@t
ð�Þþ@U 1ð Þ

@t
ð�Þ 1

4p‘rl
:

For n ¼ 0; 1, it then suffices to combine the above equations

with Eq. (37), as rl ! þ1, using the asymptotic behavior

of G� at infinity given in Eq. (10) to obtain the result

announced in Eq. (38).

Finally, to derive the resonator equation that governs

the pressures pðnÞl for n ¼ 0,1, we integrate the compressibil-

ity equation in Eq. (23) over the domain Xgas
l and the incom-

pressibility condition in Eq. (24) over the domain Xliq
l \ Bl,

where Bl is the sphere centered at rl ¼ 0 with sufficiently

large radius bl to fully contain the bubble. Making use of

the continuity conditions [Eq. (25)] at the interface between

the two media, the fact that the pressure in the bubble is spa-

tially uniform [see Eq. (36)] and the velocity behavior at

infinity is given by Eq. (35), we obtain, upon taking the limit

as bl ! þ1,

U nð Þ

‘2
¼ lim

bl!þ1

ð
@Bl

u nð Þ
l � er ¼ �‘b

@p
nð Þ
r

@t
; n ¼ 0; 1; (40)

where we have accounted for a unitary bubble volume

jXgas
l j ¼ 1. Taking the derivative with respect to time t of

Eq. (40) and combining it with Eq. (38), we obtain

@2p 0ð Þ
r

@t2
þ C�
‘2b

p 0ð Þ
r � P 0ð Þ

� �
¼ 0;

@2p 1ð Þ
r

@t2
� ‘C�CL

@2p 0ð Þ
r

@t2
þ C�
‘2b

p 1ð Þ
r � P 1ð Þ

� �
¼ 0:

8>>>>><>>>>>:
(41)

Eventually, a unique macroscopic formulation for the

homogenized fields ðp; pr; uÞ is obtained by expanding

pðr; tÞ ¼ p 0ð Þðr; tÞ þ gp 1ð Þðr; tÞ þ Oðg2Þ;
prðrk; tÞ ¼ p 0ð Þ

r ðrk; tÞ þ gp 1ð Þ
r ðrk; tÞ þ Oðg2Þ;

uðr; tÞ ¼ u 0ð Þðr; tÞ þ gu 1ð Þðr; tÞ þ Oðg2Þ:

8>>>><>>>>: (42)

The leading-order equations [Eq. (18)] yield

@u

@t
¼ �$p; divu þ @p

@t
¼ 0: (43)

For the pressure and velocity fields, the jump conditions fol-

low by aggregating the contributions from Eqs. (27)–(32)

and (28)–(34), respectively, and by using Eq. (40) such that

pð06; rk; tÞ ¼ pð0; rk; tÞ;

uxð0þ; rk; tÞ � uxð0�; rk; tÞ ¼ �‘3b
@pr
@t

ðrk; tÞ: (44)

The resonator equation, governing the evolution of pr, is
obtained by summing the two relations in Eq. (41),

1� g‘C�CLð Þ @
2pr
@t2

ðrk; tÞ þ C�
‘2b

ðprðrk; tÞ � pð0; rk; tÞÞ ¼ 0:

(45)

By construction, this effective model is accurate up to sec-

ond order in g. Applying the dimensional scalings intro-

duced in Eq. (15) leads to the final macroscopic equations

stated in Eqs. (5) and (6).

IV. SCATTERING BEHAVIOR OF BUBBLE SCREENS

In this section, we consider the following physical proper-

ties for the liquid and gas phases, corresponding, respectively,

to water and air: q‘ ¼ 103 kg �m�3, c‘ ¼ 1500m � s�1 for

water, and qg ¼ 1:2 kg �m�3, and cg ¼ 343m � s�1 for air.

A. Scattering coefficients and bubble pressure

We consider an incident plane wave of frequency x,
impinging on the bubble screen at an oblique angle ðh;uÞ.
Although the direct problem [Eq. (3)] must be solved

numerically, the homogenized model [Eqs. (4) and (5)]

admits an explicit analytical solution of the form

pðx; rk; tÞ ¼ e�ixtþkk�rk eikxx þ Re�ikxx for x < 0;

Teikxx for x > 0;

(
(46)

where ðR; TÞ are the homogenized reflection and transmis-

sion coefficients; kx ¼ k cos h, kk ¼ k sin hðcos u ey
þ sin u ezÞ, where k ¼ x=c‘ is the wavenumber in water.

