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Homogenization of resonant bubble screens: Influence of bubble
shape and lattice arrangement
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2Institut Langevin, CNRS (Centre National de la Recherche Scientifique), ESPCI ParisTech (Ecole Supérieure de Physique et de Chimie
Industrielles de la Ville de Paris), Université PSL (Paris Sciences & Letters), 75005 Paris, France

ABSTRACT:

A time-domain effective model for acoustic wave propagation through a two-dimensional periodic array of gas
bubbles embedded in a liquid is presented. The model is expressed as transmission conditions: pressure remains con-
tinuous, whereas the normal velocity exhibits a jump induced by the internal pressure of the bubbles. This internal
pressure follows a damped mass—spring equation, with damping arising solely from radiative coupling to the sur-
rounding liquid, which makes the resonance frequency and quality factor of the array emerge unambiguously. Aside
from the bubble density in the lattice, these quantities are fully governed by two independent geometric parameters:
a dimensionless capacitance, depending solely on bubble shape, and a lattice coefficient, depending solely on lattice
geometry. For plane wave scattering, comparisons with direct numerical simulations demonstrate that the model
accurately reproduces the resonant behavior of bubble screens across a range of configurations, including spherical,
spheroidal, and cylindrical bubbles, as well as square and rectangular lattices. This generalizes the classical model of
Leroy et al. [Eur. Phys. J. E 29(1), 123-130 (2009)] for spherical bubbles in square lattices. Notably, the model
reveals—and simulations confirm—that the resonance frequency shift relative to an isolated bubble, usually positive
(blue shift), can become negative (red shift) in rectangular lattices with aspect ratios exceeding seven.

© 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0041877
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[Editor: Charles C. Church]]

I. INTRODUCTION

Gas bubbles embedded in a liquid exhibit remarkable
acoustic properties, especially near their Minnaert reso-
nance, attributable to the large contrast in compressibility
between gas and liquid (Minnaert, 1933). An original and
insightful historical review of studies on scattering by single
bubbles, including foundational works and those conducted
during World War II, is provided by Martin (2019).
Building on this property, bubble-based acoustic metasurfa-
ces, which are also referred to as bubble metascreens, have
attracted increasing attention because of their ability to
manipulate sound at deeply subwavelength scales (Hladky-
Hennion and Decarpigny, 1991; Leroy et al., 2009;
Bretagne er al., 2011). Such systems, consisting of two-
dimensional, periodic or quasiperiodic arrays of air bubbles
in water, form ultrathin interfaces capable of achieving
functionalities such as superabsorption (Leroy et al., 2015;
Ammari et al., 2017a), coherent perfect absorption (CPA;
Lanoy et al., 2018), and subwavelength focusing (Lanoy
et al.,2015; Ammari et al., 2017b). These effects arise from
the collective dynamics of the bubbles, which are governed
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by various mechanisms related to array density, bubble
shape, and lattice geometry.

Although most studies have focused on spherical bub-
bles, it is now well established that bubble shape plays a criti-
cal role in modulating the resonance. For a single bubble,
deviations from sphericity alter the pressure and velocity dis-
tribution at the interface, leading to measurable shifts in reso-
nance frequency—theoretically and experimentally—for
shapes such as spheroidal (Strasberg, 1953; Ye, 1997; Spratt
et al., 2017) or toroidal/polyhedral bubbles (Boughzala et al.,
2021; Alloul et al., 2022; Bouchet et al., 2024). These geo-
metric effects can be described quantitatively through the con-
cept of capacitance, borrowed from electrostatics (Smythe,
1950), which characterizes how bubble shape influences the
pressure—volume response and, thus, shifts its Minnaert reso-
nance frequency. A rigorous connection between the scatter-
ing properties of a bubbly metascreen and the capacitance of
its resonators was established in Ammari et al. (2017a),
employing layer potential techniques and asymptotic expan-
sions to analyze bubbles mounted on a Dirichlet surface; see
also Martin and Skvortsov (2020) for sound-hard and sound-
soft scatterers. Another factor affecting the array’s response,
in terms of resonance frequency and quality factor, is the geo-
metric effect of the lattice arrangement, independent of
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bubble shape. To our knowledge, this influence has not been
investigated in the literature, where the square arrangement is
always assumed by default.

In this work, we develop a model that faithfully
describes the response of a bubble array for arbitrary bubble
shapes and lattice arrangements. In particular, we show that
the array’s resonance frequency can be expressed as

G)OC

W, = L for a screen, (1)

1 _T.TL(d/h)

where

X ==2T, Ps for a single bubble. 2)
Pr

Here, (p,, py) denote the gas and liquid densities, respec-
tively, c, is the sound speed in the gas, &> =V is the bubble
volume, and /4> = § is the lattice surface of the array. Next,
I's > 0 is the dimensionless bubble capacitance, influencing
w?°, the Minnaert resonance frequency of a single bubble in
free space, and I'y is the lattice parameter, which depends
only on the lattice geometry and produces an additional fre-
quency shift. Importantly, we will show that I' can be
either positive or negative. As a result—challenging the
common perception in the literature that lattice effects
invariably cause a blue shift (upshift) of the array resonance
compared to an isolated bubble—we show that the bubble
array can also exhibit a red shift (downshift).

Our model is derived using homogenization combined
with matched asymptotic expansions, a powerful framework
for obtaining effective descriptions of wave scattering by thin,
structured arrays in the low-frequency regime. This combined
homogenization—asymptotic framework was initially devel-
oped in the quasi-static context and later extended to dynamic
problems in acoustics and elasticity (Delourme et al., 2012;
Marigo and Maurel, 2016; Pham et al., 2021a). It has since
been applied to ultrathin resonant metasurfaces operating in
the deep-subwavelength regime, including acoustic, optical,
elastic, and water-wave configurations (Tachet et al., 2025;
Lebbe et al., 2023; Marigo et al., 2021; Euvé et al., 2021;
Schnitzer and Brandao, 2022). Earlier homogenization-based
approaches were developed for three-dimensional bubbly
media, most notably the effective propagation models of
Caflisch et al. (1985) and their extension by Miksis and Ting
(1989) to thin bubbly layers. These treatments rely on volume
homogenization and do not resolve the microscopic structure
of a two-dimensional bubble screen. In the context of bubbly
screens, a fully matched asymptotic treatment was introduced
in Pham et al. (2021b) to derive nonlinear jump conditions and
a nonlinear resonator equation for a square array of spherical
bubbles. The present work revisits the problem in the linear
regime and significantly extends its scope by capturing bubble
shape and lattice-arrangement effects. A key strength of the
approach lies in its generality: the array density is an explicit
parameter, the bubble shape enters exclusively through its
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capacitance, and the lattice arrangement is encoded in the lat-
tice parameter—determined from auxiliary static problems.

The paper is organized as follows. Section II introdu-
ces the physical configuration and summarizes the main
asymptotic results, including the damped-oscillator equa-
tion governing the bubble pressure, where the damping
originates from the array’s radiative losses (thus, defining,
unambiguously, the resonance frequency and quality fac-
tor). Section III details the derivation of the effective model
via matched asymptotic expansions and homogenization,
leading to the results stated in Sec. II. Section IV examines
the bubble screen’s scattering behavior and validates the
model against direct numerical simulations for a variety of
array densities, bubble shapes, and lattice arrangements.
Conclusions and perspectives are given in Sec. V. In two
appendixes, we collect (i) technical results and remarks on
the parameters (I';,IL), in particular, how they are
computed numerically; and (ii) a comparison with the well-
established model of Leroy et al. (2009) for spherical bub-
bles in a square lattice.

Il. SETTING OF THE PROBLEM AND SUMMARY
OF THE MAIN RESULTS

We consider a two-dimensional array of gas bubbles
embedded in a liquid, periodically distributed on the plane
x = 0; see Fig. 1. The cross-sectional area of the unit cell is
S and the volume of each bubble is V. In the actual configu-
ration, the velocity u and pressure p satisfy the linearized
Euler equations

Ou 1 op
—=-V di — =0 3
P o D, lvqupc2 o (3

where (p,c¢) = (p;,¢) in the liquid and (p,c) = (p,,cy)
inside the gas. At the bubble-liquid interfaces, the pressure
and normal velocity are continuous.