At x ¼ 0, the homogenized bubble pressure pr, governed by

the resonator equation in Eq. (5) [or, equivalently, Eq. (13)],

also takes the form of a plane wave propagating in the

ðy; zÞ-plane such that

prðx; rk; tÞ ¼ Pr e�ixtþkk�rk : (47)

The coefficients ðR; T;PrÞ are determined from Eqs. (4) and

(5). A direct calculation yields

R ¼ ijxd

ðx1
r =xÞ2 � 1þ C�CLd=h� ijxd

; T ¼ 1þ R;

Pr ¼ ðx1
r =xÞ2

ðx1
r =xÞ2 � 1þ C�CLd=h� ijxd

;

(48)
where
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jx ¼ C�
2kxh2

; (49)

and parameters ðx1
r ;C�;CLÞ are defined in Eqs. (2), (8), and

(10), respectively. These expressions generalize earlier results

obtained for square lattices with spherical bubbles by account-

ing for arbitrary incidence angles, bubble shape, and lattice con-

figurations. In particular, comparison with the well-established

model of Leroy et al. (2009) is provided in Appendix B. An

equivalent but more conventional form of these coefficients,

involving only ðxr;QÞ defined in Eqs. (6) and (14), is given by

R ¼ 2iX=Q

1� X2 � 2iX=Q
; T ¼ 1þ R;

Pr ¼ 1

1� X2 � 2iX=Q
;

(50)

where X ¼ x=xr (see Lanoy et al., 2018, in the context of

bubble screens).

In the following, these scattering coefficients associated

with the homogenized solution [Eq. (46)] are compared with

results from direct numerical simulations. The latter are

obtained by solving the full-scale problem defined by the Euler

equations [Eq. (3)] together with the usual continuity condi-

tions at the air–water interface, using the Acoustics Module of

COMSOL Multiphysics (COMSOL AB, Stockholm, Sweden).

The computations are performed in a three-dimensional rectan-

gular domain consisting of the ðy; zÞ plane, a single elementary

cell of dimensions ðhy; hzÞ and surface area S ¼ hyhz, and
extending over a length 2Lx � 10h along the x� direction

(h ¼ ffiffiffi
S

p
). The domain contains a single bubble, resulting in

approximately 106 degrees of freedom. Bloch–Floquet bound-

ary conditions are imposed on the lateral faces of the domain

(y ¼ 6hy=2 and z ¼ 6hz=2), whereas perfectly matched

layers are applied at x ¼ 6Lx. The incident plane wave is

introduced through the background pressure field feature.

To begin with, the validity of the model is illustrated in

Fig. 3, which shows the pressure field in the plane z ¼ 0 for

a bubble screen composed of spherical bubbles of radius

a ¼ 50 lmarranged in a square lattice with h ¼ 40a. The
incident wave at f ¼ 83 kHz, slightly above the resonance

frequency at xr=2p ’ 69 kHz, impinges on the bubble

screen at an angle of h ¼ 45� with u ¼ 0�. The qualitative

agreement is good, demonstrating the ability of the homoge-

nized model to reproduce the far-field pattern.

In Secs. IVB–IVD, we validate the model more quanti-

tatively. We will examine the effects of bubble density and

shape as well as the effects of the lattice arrangement. To

simplify the comparison, we will consider bubbles of the

same volume V ¼ 4pa3=3, where a ¼ 50 lm, and the refer-

ence case is spherical bubbles of radius a.

B. Effect of the bubble density

We begin by examining the effect of bubble size to

periodicity ratio a=h, which measures the bubble density in

the screen. We focus on spherical bubbles in a square lattice,

which occupy a central place in the literature. For a bubble

of radius a, the characteristic length d is given by

d ¼ 4p
3

� �1=3

a: (51)

Next, the parameters take the form

C� ¼ C sph
� ¼ 4p

4p
3

� ��1=3

spherical bubbleð Þ;

CL ¼ C sq
L ’ 3:9

4p
square latticeð Þ:

(52)

In particular C sph
� d ¼ 4pa is the usual, dimensional capaci-

tance of a sphere (see Appendix A 1).

The value of C sph
� is exact because for a spherical bub-

ble, the capacitance problem [Eq. (9)] admits the closed-

form solution G� ¼ 1=4pal � 1=4prl, where al ¼
ð3=4pÞ1=3 is the radius of a unit-volume bubble. The value

of CL was calculated in Pham et al. (2021b), using the

explicit series representation of the Green function GL in

Eq. (7) [see Eqs. (2.9), (2.10), and related text in Pham

et al., 2021b].
Using Eq. (52) in Eq. (2), we recover the Minnaert fre-

quency for a single (spherical) bubble such that

x1
r ¼ cg

a

ffiffiffiffiffiffiffiffi
3
qg
q‘

r
; (53)

as expected. This same frequency is also recovered from Eq.