),

220000000000
20000000000

>
< »
—
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Ny

FIG. 1. Wave scattering by an acoustic bubble screen, consisting of a periodic
array of gas bubbles in a liquid governed by Eq. (3). We denote V = 4> for the
volume of each bubble and § = hyh. = h? for the lattice surface of the array.
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A. Effective behavior of the pressure field in the liquid
and gas

The homogenization of the above system in the subwa-
velength regime yields an effective problem posed solely in
the liquid, where the bubble screen is replaced by homoge-
nized jump conditions across the interface x = 0. Let (u,p)
denote the homogenized velocity and pressure fields in the
liquid. These satisfy

Ou _ . 1 op
pkE: —Vp, divu +m520 forx #£ 0, 4)

together with the continuity of pressure across x = 0 and a
jump in the normal velocity coupled to a mass-spring reso-
nator equation

& p,
L )
82]7,- + wz o (,()2 —
GYs wPr = @ Px=0)

where [v] = v),_¢+ — V=~ and

Cq T, Py
y = — —_—— 6
Or=g \/1 “TLLL(d/h) p, ©

is the resonance frequency of the bubble screen, as intro-
duced in Egs. (1) and (2). Here, h = S'/? and d = V'/3 are
the characteristic length scales associated with the array
periodicity and bubble size, respectively. The auxiliary field
pr(y,2,1) in Eq. (5), defined along the screen, represents the
homogenized gas pressure inside the bubbles under the
action of the pressure p in the liquid (where p|._ is its
restriction to the plane x = 0).

In Eq. (5), the effective jump conditions are precisely
the linearized counterparts of those derived in our previous
homogenization study (Pham et al., 2021b), and the resona-
tor equation governing p, is the linearized form of the non-
linear Rayleigh—Plesset equation obtained in that same
work. In that earlier work, these relations were established
for spherical bubbles arranged in a square lattice; the present
study generalizes them to bubbles of arbitrary shape and
arbitrary lattice geometries. Equations (4) and (5) apply in
the subwavelength regime, meaning that the lattice spacing
h is small compared with the characteristic acoustic wave-
length. They also assume a sparse array, i.e., a bubble size d
that is much smaller than /4. This is not a restriction of the
homogenized model itself but rather a physical requirement
for the Minnaert-type resonance to be observable: dense
(non-sparse) arrays suppress the resonance and behave,
instead, as nearly perfectly reflecting surfaces because of the
strong density contrast of the bubbles.

B. Definitions of I', and I',

The parameters I', and I'L are dimensionless geometric
quantities obtained from the asymptotic analysis presented

J. Acoust. Soc. Am. 159 (1), January 2026

in Sec. III. The capacitance ', > 0 depends solely on the
shape of the bubbles, whereas the lattice parameter I,
depends only on the lattice arrangement (e.g., square, rect-
angular, or hexagonal). Their computation relies on the reso-
lution of two independent elementary problems:

* Lattice parameter I’ :
Let Q., be a guide of unitary cross-sectional area X,
matching the cross section of the considered lattice, and
let ry, =r/h denote the associated rescaled coordinate
[Fig. 2(a)]. We define the Green’s function G : Q,, — R
for the guide Q,, with a singularity at the origin as the unique
solution of the Laplace boundary-value problem such that

AGL =0 il’lQm,

G periodic, VG - n anti — periodic on 0Q,

. |xm|) e,
lim (GL—"m) =0, VG ~
' ( L 2 ’ er—>o4m‘r2n’

(M

where n is the outward unit normal to the lateral boundary
OQm, X;m = rm - e and 1y = |F|. Then, the constant ',
is defined as

) 1
ru = fim (G + ). ®

Note. Because the singularity is located at the origin, G,
is, by construction, an even function of y,, and z,,. This
symmetry simplifies the computation of G as the peri-
odic boundary conditions on 0Q. in Eq. (7) may be
replaced with homogeneous Neumann conditions, VG -
n=0o0n0Q,.
* Bubble parameter (capacitance) I's:

Let Q" be a bubble of unit volume embedded in
Q, = R?, and r, = r/d are the associated rescaled coordi-
nates [Fig. 2(b)]. We define the field G, : Q% — IR, where
QEL‘ = Q,\QF* is the surrounding liquid region, as the
unique solution of the Laplace boundary-value problem

AG,=0in Q, G, =0 on 0Q%",

. e, )
lim VG,=—-,
P00 47rrl21
(a) (b)

o
o / e s,

FIG. 2. (a) Mesoscopic domain Q,, is a guide of unitary cross section, infi-
nite along e, with periodic boundary conditions on its lateral boundaries;
Fm = (Xm,Ym,Zm) Where ry, = r/h. (b) Microscopic domain is a gas bub-
ble QF of unitary volume surrounded by an infinite liquid region Qﬁq;
ry=r/d.
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with r, = |r,|. The constant I, is then given by

1
F = lim <Go +

° ry—+00

! )20 (10)

4nry,

(see Appendix A 1 for its correspondence with the elec-
trostatic capacitance of a conductor and for the proof of
its positivity).

Appendix A 2 details how I'; and Iy are computed
numerically using standard finite element method.

C. Resonance quality factor

In Eq. (5), p, represents the homogenized version of the
pressure inside the bubbles. Because these bubbles are coupled
to the surrounding liquid, a radiative damping term is expected
to appear. This term is actually “hidden” in p|,_, (which
depends on p,), but it can be made explicit by considering a
wave propagating in the direction (cos 6, sin 6cos ¢,
sin 0 sin ¢) of the form p™(z — x* /c;), where x* = x cos 0
+sin O(y cos @ +z sin ¢). Then, the solution can be
written as

flt+x"/cp), x<0,
f(t—x*/c@)7 x>0,

(1)

where x~ = x cos 0 — sin O(y cos ¢ + z sin ¢). By using
the same function f for x > 0 and x < 0, the pressure p is
continuous at x = 0 as required by Eq. (5). Applying the
jump condition on the normal velocity component u, given
in Eq. (5) then leads to

pla,y,z,0) =p™(t—x"fer) + {

1 peed®
2 cos 0 p,ch? pr

= (12)

where f’ denotes the derivative of f. Substituting this expres-
sion of p into the resonator equation in Eq. (5) then yields
the equivalent form

82pr +260, api
or? Q ot

+wip, = o) plicy, (13)

with, now, a source term independent of p,. The quality factor
Q appears explicitly, measuring the radiative damping caused
by the coupling between the resonator and surrounding liquid,

2 2
) raf [LCriam (1)
0 =4 cos 0\/ng% \/ T 7 (14)

The quality factor increases when moving from a compact
array to a sparse arrat, whereas the resonance frequency of the
bubble screen approaches that of a single, isolated bubble—
an expected and general result (see, for example, Maurel
et al., 2019, and Tachet et al., 2025). This behavior has been
associated with super-radiation (Leroy et al., 2009; Leroy
et al., 2015) as the quality factor is larger by a factor of

360 J.Acoust. Soc. Am. 159 (1), January 2026

(h/d)* > 1 compared to the quality factor g ~ [pe€2/pici
of an isolated bubble (Devin, 1959; Prosperetti, 1977).

lll. ASYMPTOTIC DERIVATION OF THE EFFECTIVE
PROBLEM

We begin by introducing the nondimensional form of
the governing equations through the change of variables

I — i, r_>kr7 p_)p/p/a C_)C/Cfa
i (15)
u—ufc, p—p/lpey),

where o denotes the typical excitation frequency and &
= w/c¢y is the corresponding wavenumber. Defining the
dimensionless parameters A = p,/p and B = p,c?/pc?,
the linearized Euler equations take the form

% = —AVp, divu +B% =0, (16)
where (A,B) = (1,1) in the liquid and (A,B) = (p,/p,,
pécf / pgcﬁ) in the gas. Because our objective is to derive the
homogenized description in the low-frequency regime—rel-
evant here because the Minnaert resonance occurs in the
subwavelength domain—we introduce the small parameter

n=kh<1.