(6) in the infinitely dilute limit d=h ! 0. The frequency shift

resulting from collective effects of bubbles in the array is

given by the shifting parameter CLC�d=h ¼ 3:9 a=h, which
is in good agreement with the prediction reported in Leroy

et al. (2009) based on physical arguments.

FIG. 3. Illustration of the model accuracy. Real part of the pressure field in

the plane z ¼ 0 for a bubble screen composed of spherical bubbles in a

square lattice (a ¼ 50 lm, h ¼ 200 lm) is shown. The incident wave prop-

agates at 45� to the x axis with u ¼ 0 and a frequency of 83 kHz. The com-

parison is performed by showing, for y > 0, the analytical solution of the

homogenized model, Eqs. (46)–(48), and for y < 0, the field obtained from

direct numerical simulations (where the bubble array is explicitly resolved)

is depicted. In the direct numerical calculation, we used Lx ¼ 3000lm. The

field displayed for y < 0 has been constructed by extending the numerical

solution along the y direction using Bloch–Floquet periodicity.

J. Acoust. Soc. Am. 159 (1), January 2026 Kim Pham and Agn�es Maurel 365

https://doi.org/10.1121/10.0041877

 23 January 2026 10:27:49

https://doi.org/10.1121/10.0041877


To assess the influence of bubble density in the array,

we consider bubbles of radius a ¼ 50 lm arranged in the

lattice with four different periodicities: h ¼ ð40; 30;
16:6; 5Þa. A normally incident wave in the frequency range f
between 0 and 120 kHz is considered. Figures 4 and 5 show,

respectively, the bubble pressure amplitude jPrj and the

reflection coefficient R as functions of frequency, with solid

lines from numerical simulations and black dashed lines

from the model [Eq. (48)] [or equivalently Eq. (50); see

Table I]. The insets display the numerically obtained pro-

files of the pressure amplitude jpjðxÞ along a line crossing

the center of a bubble, confirming the uniform pressure

inside the bubble, as expected and predicted by the model.

The considered density range spans (i) the under-damped

regime for dilute arrays (Q > 1 for h=a > 16:2), character-
ized by a resonant response with a strong pressure maximum

and perfect reflection, (ii) the over-damped regime, where

the bubble pressure rapidly vanishes when increasing the

frequency, leading to nearly perfect reflection across the

entire frequency range as a result of the highly echogenic

nature of large bubbles. All of these features are accurately

captured by the model, with relative errors between

numerics and model remaining below 0.4% for all reported

curves without visible increase with frequency.

C. Effect of bubble shape: Spheroidal and cylindrical
bubbles

We now investigate how the bubble shape affects the

response of the screen. To this end, we first consider a class

of spheroidal bubbles with identical volume V ¼ ð4pa3=3Þ,
defined as

x2

ðe�2=3aÞ2 þ
y2 þ z2

ðe1=3aÞ2 ¼ 1; (54)

where e is the eccentricity and the x axis is the axis of rota-

tional symmetry. The spheroid is prolate if e > 1 and oblate

if e < 1. The capacitance of spheroidal bubbles can be

expressed in closed form such that

C� ¼ Csph
� gðeÞ;

gðeÞ ¼ e�2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p

atan
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 1

p ; e � 1;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

atanh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p ; e � 1;

8>>>>><>>>>>:
(55)

where gð1Þ ¼ 1 corresponds to the spherical case; see, e.g.,

Eqs. (24) and (31) in Spratt et al. (2017).
To isolate the effect of bubble shape alone, we consider

a square lattice, for which CL ¼ Csq
L is given by Eq. (52). To

emphasize that the effective model depends solely on the

bubble size and shape (not on its orientation), the spheroid

is rotated such that ex ¼ ðex þ ezÞ=
ffiffiffi
2

p
.