Following the scaling assumptions of Pham er al. (2021b),
we adopt
d

4
—N’/” —/\J17’
Py h

and ¢y /cy = O(1). These scalings, corresponding to a dilute
array of bubbles with a strong density contrast, ensure
that the analysis remains in the resonant regime as 1 — 0,
where w,h/c; = O(kh) = O(n). In this regime, the bubble
array operates near its Minnaert resonance, as w,h/cy

~ (h/d)(cy/ct)y/pg/ Py from Egs. (1) and (2). Accordingly,

we write the nondimensional constitutive parameters as
(1,1) in the liquid,

(AB)=q (= 8 |
(F’F)’ (o, ) = O(1) inthe gas.
A. Multiscale setting

We distinguish three spatial scales: macroscopic, meso-
scopic, and microscopic. The corresponding coordinates are
defined as

r .
macro: r, meso: rpy = —, micro: r, =
n

>

where ¢ = d/(nh) = O(1) is chosen such that the bubble has
unit volume at the microscopic scale. In other words, r is

Kim Pham and Agnes Maurel
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scaled with the typical wavelength 1/k, ry, is scaled with the
periodicity /1, and r, is scaled with the bubble size d.

The macroscopic domain — At the macroscopic scale,
the fields are expanded as follows:

u=S" a0, p=3 npr (17)

n>0 n>0

where (), p") is defined for x # 0. Substituting these
expansions into Eq. (16) yields, at each order, the macro-
scopic equations

ou™
ot

) ap<n)
div u™ =0 18
wvu' + o , (18)

= _Vp(n)a

supplemented by transmission conditions for (u!™,p()
across the interface x = 0, which remain to be determined.
The truncation of the series [Eq. (17)] at order one yields
the macroscopic (homogenized) fields (u#,p) introduced in
Eq. (5).

The mesoscopic domain — The mesoscopic domain
Q ., illustrated in Fig. 2(a), is obtained by zooming in by a
factor of 1/n around a point of the interface located at
r = (0,r|), where rj = (y,z) denotes the coordinates tan-
gential to the screen. Using the rescaled coordinates
Fm = (Xm,Ym,Zm), the domain is defined as

Qu = {rm € R |xy € (—00,+00), Vm,Zm) € Zm},

where X, is the periodic cross section of unitary area. At
this scale, the pressure and velocity fields are expanded as

":ZWnu(g)(rm,'), P:Zﬂnp(rz)(rma')» (19)

n>0 n>0

where all fields are taken to be periodic on 0Q,. To sim-
plify the notation, we have defined

f(rm7 ) :f(rm,ru,t).

Following the chain rules, the differential operator is
expressed as

1
V- VH —l—EVm,

where V| = (0/0r|) and V, = (0/0r ).

Substituting Eq. (19) into Eq. (16) yields, on collecting
terms of equal order in 7, a hierarchy of equations. At lead-
ing orders, these equations read

ou®
0=—Vapy), —m=-Vipl = Vaply,  (20a)

oply)

divmugg) =0, divju, u® 4 dlvmu< ) tm ot

=0. (20b)

At the mesoscopic scale, the bubble reduces to a point
at the origin r,, = 0, such that the behavior of the fields in

J. Acoust. Soc. Am. 159 (1), January 2026

its vicinity is governed by singular spherical harmonics. In
particular, at the dominant orders, the velocity field near the
origin is expected to have the form

(0) N oo dO

Uy (Fm, )rmﬂoq) ( )47”}2117

Wy ) o () e YV (0w ¢ ) @1
U Tmo) 4nr2 rs '

where e, is the radial unit vector in the spherical coordinate
system (rm,0m,@,,) centered at the bubble. The scalars
(I)(’”(r”,t), n=0,1, depend only on the macroscopic tan-
gential position r; and time f, whereas the vector
t//(l)(ﬁm,q)m,ru,t) also depends on the angular variables.
The latter satisfies the zero-mean condition

T 21
J J Y (O, @1, 1) - €510 Oy dOndepy, =0,
00=0) =0

The microscopic domain — The microscopic domain is
obtained by zooming in on the origin r, = 0 of the meso-
scopic scale, with a magnification factor of 1/(¢5). At this
scale, the bubble region Q¥ has unit volume and is sur-
rounded by an unbounded 11qu1d region Q 9 which extends
infinitely in all three spatial directions. We denote by Q,
Qﬁas th R? the union of these two regions, Wthh
together constltute the microscopic domain, and r, is the
spatial coordinate associated with this scale. In this region,
the fields are expanded as

ithq :
22’7"” r/u'7 P = Z”p r,uv'a
n>0 n>0
in Qe
1 ~
w= S ) p= B ) @)
n>0 n>0

As previously, we have defined
f(rﬂ7 ) :f(r,uarHat)'

To simplify the presentation, we have anticipated in Eq.
(22) that the velocities in Q& and qu begin at order y~2
Applying the chain rule, the differential operator becomes

1
V- V” +ﬁVW

where V, = 0/0r,.

Substituting the expansions [Eq. (22)] into Eq. (16) and
collecting terms of equal powers in x yields the leading-
order systems

in QE :
Vuﬁ;") =0, dlvuu "4 5 :o, n=0,1; (23)
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6:22:01 9202 Asenuer £z


https://doi.org/10.1121/10.0041877

in ng :
8uft">

Eaz

= -V, dival' =0, n=0,1, (24)

together with continuity conditions at the interface between
the liquid and gas such that

:ﬁfj’), w,-n=u, n ondQ, (25)

where n is the outward normal to BQﬁaS.

B. The connection between the
macro- and meso-scales: Jump conditions

To derive the transmission conditions at x = 0 on the
macroscopic scale, we connect the macroscopic and meso-
scopic regions by matching their respective expansions
[Egs. (22) and (19)] in an intermediate region where x — 0™
and x,, — *oo such that

PO, 0) +up () + -

Y:JO: p(rg)(rmv‘) +1’]p(nll)(rm,) A

Xm — Foo
Recalling that x = nx,, and expanding the macroscopic
fields in Taylor series near x = 0™ for small 7, we obtain

P07 )= tim p{(rm,),

Xm

. . op .
PV (0%, )= lim <p§;><rm,->—xm o (0—,->), (26)

Xm— o0

and analogous relations hold for the velocity, where p is
replaced by ") and pﬂf? is replaced by u(Iﬁ) forn=0,1.
Jumps at order 0 — We begin by determining the order-
zero transmission conditions for pressure and velocity at x =
0" starting from the mesoscopic problem. From Eq. (20a), it
follows that p(,g) does not depend on r,. Using the matching

condition [Eq. (26)], we deduce that p©) is continuous across
x = 0, namely,

PO =0, p@=pQ0,r,0)=P%1, @D
where P(©) (r,t) denotes the well-defined (unambiguous)
value of the macroscopic pressure field at x = 0. Next, inte-
grating the divergence equation divmu(n(l) =0 in Eq. (20b)
over Q,\Bm, where B, is a sphere of vanishing radius b,
centered at r, =0, and taking into account the singular
behavior [Eq. (21)] near the origin together with the match-
ing condition [Eq. (26)] on uig), we pass to the limit b, — 0
and obtain a relation between the velocity jump and the
amplitude of the mesoscopic singularity such that

[ = 0 (ry,1). (28)

At this stage, o) (r|,t) remains an unknown field, whose
determination requires coupling the mesoscopic and micro-
scopic scale.
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Jumps at order 1 — Using Eq. (28), the velocity at x = 0
can be decomposed as