In Fig. 6, we report the reflection coefficient as a func-

tion of frequency for h ¼ 40a (with a¼ 50 lm) and varying

eccentricity e ¼ 1/4, 1, and 8. According to Eq. (55) and as

illustrated in the inset, the spherical bubble (e ¼ 1) mini-

mizes the capacitance C�, which leads to the lowest reso-

nance frequency. Deviations from spherical geometry

(e 6¼ 1) result in an upward (blue) shift of the resonance fre-

quency, accompanied by a reduction of the quality factor;

FIG. 4. Spherical bubbles in a square lattice. Pressure amplitude against fre-

quency with varying bubble density h=a ¼ ð40; 30; 16:6; 5Þ for constant

a ¼ 50 lm is depicted. Solid lines show numerical results, and dashed

black lines respresent the results from the model [Eq. (48)] [or equivalently

Eq. (50)] The inset shows the numerically obtained pressure amplitude

along x covering the regions outside and inside a single bubble at

f ¼ 70 kHz.

FIG. 5. Spherical bubbles in a square lattice. Reflection coefficient against

frequency with varying bubble density h=a ¼ ð40; 30; 16:6; 5Þ, as in Fig. 4,

is shown.

TABLE I. Spherical bubble screen in a square lattice. Resonance frequen-

cies xr , Eq. (6), and quality factor Q, Eq. (14), for bubble radius

a ¼ 50 lm in a square lattice with h ¼ hy ¼ hz are shown. Constant values

are C�d ¼ C sph
� d ¼ 4pa, CL ¼ 3:9=4p, and x1

r =2p ¼ 65.52 kHz.

xr=2p (kHz) Q

h ¼ 40a 68.96 6.64

h ¼ 30a 70.23 3.67

h ¼ 16:6a 74.89 1.05

h ¼ 5a 139.66 0.05
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see Table II. Once again, the effective model closely

matches the numerical results. The relative errors for e 6¼ 1

is slightly larger than that for e ¼ 1, reaching up to 0.8%,

but this can be attributable to numerical inaccuracies arising

from mesh resolution.

We now turn to cylindrical bubble screens, widely stud-

ied in water-like gels because of their relative ease of fabri-

cation. We consider cylinders of height ‘c and radius a c

with constant volume V ¼ pa2c‘c ¼ 4pa3=3. This family can

be parameterized by the aspect ratio c, which is defined as

c ¼ 4a c

3‘ c
¼ a c

a

� �3

; (56)

such that a c ¼ c1=3a and ‘c ¼ ð4=3Þc�2=3a. Cylindrical bub-
bles of equal volume are, therefore, described by

3x

2c�2=3a
2 ð�1; 1Þ; y2 þ z2

ðc1=3aÞ2 ¼ 1: (57)

To our knowledge, no closed-form expression for the

capacitance C� exists for a cylinder. We computed it numer-

ically by solving Eqs. (9) and (10) for unit-volume cylinders

with aspect ratios c ranging from 0.1 to 10. A good estimate

of the numerical values is

C� ¼ 8:12þ 0:6 log
c

0:77

� �2

; (58)

which is illustrated in the inset of Fig. 7. The capacitance of

a cylinder is always larger than that of a sphere

(Csph
� ’ 7:80), with a minimum of 8.12 at c ¼ cmin ¼ 0:77,

corresponding to a c ’ 0:9a and ‘c ’ 1:6a.
Figure 7 displays the reflection coefficient jRj versus

frequency for different aspect ratios c in the same way as in

Fig. 6: a square lattice with h ¼ 40a (with a¼ 50 lmm) and

c ¼ 1/4, cmin, and 8. The case c ¼ cmin yields the lowest res-

onance frequency and the highest quality factor, which is

very close—but not identical— to the spherical case for

equal bubble volume (see Table III for c ¼ cmin compared

with spherical bubbles in Table I for h ¼ 40a).
In conclusion, Figs. 6 and 7 together with Tables II and

III highlight how the response of a bubble screen, made of

bubbles of equal volume arranged identically in a lattice,

depends on their shape. All observed variations arise from

changes in the capacitance C�, which the model reproduces

accurately. Notably, the results confirm that bubbles with

aspect ratios e or c close to unity behave almost like

spheres—the required degree of “closeness” depending on

FIG. 6. Spheroidal bubbles in a square lattice. Reflection coefficients as

function of frequency for eccentricity e ¼ 1/4, 1, and 8 [see Eq. (54)] are

shown. The bubble volume is kept constant at V ¼ 4pa3=3 with

a ¼ 50 lm, and the lattice spacing is h ¼ 40a. The inset shows the varia-

tion of C� with eccentricity e.

TABLE II. Spheroidal bubble screen. Capacitances C�, Eq. (55), resonance
frequencies x1

r , Eq. (2), xr , Eq. (6), and quality factor Q, Eq. (14), for
square lattice with h ¼ 40a of bubbles with same volume V ¼ d3 ¼ 4pa3=3,
a ¼ 50 lm, and eccentricities e ¼ 1, 1=4, and 8 are shown.

C�=C
sph
� x1

r =2p (kHz) xr=2p (kHz) Q

e ¼ 1=4 1.18 71.23 75.73 6.04

e ¼ 1 1 65.52 68.96 6.64

e ¼ 8 1.37 76.75 82.47 5.55

FIG. 7. Cylindrical bubbles in a square lattice. Reflection coefficients as a

function of frequency for aspect ratios c ¼ 0:25; 0:77, and 8 are shown.

The bubble volume is V ¼ pa2c‘ c ¼ 4pa3=3 with a ¼ 50 lm, and the lattice

spacing is h ¼ 40a. The inset shows the capacitance C� versus c, obtained
numerically (gray solid line) and from the estimate in Eq. (58) (black

dashed line). The minimum capacitance occurs at cmin ¼ 0:77.

TABLE III. Cylindrical bubble screen with square lattice. Same presenta-

tion as Table II, with c defined as in Eq. (56), for bubbles with identical ref-

erence volume V ¼ 4pa3=3 with a ¼ 5 10�5 m. C� is computed

numerically with estimate in Eq. (58), x1
r in Eq. (2), and constant value of

d ¼ ð4p=3Þ1=3a.

C�=C
sph
� x1

r =2p (kHz) xr=2p (kHz) Q

c ¼ 1=4 1.14 69.80 74.01 6.18

c ¼ 0:77 1.04 66.87 70.55 6.49

c ¼ 8 1.44 78.52 84.68 5.41
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the level of accuracy sought. It should be emphasized, how-

ever, that these effects may be significantly altered when the

bubbles are embedded in a gel-like solid matrix as in under-

water applications. In that case, nonspherical inclusions

would excite not only pressure waves, as in the purely

acoustic case, but also shear waves in the surrounding solid

medium (Calvo et al., 2012, 2015; Thieury et al., 2020).

D. Effect of lattice arrangement

We now investigate how the lattice arrangement

affects the screen’s response. Previous studies have

reported that collective interactions in a periodic array lead

to an upward (blue) shift of the resonance frequency rela-

tive to that of an isolated bubble (Leroy et al., 2009;

Skvortsov et al., 2019). This behavior has been consistently

observed for square lattices thus far, i.e., x1
r < xr. To the

best of our knowledge, however, the influence of the lattice

arrangement has not been examined in detail and, in partic-

ular, no downward (red) shift has yet been documented.

From the expression of the resonance frequency for a bub-

ble screen [Eq. (6)], a blue shift (respectively, red shift)

occurs when the lattice parameter CL is positive (respec-

tively, negative) because the capacitance parameter C� is

always positive (see Appendix A 1).

The parameter CL was computed numerically for a rect-

angular lattice with aspect ratio hy=hz by solving Eqs. (7)

and (8) (see also Appendix A 2), i.e., in a cell with unitary

surface. The variation of CL with the aspect ratio hy=hz is
shown in the inset of Fig. 8 and can be reasonably approxi-

mated by

CL ’ 3:9

4p
þ 0:75

4p
hy
hz

þ hz
hy

� 2

� �
; (59)

which indicates that CL turns negative when the aspect ratio

exceeds approximately seven.

To confirm this red shift, we came back to spherical

bubbles of radius a¼ 50 lm, but now the bubbles are

arranged in rectangular lattices of identical surface

S ¼ h2 ¼ hyhz, with h ¼ 40a, and different aspect ratios,

hy=hz was varied as 1, 7, and 10. The case hy=hz ¼ 7 is

expected to produce no frequency shift, whereas hy=hz ¼ 10

should produce a red shift. These predictions are confirmed

in the main panels of Figs. 8 and 9, which show the reflec-

tion coefficient and bubble pressure as functions of fre-

quency. As the aspect ratio deviates from one (square

lattice), the resonance frequency decreases, leading to xr

’ x1
r for hy=hz ¼ 7, and a red shift (xr < x1

r ) for

hy=hz ¼ 10. This frequency reduction is accompanied by an

increase in the quality factor Q, as observed in Fig. 9, where

the bubble pressure increases as hy=hz increases (see also

Table IV).