1 (0:7 )= (UJ(YO)(_)i %q,m)(,))ex + u‘(lo)(.),

where U (r, 1) = 1/2(u® (0, ) + ul” (0™, -)) is the aver-

age normal velocity across x = 0, and u‘(‘o) (r|,t) is the tan-

gential velocity component [uﬁo) -ey = 0]. In particular,

from the first equation of Eq. (18), we obtain

(10~ L g )‘91?(0) .
8I<UX()_2(D () - 8}{ (Oa)7

L (0,-) = =, PO, (29)

where we have used the continuity of p(®) across x = 0 from
Eq. (27). Consequently, the problem [Eq. (20b)] set on

(u(,(rjl),p(,:])), together with the matching condition [Eq. (26)]

applied to u(,?,> as X, — *oo and the near-origin singular

behavior of u([?1> in Eq. (21), can be reformulated as the fol-

lowing auxiliary problem set on (vﬁ?,), pg)):

divmv(rg) =0, vﬁg) = —Vmp(l) in Qp,

m
(0)
v(o) - oL} e,
m rm—0 at 47‘5)”%1 ’

p(H'l) periodic, v\ - n anti-periodic on 9Q,,

O (aU}P) . 1a<1><°>)
im v = e,
xm—*oo M ot 2 Ot ’

(30)

where v([? = 8,(u(,?1) — u(f)). Because Eq. (30) is linear with
respect to the fields 9,®'* and §,U\*), the general solution
can be written as

U a0

P ) = PUC) —xm =5 () = =5 = ()GLrm),

(31)
where Gy is the Green function defined in Eq. (7). In this
definition, the Neumann boundary conditions on 0Q,, are
equivalent to periodic boundary conditions, owing to the

symmetry of G with respect to y, and z,,. From the far-
field behavior of G, Eq. (31) yields

Xm— F£00

PO() = Tim {pg)(,m).H%(UiO)(.)t%qxo)(.))xm],

which, combined with the first relation in Eq. (29) and the
matching relation [Eq. (26)] for p!), leads to the order-one
continuity condition on pressure

[PV =0, pV0,r,1) =PV, (32)
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The jump of ug) is obtained by integrating the second
equation of Eq. (20b), as was performed previously for ufvo).
To that end, we need to determine u(n(? (rm, -) explicitly from
the second equation of Eq. (20a). Using the second equation
of Eq. (29) together with Eq. (31), we obtain

W (rm, ) = 1" () + UY() e = 0O ()VuGr(rm).

Applying the operator div| to the above expression and
substituting the result into Eq. (20b) yields

0
divyu'l) — ou) 0,) — V0. v, G =0, (33)
Ox
where we have used the relation —0,ul?/0x(0, ")
= divju(” (0, ) + 9p© (0, ) from Eq. (18).
We now integrate Eq. (33) over Q,, \ By, where B, is
a sphere of vanishing radius b,, centered at r,, = 0. The
contribution of the last term in Eq. (33) vanishes because
meea - VG dr, =0 for a =y, z, as a result of the even
symmetry of G in (ym,zm). Applying the divergence theo-
rem to the first term and using the singular behavior given
by Eq. (21) at the origin—in particular, that the integral of
the ’};3 term vanishes [see the remark following Eq. (21)]—
together with the matching condition [Eq. (26)] written for
u, at order one in the limit b, — 0, we obtain

[V = @V (ry,1). (34)

As in the leading-order case, @ (r|, ) remains an unknown
field that will be determined in Sec. III C by coupling the
mesoscopic and microscopic scales.

C. The connection between the meso- and micro-scales

To identify the unknown fields (®© ®1) in Egs. (28)
and (34), we must transfer information from microscopic
scale, i.e., the scale of the individual bubbles, up to the
mesoscopic level. As before, this is achieved by matching
the meso-scale expansions [Eq. (19)] with the micro-scale
expansions [Eq. (22)] in an intermediate region where 1, —
0 and r, = |ry| — +o0. For the velocity, the matching con-
ditions read

) (rn, ) + ) (r )
1

g () ) ),

ry — +00
which, combined with the singular behavior of uﬁﬁi),
n =0, 1, at the origin given by Eq. (21) and the change of
variable r, = ¢nr,, imposes the following behavior at infin-
ity of uf{’):

e,
: )
47r€2ri

) (r), ~ O

n=0,1. (35)
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Elementary problem at order n = 0,1—From the first
equation in Eq. (23), we deduce that for n = 0, 1, the pres-
sures ﬁL") in the bubble QF* do not depend on r, and take
the form

pu) = p(r), 1),
where the pressures p,@) are yet unknown. In the liquid region
Q), the fields (u?), p{"), for n = 0,1, satisfy the governing
equations [Eq. (24)], subject to the continuity condition [Eq.
(25)] with the bubble pressure [given in Eq. (36)] and the far-
field condition [Eq. (35)]. The resulting problem is

n=0,1, (36)

(n)

: (n) Ouy, 1 n . i
div,u,”’ =0, 8; = —ZV#pl(l ) in Qilq,

(n) N (n) . HQEs
p/‘ (rlh ) = Ppr ( ) on J

(n) (n) €r
uy (ry,-) ~ oO"( .

u ( u ) Fu—to0 4n€2ri

Because this problem is linear in the macroscopic quantities
pﬁﬂ)("” ,7) and 9, (r,1), the general solution can be writ-
ten as

190
Pl ) = =g (VGe(n) +p0) G7

where G,(r,) is the fundamental solution of the capacitance
problem defined in Eq. (9), independent of macroscopic
variables.

We shall now establish the following result:

6((1;;0) . (p’go) _ P(o))’

ool ( oo
=\ pV =PV 4T
ot & T )

(38)

where I, is the bubble capacitance [Eq. (10)] and I', is the lat-
tice parameter [Eq. (8)]. To do so, we match the microscopic
and mesoscopic pressures as we did for the velocities, namely,

pLO)(r/u ) + ’719,(11)("#7 ) +e
~ PO, )+ p Ve, ) + PP P () A

Fm —
ry — 400

(39)

Using p(,?,) from Eq. (27) and p(nlj) from Eq. (31) together
with Eq. (7) and r, = fnr,,, yields the asymptotic behavior
near the mesoscopic origin

P (Onrys) + mp3) (Onry ) + D) (P ) + -
aq)(o) 1
~ PO, . PO
n—0 () + ot ( )47r€r,, + ;/,( ()
o) oo 1
ot )+ ot S 471&’#)

~ Ty
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where the term 9,®(!)

behavior of p(n? (rm, ) associated with the order-1 singular

(1/4nlr,) originates from the singular

velocity term in Eq. (21) through the equation 8,u(,fl)
= —V”pg,) — Vmpﬁ) [which corresponds to Eq. (20a) pushed
at the next order]. Coming back to Eq. (39), we deduce the

following behavior at infinity for (pff)) , p;(}) ):

o0 1
O ) ~ PO :
(T );~M—>+oo )+ ot ( )47'6&”#7
o0 o) 1
) o~ PO —T - :
P (r/u )r‘“—>+OOP ( ) L 8t ( )+ at ( )47[4’,#'

For n = 0, 1, it then suffices to combine the above equations
with Eq. (37), as r, — +o00, using the asymptotic behavior
of G, at infinity given in Eq. (10) to obtain the result
announced in Eq. (38).

Finally, to derive the resonator equation that governs
the pressures p), (") for n = 0,1, we integrate the compressibil-
ity equation in Eq (23) over the domain ans and the incom-
pressibility condition in Eq. (24) over the domam Q 9N By,
where B, is the sphere centered at r, = 0 with sufﬁmently
large radius b, to fully contain the bubble. Making use of
the continuity conditions [Eq. (25)] at the interface between
the two media, the fact that the pressure in the bubble is spa-
tially uniform [see Eq. (36)] and the velocity behavior at
infinity is given by Eq. (35), we obtain, upon taking the limit
as b, — +oo,

op”

(D(n) y
— 1 (n) . L= — —_— —
2 hul_1>n+1m LB u e 179 T n=0,1, (40)

where we have accounted for a unitary bubble volume
|Q%| = 1. Taking the derivative with respect to time ¢ of
Eq. (40) and combining it with Eq. (38), we obtain

*pY T
r ° (0) _ pl0)) _
&2+ﬁﬁ@r P )_Q

(41)

o*plV *pl” T,
LT+ (p“>—P<1>):o.

Eventually, a unique macroscopic formulation for the
homogenized fields (p, p,, %) is obtained by expanding
ﬁ(ra t) = p(0>(rv t) + np(l)(r, t) + 0('/]2)a
pr(rys 1) = plO (e, 0) +pV (e, 0) + 00F), (42)

u(r, 1) = u®(r, 1) + qut(r,0) + O(p).
The leading-order equations [Eq. (18)] yield

ou

i —Vp, divi + P _ 0. (43)

ot

364  J.Acoust. Soc. Am. 159 (1), January 2026

For the pressure and velocity fields, the jump conditions fol-
low by aggregating the contributions from Egs. (27)—(32)
and (28)—(34), respectively, and by using Eq. (40) such that

P07, r,t) =p(0,ry,1),

p (r.0). (44

o = (0 A
U (07, r, 1) =, (07, 7y, 1) ¢ o

The resonator equation, governing the evolution of p,, is
obtained by summing the two relations in Eq. (41),
—]_7(071'“,0) =0.

p, I
(1= nfTT) o (rp. 1) + ﬁ(Pr(rHat)

(45)

By construction, this effective model is accurate up to sec-
ond order in 5. Applying the dimensional scalings intro-
duced in Eq. (15) leads to the final macroscopic equations
stated in Eqgs. (5) and (6).

IV. SCATTERING BEHAVIOR OF BUBBLE SCREENS

In this section, we consider the following physical proper-
ties for the liquid and gas phases, corresponding, respectively,
to water and air: p, = 10° kg-m >, ¢, =1500m-s ' for
water, and pe = 1.2kg- m73, and ¢, = 343 m- s~ ! for air.

A. Scattering coefficients and bubble pressure

We consider an incident plane wave of frequency o,
impinging on the bubble screen at an oblique angle (0, @).
Although the direct problem [Eq. (3)] must be solved
numerically, the homogenized model [Eqs. (4) and (5)]
admits an explicit analytical solution of the form

. et 4 Re=k* for x < 0,
ﬁ(-x7 rH , [) — e*l(l)H*kH T . (46)
Te'k for x > 0,

where (R, T) are the homogenized reflection and transmis-
sion coefficients; k&, = k cos 0, k| =k sin O(cos @ ey
+sin @ e.), where k = w/cy is the wavenumber in water.
At x = 0, the homogenized bubble pressure p,, governed by
the resonator equation in Eq. (5) [or, equivalently, Eq. (13)],
also takes the form of a plane wave propagating in the
(v, z)-plane such that

Dy (X, rH , l) _ Pr e*io)thHJH . (47)

The coefficients (R, T, P,) are determined from Egs. (4) and
(5). A direct calculation yields

R= frd T=1+R
(0*/w)* =1+ T.I'id/h —ix,d’ ’
P _ (2 /@)’
" (02 w) — 1+ T TLd/h — ik
(48)
where
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I

o (49)

Kx

and parameters (w>°,I',, ') are defined in Eqs. (2), (8), and
(10), respectively. These expressions generalize earlier results
obtained for square lattices with spherical bubbles by account-
ing for arbitrary incidence angles, bubble shape, and lattice con-
figurations. In particular, comparison with the well-established
model of Leroy et al. (2009) is provided in Appendix B. An
equivalent but more conventional form of these coefficients,
involving only (w,, Q) defined in Egs. (6) and (14), is given by

2i0/0

:—, T:1+R,
1-Q%—2iQ/0
1

(50)

r

T1-Q 20/

where Q = w/w, (see Lanoy et al., 2018, in the context of
bubble screens).

In the following, these scattering coefficients associated
with the homogenized solution [Eq. (46)] are compared with
results from direct numerical simulations. The latter are
obtained by solving the full-scale problem defined by the Euler
equations [Eq. (3)] together with the usual continuity condi-
tions at the air—water interface, using the Acoustics Module of
COMSOL Multiphysics (COMSOL AB, Stockholm, Sweden).
The computations are performed in a three-dimensional rectan-
gular domain consisting of the (y, z) plane, a single elementary
cell of dimensions (hy,h.) and surface area S = hyh,, and
extending over a length 2L, ~ 10k along the x— direction
(h= \/5). The domain contains a single bubble, resulting in
approximately 10° degrees of freedom. Bloch—Floquet bound-
ary conditions are imposed on the lateral faces of the domain
(y==*hy/2 and z= *h./2), whereas perfectly matched
layers are applied at x = *L,. The incident plane wave is
introduced through the background pressure field feature.

To begin with, the validity of the model is illustrated in
Fig. 3, which shows the pressure field in the plane z = 0 for
a bubble screen composed of spherical bubbles of radius
a = 50 ym arranged in a square lattice with 7 = 40a. The
incident wave at f = 83 kHz, slightly above the resonance
frequency at w,/2m ~ 69 kHz, impinges on the bubble
screen at an angle of 0 = 45° with ¢ = 0°. The qualitative
agreement is good, demonstrating the ability of the homoge-
nized model to reproduce the far-field pattern.

In Secs. IV B-1V D, we validate the model more quanti-
tatively. We will examine the effects of bubble density and
shape as well as the effects of the lattice arrangement. To
simplify the comparison, we will consider bubbles of the
same volume V = 47’ /3, where a = 50 um, and the refer-
ence case is spherical bubbles of radius a.

B. Effect of the bubble density

We begin by examining the effect of bubble size to
periodicity ratio a/h, which measures the bubble density in
the screen. We focus on spherical bubbles in a square lattice,
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FIG. 3. Illustration of the model accuracy. Real part of the pressure field in
the plane z =0 for a bubble screen composed of spherical bubbles in a
square lattice (¢ = 50 um, 7 = 200 um) is shown. The incident wave prop-
agates at 45° to the x axis with ¢ = 0 and a frequency of 83 kHz. The com-
parison is performed by showing, for y > 0, the analytical solution of the
homogenized model, Egs. (46)—(48), and for y < 0, the field obtained from
direct numerical simulations (where the bubble array is explicitly resolved)
is depicted. In the direct numerical calculation, we used L, = 3000 um. The
field displayed for y < O has been constructed by extending the numerical
solution along the y direction using Bloch—Floquet periodicity.

which occupy a central place in the literature. For a bubble
of radius a, the characteristic length d is given by

13
J= (4?”) . (51)

Next, the parameters take the form

sph 4n o :
o =" =4n(— (spherical bubble),
3 (52)

=19~ E (square lattice).

In particular I'*""d = 47 is the usual, dimensional capaci-
tance of a sphere (see Appendix A 1).

The value of T'$P" is exact because for a spherical bub-
ble, the capacitance problem [Eq. (9)] admits the closed-
form solution G, = 1/4na, —1/4nr,, where a, =
(3/47)"? is the radius of a unit-volume bubble. The value
of I'L was calculated in Pham et al. (2021b), using the
explicit series representation of the Green function G, in
Eq. (7) [see Egs. (2.9), (2.10), and related text in Pham
et al.,2021b].

Using Eq. (52) in Eq. (2), we recover the Minnaert fre-
quency for a single (spherical) bubble such that

wx = 30 (53)
a Pe

as expected. This same frequency is also recovered from Eq.
(6) in the infinitely dilute limit d/h — 0. The frequency shift
resulting from collective effects of bubbles in the array is
given by the shifting parameter 'L I'cd/h = 3.9 a/h, which
is in good agreement with the prediction reported in Leroy
et al. (2009) based on physical arguments.
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== numerics
model

f (kHz)

FIG. 4. Spherical bubbles in a square lattice. Pressure amplitude against fre-
quency with varying bubble density h/a = (40,30,16.6,5) for constant
a =50 um is depicted. Solid lines show numerical results, and dashed
black lines respresent the results from the model [Eq. (48)] [or equivalently
Eq. (50)] The inset shows the numerically obtained pressure amplitude
along x covering the regions outside and inside a single bubble at
f =70kHz.