To conclude this section, we note that the effective

model predicts that the scattering coefficients [Eq. (48)] are

independent of angle u, which corresponds to the orienta-

tion of the incident wavevector projection in the ðy; zÞ plane.
This implies isotropic behavior in the lattice plane. Such

isotropy is generally accepted for square lattices as the lat-

tice spacing is subwavelength: in our reference case with

h ¼ 40a and a¼ 50 lm, the wavelength in water at

FIG. 8. Influence of the lattice arrangement. jRj versus frequency for

spherical bubbles (a ¼ 50 lm) in rectangular lattices with identical surface

S ¼ h2 ¼ hyhz (h ¼ 200lm) and aspect ratios hy=hz ¼ 1, 7, and 10 is

depicted. The inset shows the variation of CL against hy=hz, computed

numerically (gray solid line) and from the estimate [Eq. (58)] (black dashed

line).

FIG. 9. Influence of the lattice arrangement. Bubble pressure amplitude ver-

sus frequency is shown for the same configuration as presented in Fig. 8.

TABLE IV. Effect of the lattice arrangement. Lattice parameters CL for

rectangular lattices of aspect ratio hy=hz ¼ 1, 7, and 10, normalized to

Csq
L ¼ 3:9=4p (square lattice hy=hz ¼ 1), resonance frequencies xr , Eq. (6),

and quality factors Q, Eq. (14), for spherical bubble of radius a ¼ 50 lm
and h2 ¼ hyhz ¼ ð40aÞ2 are shown. The resonance frequency of an isolated

bubble is x1
r =2p ¼ 65:52 kHz from Eq. (6) with C�d ¼ 4pa.

CL=C
sq
L xr=2p (kHz) Q

hy=hz ¼ 1 1 68.96 6.64

hy=hz ¼ 7 0.01 65.54 6.98

hy=hz ¼ 10 �0.56 63.79 7.18
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resonance is about 10 times larger than h (and about 400

times larger than the bubble size a). However, for highly

anisotropic rectangular lattices, such as hy=hz ¼ 10, the

wavelength is only about three times larger than the spacing

in the y direction (with khy close to two at resonance), mak-

ing isotropy in the lattice plane less certain.

To quantify this anisotropy, we performed numerical

simulations for an oblique incidence at h ¼ 45� with varying
u from 0� to 90�. Figure 10 shows the relative deviation of

the numerically computed reflection coefficient from its

value at u ¼ 0 for hy=hz ¼ 2, 5, and 10. As expected, for

nearly square lattices, the anisotropy is negligible

(� 10�3%, magnified by a factor of 100 in Fig. 10). As the

aspect ratio increases, the angular dependence becomes

more pronounced but remains small, below 2% even for

hy=hz ¼ 10. This very small anisotropy, not captured by the

homogenized model, is of the same order of magnitude or

smaller than the model error in the reported cases: in Figs.

8 and 9, the relative errors increase significantly with hy=hz,
remaining below 0.4%, 1%, and 1.5% for hy=hz ¼ 1, 7, and

10, respectively (in this case, the mesh resolution is not

really concerned). For hy=hz ¼ 7 and 10, we observe that

the errors increase with frequency, which is quite expected

as khy is no longer small.

V. CONCLUSION

In this work, we have derived a time-domain effective

model for acoustic propagation through a metascreen formed

by a periodic array of bubbles embedded in a liquid. The

model is expressed as transmission conditions across a zero-

thickness interface: the pressure remains continuous, whereas

the normal velocity exhibits a jump driven by the internal gas

pressure in the bubbles. This gas pressure obeys a damped

mass–spring equation, unambiguously revealing the resonance

frequency xr and quality factor Q of the bubble screen. A key

outcome of this study is the identification of two geometric

parameters—a capacitance-like parameter C�, dependent on

bubble shape, and a lattice parameter CL, encoding the effect

of the array arrangement—that fully govern the acoustic

response of the screen. The framework captures the interplay

between individual bubble resonances and collective effects

within the array and can be applied to any bubble screen con-

figuration, highlighting the critical role of shape and lattice

configuration on the overall response.

Comparisons with direct numerical simulations confirm

that the model accurately reproduces the resonant scattering

behavior of the bubble screen over a broad frequency range.

Its predictive capability extends across a wide variety of

configurations, including different bubble shapes and vol-

umes, lattice geometries, and angles of incidence. Two key

conclusions emerge from this analysis. First, the shift in the

resonance frequency of the array relative to that of an isolated

bubble can be either positive (blue shift) or negative (red shift),

depending on the lattice arrangement. Although a blue shift is

typically observed for square arrays, the model predicts—and

simulations confirm—that a red shift arises in rectangular latti-

ces with sufficiently large aspect ratios. Second, despite that

the rectangular lattices may intuitively be expected to induce

anisotropic scattering, the effective model remains remarkably

accurate: even for highly elongated unit cells, the angular

dependence of the scattering coefficients remains weak, dem-

onstrating that the isotropic approximation inherent to the

effective model is robust and reliable.

Future investigations could address very dense bubble

arrays: although their practical relevance may be limited, as

the metascreen behaves essentially like a wall with vanishing

bubble pressure even at low frequencies, a formal analysis

relaxing the scale separation between bubble size and lattice

spacing could provide insight into the transition regime

between dilute and dense arrays. Extensions also concern more

realistic settings. For spherical bubbles in water, additional

physical effects—such as surface tension, viscosity, and ther-

mal exchanges—in principle, may be incorporated into the res-

onator equation, as briefly discussed in Caflisch et al. (1985).
For bubbles of arbitrary shape, however, practical realizations

typically involve embedding the inclusions in viscoelastic

matrices, which stabilize the shape but modify the surrounding

medium. Incorporating such viscoelastic effects represents a

promising direction for practical bubble metascreens due to

their relative ease of fabrication and would allow the explora-

tion of additional oscillation modes associated with the pres-

ence of shear waves. Finally, considering unit cells with

multiple bubbles will give rise to hybridized resonances

(Feuillade, 1995), opening new perspectives for achieving per-

fect absorption and richer wave manipulation.
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APPENDIX A

1. The electrostatic capacitance

We first note that C� is a dimensionless parameter,

whereas capacitance is usually defined as having dimension

of length. We define C� for a bubble of arbitrary shape but

with unit volume. For example, Csph ¼ 4pa, where a is the

radius of the sphere. Hence, a ¼ ð4p=3Þ�1=3
, leading to Csph

�
in Eq. (52). In other words, with d ¼ V1=3, one obtains

C ¼ C�d.
Aside from this normalization, the normalized electro-

static capacitance C n ¼ C=d of a conductor occupying a

region Xgas
l and surrounded by a domain Xliq

l is classically

defined as

Cn ¼ �
ð
@Xgas

l

$lV � n dS; (A1)

where n denotes the unit normal vector pointing outward

from the conductor, i.e., pointing into the surrounding

domain Xliq
l , and V satisfies the Laplace boundary-value

problem

DlV ¼ 0 in Xliq
l ; V ¼ 1 on @Xgas

l ;

$lV �
rl!þ1� Cn

4prl
er (A2)

(Smythe, 1950). It is easy to verify that Cn ¼ C� and

V ¼ 1� C�G�, where ðC�;G�Þ are defined in Eqs. (9)

and (10).

A fundamental property of the capacitance C� is that it

is always strictly positive. Indeed, multiplying Eq. (A2) by

V and integrating by parts yields

C� ¼
ð
Xliq

l

$lV � $lV dX > 0: (A3)

This expression shows that C� is strictly positive. If C� ¼ 0,

then $lV ¼ 0 almost everywhere in Xliq
l , which would

imply that V is constant—contradicting the boundary condi-

tion V ¼ 1 on @Xgas
l and the decay condition at infinity in

Eq. (A2).

2. Numerical computation of C� and CL

The capacitance parameter C� defined in Eq. (9) can be

computed straightforwardly using standard finite element

method software. To approximate the unbounded domain,

the gas bubble of unit volume is enclosed in a sphere of

finite radius Rnum. For bubbles without extreme aspect

ratios, Rnum ¼ 7 suffices to capture the evanescent fields;

see Fig. 11. The numerical solution Gnum
� ðrlÞ satisfies

DGnum
� ¼ 0 in Xliq

l ; Gnum
� ¼ 0 on @Xgas

l ;

$Gnum
� � er ¼ 1

4pðRnumÞ2
at rl ¼ Rnum;

8>><>>:
and the capacitance is numerically approximated by

1

C�
’ 1

4pR2
num

ð
rl¼Rnum

Gnum
� þ 1

4pRnum

� �
drl:

The lattice parameter CL defined in Eq. (7) requires

more care due to the singularity at the origin. We introduce

HLðrmÞ ¼ GLðrmÞ þ 1

4prm
;

which is regular at the origin and harmonic. Because the sin-

gularity of GL is centered at the origin, GL and HL are even

in ym and zm. This symmetry allows periodic boundary con-

ditions in Eq. (7) to be replaced with Neumann conditions.