To assess the influence of bubble density in the array,
we consider bubbles of radius ¢ = 50 um arranged in the
lattice with four different periodicities: & = (40, 30,
16.6,5)a. A normally incident wave in the frequency range f
between 0 and 120kHz is considered. Figures 4 and 5 show,
respectively, the bubble pressure amplitude |P,| and the
reflection coefficient R as functions of frequency, with solid
lines from numerical simulations and black dashed lines
from the model [Eq. (48)] [or equivalently Eq. (50); see
Table I]. The insets display the numerically obtained pro-
files of the pressure amplitude |p|(x) along a line crossing
the center of a bubble, confirming the uniform pressure
inside the bubble, as expected and predicted by the model.
The considered density range spans (i) the under-damped
regime for dilute arrays (Q > 1 for h/a > 16.2), character-
ized by a resonant response with a strong pressure maximum

L 7 \'\ )
/ \
// \\ 16.6
0.8 1 / \\ 7
/
/ .
/
0.6 | / AN i
/ \\
/
I ,
/
0.4 1 / h/a = 40 i
/ L
02 S ]
| /
I e == numerics
P --- model
0 . . . . .
0 20 40 60 80 100 120
f (kHz)

FIG. 5. Spherical bubbles in a square lattice. Reflection coefficient against
frequency with varying bubble density /a = (40,30, 16.6,5), as in Fig. 4,
is shown.
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TABLE I. Spherical bubble screen in a square lattice. Resonance frequen-
cies w,, Eq. (6), and quality factor Q, Eq. (14), for bubble radius
a = 50 um in a square lattice with 7 = h, = h. are shown. Constant values
are ['od = TMd = 4na, Ty = 3.9/4n, and o /21 = 65.52 kHz.

w,/2n (kHz) 0]
h = 40a 68.96 6.64
h =30a 70.23 3.67
h = 16.6a 74.89 1.05
h=5a 139.66 0.05

and perfect reflection, (ii) the over-damped regime, where
the bubble pressure rapidly vanishes when increasing the
frequency, leading to nearly perfect reflection across the
entire frequency range as a result of the highly echogenic
nature of large bubbles. All of these features are accurately
captured by the model, with relative errors between
numerics and model remaining below 0.4% for all reported
curves without visible increase with frequency.

C. Effect of bubble shape: Spheroidal and cylindrical
bubbles

We now investigate how the bubble shape affects the
response of the screen. To this end, we first consider a class
of spheroidal bubbles with identical volume V = (4na®/3),
defined as

(e23a)> + =1, (54)

where e is the eccentricity and the X axis is the axis of rota-
tional symmetry. The spheroid is prolate if ¢ > 1 and oblate
if e < 1. The capacitance of spheroidal bubbles can be
expressed in closed form such that

I, =T"g(e),
L e>1
atanve? — 1 - (55)

V1—eé?
atanhv/1 — e2

gle) ="

e <1

)

where g(1) = 1 corresponds to the spherical case; see, e.g.,
Egs. (24) and (31) in Spratt et al. (2017).

To isolate the effect of bubble shape alone, we consider
a square lattice, for which I'L = I'? is given by Eq. (52). To
emphasize that the effective model depends solely on the
bubble size and shape (not on its orientation), the spheroid
is rotated such that ex = (e, + e.)/V/2.

In Fig. 6, we report the reflection coefficient as a func-
tion of frequency for & = 40a (with a =50 yum) and varying
eccentricity e = 1/4, 1, and 8. According to Eq. (55) and as
illustrated in the inset, the spherical bubble (¢ = 1) mini-
mizes the capacitance I',, which leads to the lowest reso-
nance frequency. Deviations from spherical geometry
(e # 1) result in an upward (blue) shift of the resonance fre-
quency, accompanied by a reduction of the quality factor;
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e=11/48
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| R| eccentricity e
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FIG. 6. Spheroidal bubbles in a square lattice. Reflection coefficients as
function of frequency for eccentricity e =1/4, 1, and 8 [see Eq. (54)] are
shown. The bubble volume is kept constant at V =4na®/3 with
a =50 pum, and the lattice spacing is 7 = 40a. The inset shows the varia-
tion of I', with eccentricity e.

see Table II. Once again, the effective model closely
matches the numerical results. The relative errors for e # 1
is slightly larger than that for e = 1, reaching up to 0.8%,
but this can be attributable to numerical inaccuracies arising
from mesh resolution.

We now turn to cylindrical bubble screens, widely stud-
ied in water-like gels because of their relative ease of fabri-
cation. We consider cylinders of height /. and radius a.
with constant volume V = na?{. = 4na’/3. This family can
be parameterized by the aspect ratio ¢, which is defined as

_4ac

3
dc
30, <Z> ’ %)

such that a. = ¢'/3a and ¢, = (4/3)c~?/3a. Cylindrical bub-
bles of equal volume are, therefore, described by

c

3x y? + 22
=Tc e (-1,1), (c1/3a)2 = (57)
To our knowledge, no closed-form expression for the
capacitance I, exists for a cylinder. We computed it numer-
ically by solving Egs. (9) and (10) for unit-volume cylinders
with aspect ratios ¢ ranging from 0.1 to 10. A good estimate
of the numerical values is

TABLE II. Spheroidal bubble screen. Capacitances I',, Eq. (55), resonance
frequencies @y, Eq. (2), w,, Eq. (6), and quality factor O, Eq. (14), for
square lattice with & = 40a of bubbles with same volume V = d* = 4na’ /3,
a = 50 um, and eccentricities ¢ =1, 1/, and 8 are shown.

T T T T

C=Cun 1/4 8

061 101 1 10
|R| aspect ratio ¢

0.4+

0.2}

numerics
--- model

0 20 40 60 80 160 120
f (kHz)

FIG. 7. Cylindrical bubbles in a square lattice. Reflection coefficients as a
function of frequency for aspect ratios ¢ = 0.25, 0.77, and 8 are shown.
The bubble volume is V = na2{. = 4na’ /3 with a = 50 pm, and the lattice
spacing is & = 40a. The inset shows the capacitance I', versus ¢, obtained
numerically (gray solid line) and from the estimate in Eq. (58) (black
dashed line). The minimum capacitance occurs at ¢ pin = 0.77.

2
C
I, =8.1240.6(log ), 58
+ <°g0.77> o8

which is illustrated in the inset of Fig. 7. The capacitance of
a cylinder is always larger than that of a sphere
(P! ~ 7.80), with a minimum of 8.12 at ¢ = ¢ yip = 0.77,
corresponding to @, ~ 0.9a and ¢, ~ 1.6a.

Figure 7 displays the reflection coefficient |R| versus
frequency for different aspect ratios ¢ in the same way as in
Fig. 6: a square lattice with 4 = 40a (with a =50 yumm) and
¢ = 1/4, ¢ min, and 8. The case ¢ = ¢y, yields the lowest res-
onance frequency and the highest quality factor, which is
very close—but not identical— to the spherical case for
equal bubble volume (see Table III for ¢ = ¢, compared
with spherical bubbles in Table I for & = 40a).

In conclusion, Figs. 6 and 7 together with Tables II and
IIT highlight how the response of a bubble screen, made of
bubbles of equal volume arranged identically in a lattice,
depends on their shape. All observed variations arise from
changes in the capacitance I',, which the model reproduces
accurately. Notably, the results confirm that bubbles with
aspect ratios e or c¢ close to unity behave almost like
spheres—the required degree of “closeness” depending on

TABLE III. Cylindrical bubble screen with square lattice. Same presenta-
tion as Table II, with ¢ defined as in Eq. (56), for bubbles with identical ref-
erence volume V =4na®/3 with a=510"m. T, is computed
numerically with estimate in Eq. (58), w;° in Eq. (2), and constant value of
d = (4n/3)"a.

r,/re @ /27 (kHz) o, /27 (kHz) 0 I,/ @ /27 (kHz) o, /27 (kHz) 0
e=1/4 1.18 71.23 75.73 604 c=1/4 1.14 69.80 74.01 6.18
e=1 1 65.52 68.96 6.64 =077 1.04 66.87 70.55 6.49
e=38 1.37 76.75 82.47 555 c¢=8 1.44 78.52 84.68 5.41
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the level of accuracy sought. It should be emphasized, how-
ever, that these effects may be significantly altered when the
bubbles are embedded in a gel-like solid matrix as in under-
water applications. In that case, nonspherical inclusions
would excite not only pressure waves, as in the purely
acoustic case, but also shear waves in the surrounding solid
medium (Calvo et al., 2012, 2015; Thieury et al., 2020).