The numerical implementation is performed in

COMSOL Multiphysics using the weak form partial differ-

ential equation package (see Fig. 12). We consider a guide

of finite length 2Lnum along ex, where HL is approximated

by Hnum
L , satisfying the Laplace boundary-value problem

DmH
num
L ¼ 0 in Xm;

$m Hnum
L � 1

4prm

� �
� n¼ 0 on @Xm;

Hnum
L ð6Lnum; ym; zmÞ ¼ Lnum

2
þ 1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2num þ y2m þ z2m

p :

8>>>>>>><>>>>>>>:
In practice, Lnum ¼ 3 is sufficient to capture the relevant

evanescent fields, yielding a converged value of the approxi-

mated lattice parameter

CL ’ Hnum
L ð0Þ:

FIG. 11. Numerical G� ’ Gnum
� for a cylindrical bubble of unitary volume

with aspect ratio c ¼ 1=4 [see Eq. (56)] and Rnum ¼ 7.
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APPENDIX B

The most widely used model in the literature was pro-

posed by Leroy et al. (2009) and describes spherical bubbles

arranged in a square lattice. It takes the same form as Eq.

(48), with the following notations:

R ¼ iKa

ðx1
r =xÞ2 � I � iðKaþ d vÞ

; (B1)

where I is responsible for the resonance frequency shift as a

result of collective effects of the bubbles, Ka is the so-called

super-radiation term, and d v represents the viscous damping

(absent in our model). The first two terms are given by

I ’ 1� 3:5
a

h
; Ka ¼ 2pa

kh2
: (B2)

(Different forms of I have been proposed, and all converge

to the same expression for subwavelength bubbles.)

Our model [Eqs. (48) and (49)] shows excellent agree-

ment with Eqs. (B1) and (B2) for this specific case.

Considering the expressions of C� for a sphere and CL for a

square lattice in Eq. (52), and the relation d ¼ V1=3 leading

to Eq. (51), which, in particular, gives

Csph
� d ¼ 4pa;

we obtain almost identical results. Specifically, for normal

incidence, Eq. (48) involves

1� Csq
L C

sph
�

d

h

� �
¼ 1� 3:9

a

h
’ I; jxd ¼ 2pa

kh2
¼ Ka;

where there is only a minor shift in the resonance frequency.

For completeness, we also refer to Lanoy et al. (2018),

which uses the form of Eq. (50), where X ¼ x=xr,

xr ¼ x1
r =

ffiffi
I

p
, and

Q ¼ 2I

KaX
¼

ffiffi
I

p
h2x1

r

pc‘a
: (B3)

Again, for normal incidence, our expression for Q in Eq.

(14), using Eq. (2), leads to the same result as expected. In

both references, viscous losses are introduced heuristically

by considering Ka ! Kaþ d v or 1=Q ! 1=Qþ 1=Q v in

the denominator of R (with T ¼ 1þ R), where

d v ¼ 4g
qa2x

; Q v ¼ q‘a
2xrI

2g
: (B4)

This correction effectively accounts for the viscous losses

associated with a single bubble (Devin, 1959; Prosperetti,

1977). Models that include viscous losses have been vali-

dated in numerous experimental studies but only for a rather

limited range of bubble densities: h=a ¼ 5 (Bretagne et al.,
2011) and h=a ¼ 4:5 and 5.3 (Lanoy et al., 2018). Only the

study by Leroy et al. (2009) for h ¼ 3:5a and the more sys-

tematic investigation for decreasing values of h=a down to

three (Leroy et al., 2018), reveal the breakdown of the vis-

cous model.

Following Leroy’s model, the work of Skvortsov et al.
(2019) is interesting as it raises the question of the role of

lattice arrangement, which, as noted, has not been investi-

gated in the literature. In this reference, I ¼ Isph (for

spherical bubbles) is written in the form

Isph ’ 1� csphL

a

h
; (B5)

which corresponds to Eq. (18) for small values of a=h, as
reported in Table III of Skvortsov et al. (2019), where csphL

essentially corresponds to their parameter q1. In our nota-

tion, csphL a ¼ Csph
� CLd, hence, c

sph
L ¼ 4pCL. The parameter

csphL is evaluated through an interesting analogy between the

notion of capacitance and the trapping rate of absorbing

disks (Berezhkovskii et al., 2006). However, the reported

values of csphL in Berezhkovskii et al. (2006) were obtained
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