D. Effect of lattice arrangement

We now investigate how the lattice arrangement
affects the screen’s response. Previous studies have
reported that collective interactions in a periodic array lead
to an upward (blue) shift of the resonance frequency rela-
tive to that of an isolated bubble (Leroy et al., 2009;
Skvortsov et al., 2019). This behavior has been consistently
observed for square lattices thus far, i.e., w° < w,. To the
best of our knowledge, however, the influence of the lattice
arrangement has not been examined in detail and, in partic-
ular, no downward (red) shift has yet been documented.
From the expression of the resonance frequency for a bub-
ble screen [Eq. (6)], a blue shift (respectively, red shift)
occurs when the lattice parameter Iy is positive (respec-
tively, negative) because the capacitance parameter I', is
always positive (see Appendix A 1).

The parameter 'y, was computed numerically for a rect-
angular lattice with aspect ratio h,/h. by solving Egs. (7)
and (8) (see also Appendix A 2), i.e., in a cell with unitary
surface. The variation of I'y with the aspect ratio h,/h. is
shown in the inset of Fig. 8 and can be reasonably approxi-
mated by

39 075 /hy, h,
ML~ —— 2+ -2 59
232,00 ( EtE2): (59)
]70.4 L 107 @—1 _
0.2
hZ
08 | |
-0.2
0.6 "1 1 10 '
| R| lattice a.r. hy /R,
0.4+
0.2
== numerics
0 --- model
0 20 40 60 80 100

f (kHz)

FIG. 8. Influence of the lattice arrangement. |R| versus frequency for
spherical bubbles (¢ = 50 um) in rectangular lattices with identical surface
S=n= hyh. (h =200pum) and aspect ratios hy/h. =1, 7, and 10 is
depicted. The inset shows the variation of I'y against h,/h., computed
numerically (gray solid line) and from the estimate [Eq. (58)] (black dashed
line).
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FIG. 9. Influence of the lattice arrangement. Bubble pressure amplitude ver-
sus frequency is shown for the same configuration as presented in Fig. 8.

which indicates that I'|, turns negative when the aspect ratio
exceeds approximately seven.

To confirm this red shift, we came back to spherical
bubbles of radius @=50um,but now the bubbles are
arranged in rectangular lattices of identical surface
S=hn= hyh, with h = 40a, and different aspect ratios,
hy/h. was varied as 1, 7, and 10. The case hy/h, =7 is
expected to produce no frequency shift, whereas A, /h, = 10
should produce a red shift. These predictions are confirmed
in the main panels of Figs. 8 and 9, which show the reflec-
tion coefficient and bubble pressure as functions of fre-
quency. As the aspect ratio deviates from one (square
lattice), the resonance frequency decreases, leading to m,
~ w® for hy/h. =7, and a red shift (o, < w®) for
hy/h. = 10. This frequency reduction is accompanied by an
increase in the quality factor Q, as observed in Fig. 9, where
the bubble pressure increases as /,/h. increases (see also
Table IV).

To conclude this section, we note that the effective
model predicts that the scattering coefficients [Eq. (48)] are
independent of angle ¢, which corresponds to the orienta-
tion of the incident wavevector projection in the (y,z) plane.
This implies isotropic behavior in the lattice plane. Such
isotropy is generally accepted for square lattices as the lat-
tice spacing is subwavelength: in our reference case with
h=40a and a=50um, the wavelength in water at

TABLE IV. Effect of the lattice arrangement. Lattice parameters I, for
rectangular lattices of aspect ratio hy/hz =1, 7, and 10, normalized to
l"iq = 3.9/4n (square lattice iy, /h. = 1), resonance frequencies w,, Eq. (6),
and quality factors Q, Eq. (14), for spherical bubble of radius @ = 50 ym
and 7% = hyh, = (40(1)2 are shown. The resonance frequency of an isolated
bubble is ©° /21 = 65.52kHz from Eq. (6) with I'.d = 4na.

Iy /I w, /2n (kHz) 0
hy/h- =1 1 68.96 6.64
hy/h. =1 0.01 65.54 6.98
hy/h. =10 —0.56 63.79 7.18
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FIG. 10. Anisotropy in the response for rectangular lattice with
h-/hy € (2,5,10). For nearly square lattices (h./h, = 2), the anisotropy is
negligible (of order 1073%) and magnified by a factor of 100.

resonance is about 10 times larger than / (and about 400
times larger than the bubble size a). However, for highly
anisotropic rectangular lattices, such as A, /h. =10, the
wavelength is only about three times larger than the spacing
in the y direction (with kA, close to two at resonance), mak-
ing isotropy in the lattice plane less certain.

To quantify this anisotropy, we performed numerical
simulations for an oblique incidence at 0 = 45° with varying
¢ from 0° to 90°. Figure 10 shows the relative deviation of
the numerically computed reflection coefficient from its
value at ¢ =0 for hy/h =2, 5, and 10. As expected, for
nearly square lattices, the anisotropy is negligible
(~ 1073%, magnified by a factor of 100 in Fig. 10). As the
aspect ratio increases, the angular dependence becomes
more pronounced but remains small, below 2% even for
hy/h. = 10. This very small anisotropy, not captured by the
homogenized model, is of the same order of magnitude or
smaller than the model error in the reported cases: in Figs.
8 and 9, the relative errors increase significantly with A, /h.,
remaining below 0.4%, 1%, and 1.5% for hy/hz =1,7, and
10, respectively (in this case, the mesh resolution is not
really concerned). For hy/hz =7 and 10, we observe that
the errors increase with frequency, which is quite expected
as khy is no longer small.

V. CONCLUSION

In this work, we have derived a time-domain effective
model for acoustic propagation through a metascreen formed
by a periodic array of bubbles embedded in a liquid. The
model is expressed as transmission conditions across a zero-
thickness interface: the pressure remains continuous, whereas
the normal velocity exhibits a jump driven by the internal gas
pressure in the bubbles. This gas pressure obeys a damped
mass—spring equation, unambiguously revealing the resonance
frequency ), and quality factor O of the bubble screen. A key
outcome of this study is the identification of two geometric
parameters—a capacitance-like parameter I',, dependent on
bubble shape, and a lattice parameter ', encoding the effect
of the array arrangement—that fully govern the acoustic
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response of the screen. The framework captures the interplay
between individual bubble resonances and collective effects
within the array and can be applied to any bubble screen con-
figuration, highlighting the critical role of shape and lattice
configuration on the overall response.

Comparisons with direct numerical simulations confirm
that the model accurately reproduces the resonant scattering
behavior of the bubble screen over a broad frequency range.
Its predictive capability extends across a wide variety of
configurations, including different bubble shapes and vol-
umes, lattice geometries, and angles of incidence. Two key
conclusions emerge from this analysis. First, the shift in the
resonance frequency of the array relative to that of an isolated
bubble can be either positive (blue shift) or negative (red shift),
depending on the lattice arrangement. Although a blue shift is
typically observed for square arrays, the model predicts—and
simulations confirm—that a red shift arises in rectangular latti-
ces with sufficiently large aspect ratios. Second, despite that
the rectangular lattices may intuitively be expected to induce
anisotropic scattering, the effective model remains remarkably
accurate: even for highly elongated unit cells, the angular
dependence of the scattering coefficients remains weak, dem-
onstrating that the isotropic approximation inherent to the
effective model is robust and reliable.

Future investigations could address very dense bubble
arrays: although their practical relevance may be limited, as
the metascreen behaves essentially like a wall with vanishing
bubble pressure even at low frequencies, a formal analysis
relaxing the scale separation between bubble size and lattice
spacing could provide insight into the transition regime
between dilute and dense arrays. Extensions also concern more
realistic settings. For spherical bubbles in water, additional
physical effects—such as surface tension, viscosity, and ther-
mal exchanges—in principle, may be incorporated into the res-
onator equation, as briefly discussed in Caflisch ez al. (1985).
For bubbles of arbitrary shape, however, practical realizations
typically involve embedding the inclusions in viscoelastic
matrices, which stabilize the shape but modify the surrounding
medium. Incorporating such viscoelastic effects represents a
promising direction for practical bubble metascreens due to
their relative ease of fabrication and would allow the explora-
tion of additional oscillation modes associated with the pres-
ence of shear waves. Finally, considering unit cells with
multiple bubbles will give rise to hybridized resonances
(Feuillade, 1995), opening new perspectives for achieving per-
fect absorption and richer wave manipulation.
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APPENDIX A

1. The electrostatic capacitance

We first note that I', is a dimensionless parameter,
whereas capacitance is usually defined as having dimension
of length. We define I', for a bubble of arbitrary shape but
with unit volume. For example, CP = 47g, where a is the
radius of the sphere. Hence, a = (47/3)""/3, leading to I'**"
in Eq. (52). In other words, with d = V13, one obtains
C=T..

Aside from this normalization, the normalized electro-
static capacitance C,, = C/d of a conductor occupying a
region Q8 and surrounded by a domain QE‘* is classically
defined as

Co = —J V.V - nds, (Al)
a0

where n denotes the unit normal vector pointing outward
from the conductor, i.e., pointing into the surrounding
domain QEq, and V satisfies the Laplace boundary-value
problem

AV =0 inQY V=1 ondQ,

Cn

vV ~ -
B oo 4mry,

e (A2)

(Smythe, 1950). It is easy to verify that C, =1, and
V=1-T,G,, where (I'.,G,) are defined in Egs. (9)
and (10).

A fundamental property of the capacitance I, is that it
is always strictly positive. Indeed, multiplying Eq. (A2) by
V and integrating by parts yields

I, = J V,V-vV,VdQ > 0. (A3)
Qi

This expression shows that I, is strictly positive. If I'; = 0,
then V,V =0 almost everywhere in ng, which would
imply that V' is constant—contradicting the boundary condi-
tion V =1 on 9QF" and the decay condition at infinity in
Eq. (A2).

2. Numerical computation of I', and I',

The capacitance parameter I', defined in Eq. (9) can be
computed straightforwardly using standard finite element
method software. To approximate the unbounded domain,
the gas bubble of unit volume is enclosed in a sphere of
finite radius R,,,. For bubbles without extreme aspect
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0.1

0

FIG. 11. Numerical G, ~ G"™ for a cylindrical bubble of unitary volume
with aspect ratio ¢ = 1/4 [see Eq. (56)] and Ryym = 7.

ratios, R,,m = 7 suffices to capture the evanescent fields;
see Fig. 11. The numerical solution G5"™ (r,) satisfies

AG™ =0 inQ), G™ =0 on 0Q",
1
2

VG g =
47(Rpum)

atr, = Ryum,

and the capacitance is numerically approximated by

1 1 1
o~ Ghum dr..
I 4'ﬂ:Rﬁum Jl‘p_Rnum ( ° N 4nRI‘lum) T

The lattice parameter I'y defined in Eq. (7) requires
more care due to the singularity at the origin. We introduce

1
drry,’

HL(rm) = GL(I'm) +

which is regular at the origin and harmonic. Because the sin-
gularity of Gy, is centered at the origin, G and H|, are even
in y,, and z,. This symmetry allows periodic boundary con-
ditions in Eq. (7) to be replaced with Neumann conditions.

The numerical implementation is performed in
COMSOL Multiphysics using the weak form partial differ-
ential equation package (see Fig. 12). We consider a guide
of finite length 2L, along e,, where Hy is approximated
by H"™, satisfying the Laplace boundary-value problem

AnHM™™ =0 in Qp,

Vi (HE“‘“ - ) -n=0 on 0Qp,

TTrm
Lnum 1

+ .
N S T

Hﬂum(iLnumaymu Zm) =

In practice, Ly, = 3 is sufficient to capture the relevant
evanescent fields, yielding a converged value of the approxi-
mated lattice parameter

Ty ~ H™(0).
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FIG. 12. Numerical Green function G, ~ H"™ — 1/4xr,, for a periodic
computational domain of unitary cross-sectional area with aspect ratio
hy/h: = 1/3 and Lyym = 3 is shown.

APPENDIX B

The most widely used model in the literature was pro-
posed by Leroy et al. (2009) and describes spherical bubbles
arranged in a square lattice. It takes the same form as Eq.
(48), with the following notations:

R— i iKa ' 7 (B1)

(0F/w)” —1—i(Ka+dy)

where / is responsible for the resonance frequency shift as a
result of collective effects of the bubbles, Ka is the so-called
super-radiation term, and ¢, represents the viscous damping
(absent in our model). The first two terms are given by

a 2na
I~1-35 W Ka_khz. (B2)
(Different forms of / have been proposed, and all converge
to the same expression for subwavelength bubbles.)

Our model [Eqgs. (48) and (49)] shows excellent agree-
ment with Egs. (B1) and (B2) for this specific case.
Considering the expressions of I', for a sphere and I'y. for a
square lattice in Eq. (52), and the relation d = V'/? leading
to Eq. (51), which, in particular, gives

" = 4na,

we obtain almost identical results. Specifically, for normal
incidence, Eq. (48) involves

B
(1 - r;*rgphz) —1- 3.9%Z ~1,

where there is only a minor shift in the resonance frequency.
For completeness, we also refer to Lanoy et al. (2018),
which uses the form of Eq. (50), where Q= w/w,,
W, = a)fc/\/i, and

2 )00
o 2L ey (B3)

~KaQ Coa

Again, for normal incidence, our expression for Q in Eq.
(14), using Eq. (2), leads to the same result as expected. In
both references, viscous losses are introduced heuristically
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by considering Ka — Ka + oy or 1/0 — 1/Q+1/0y in
the denominator of R (with T = 1 + R), where
4n pa*o,l

v pazw b

This correction effectively accounts for the viscous losses
associated with a single bubble (Devin, 1959; Prosperetti,
1977). Models that include viscous losses have been vali-
dated in numerous experimental studies but only for a rather
limited range of bubble densities: #/a = 5 (Bretagne et al.,
2011) and h/a = 4.5 and 5.3 (Lanoy et al., 2018). Only the
study by Leroy et al. (2009) for h = 3.5a and the more sys-
tematic investigation for decreasing values of 4/a down to
three (Leroy et al., 2018), reveal the breakdown of the vis-
cous model.

Following Leroy’s model, the work of Skvortsov et al.
(2019) is interesting as it raises the question of the role of
lattice arrangement, which, as noted, has not been investi-
gated in the literature. In this reference, / = P (for
spherical bubbles) is written in the form

R (BS)

which corresponds to Eq. (18) for small values of a/h, as

reported in Table III of Skvortsov er al. (2019), where ;™"

essentially corresponds to their parameter ¢;. In our nota-
tion, ystha = I d, hence, ysth = 4nl'L. The parameter
P " is evaluated through an interesting analogy between the
notion of capacitance and the trapping rate of absorbing
disks (Berezhkovskii er al., 2006). However, the reported
values of 7" in Berezhkovskii et al. (2006) were obtained
by fitting the numerical counterpart of I*°", which makes it
difficult to generalize them to other lattice arrangements
beyond those considered (square, triangular, and hexago-
nal). Within this limitation, the results reported in Fig. 6 of
Skvortsov et al. (2019) for square and triangular lattices
show almost identical behaviors and are associated with sig-
nificant errors, even for small values of a/h.
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