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The analysis of live-cell single-molecule imaging experiments can reveal
valuable information about the heterogeneity of transport processes and
interactions between cell components. These characteristics are seen as
motion changes in the particle trajectories. Despite the existence of multiple
approaches to carry out this type of analysis, no objective assessment of these
methods has been performed so far. Here, we report the results of a compe-
tition to characterize and rank the performance of these methods when ana-
lyzing the dynamic behavior of single molecules. To run this competition, we
implemented a software library that simulates realistic data corresponding to
widespread diffusion and interaction models, both in the form of trajectories
and videos obtained in typical experimental conditions. The competition
constitutes the first assessment of these methods, providing insights into the
current limitations of the field, fostering the development of new approaches,
and guiding researchers to identify optimal tools for analyzing their
experiments.

Physiological processes occurring in living cells rely onencounters and
interactions between molecules. Archetypal examples include gene
regulation, transduction of biological signals, and protein delivery to
specific locations. All these processes involve the active or passive
transport of biomolecules in highly complex, time-varying, and far-
from-equilibrium environments, such as the cell membrane (Fig. 1a).
One of themost powerful tools to study these transport phenomena is
the combination of live-cell single-molecule imaging with single-

particle tracking1,2 because it can provide the time when and location
where single events take place (Fig. 1b, c). Alternative ensemble
methods (e.g., fluorescence correlation spectroscopy or fluorescence
recovery after photobleaching3) usually provide limited information
because they lose track of crucial details when averaging out spatial
and temporal fluctuations.

Methods for single-molecule imaging and single-particle tracking
have seen tremendous progress in the last decade, in terms of both

Received: 23 March 2023

Accepted: 7 July 2025

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: gorka.munoz-gil@uibk.ac.at; giovanni.volpe@physics.gu.se; carlo.manzo@uvic.cat

Nature Communications |         (2025) 16:6749 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9223-0660
http://orcid.org/0000-0001-9223-0660
http://orcid.org/0000-0001-9223-0660
http://orcid.org/0000-0001-9223-0660
http://orcid.org/0000-0001-9223-0660
http://orcid.org/0000-0001-9497-8410
http://orcid.org/0000-0001-9497-8410
http://orcid.org/0000-0001-9497-8410
http://orcid.org/0000-0001-9497-8410
http://orcid.org/0000-0001-9497-8410
http://orcid.org/0000-0002-9197-3451
http://orcid.org/0000-0002-9197-3451
http://orcid.org/0000-0002-9197-3451
http://orcid.org/0000-0002-9197-3451
http://orcid.org/0000-0002-9197-3451
http://orcid.org/0000-0001-6719-8275
http://orcid.org/0000-0001-6719-8275
http://orcid.org/0000-0001-6719-8275
http://orcid.org/0000-0001-6719-8275
http://orcid.org/0000-0001-6719-8275
http://orcid.org/0000-0003-1904-4137
http://orcid.org/0000-0003-1904-4137
http://orcid.org/0000-0003-1904-4137
http://orcid.org/0000-0003-1904-4137
http://orcid.org/0000-0003-1904-4137
http://orcid.org/0009-0006-5582-6725
http://orcid.org/0009-0006-5582-6725
http://orcid.org/0009-0006-5582-6725
http://orcid.org/0009-0006-5582-6725
http://orcid.org/0009-0006-5582-6725
http://orcid.org/0000-0002-4745-681X
http://orcid.org/0000-0002-4745-681X
http://orcid.org/0000-0002-4745-681X
http://orcid.org/0000-0002-4745-681X
http://orcid.org/0000-0002-4745-681X
http://orcid.org/0009-0002-6561-4743
http://orcid.org/0009-0002-6561-4743
http://orcid.org/0009-0002-6561-4743
http://orcid.org/0009-0002-6561-4743
http://orcid.org/0009-0002-6561-4743
http://orcid.org/0000-0002-0316-0312
http://orcid.org/0000-0002-0316-0312
http://orcid.org/0000-0002-0316-0312
http://orcid.org/0000-0002-0316-0312
http://orcid.org/0000-0002-0316-0312
http://orcid.org/0000-0003-3681-7533
http://orcid.org/0000-0003-3681-7533
http://orcid.org/0000-0003-3681-7533
http://orcid.org/0000-0003-3681-7533
http://orcid.org/0000-0003-3681-7533
http://orcid.org/0009-0001-9582-017X
http://orcid.org/0009-0001-9582-017X
http://orcid.org/0009-0001-9582-017X
http://orcid.org/0009-0001-9582-017X
http://orcid.org/0009-0001-9582-017X
http://orcid.org/0000-0003-4202-0328
http://orcid.org/0000-0003-4202-0328
http://orcid.org/0000-0003-4202-0328
http://orcid.org/0000-0003-4202-0328
http://orcid.org/0000-0003-4202-0328
http://orcid.org/0000-0003-3094-9017
http://orcid.org/0000-0003-3094-9017
http://orcid.org/0000-0003-3094-9017
http://orcid.org/0000-0003-3094-9017
http://orcid.org/0000-0003-3094-9017
http://orcid.org/0000-0002-8476-3915
http://orcid.org/0000-0002-8476-3915
http://orcid.org/0000-0002-8476-3915
http://orcid.org/0000-0002-8476-3915
http://orcid.org/0000-0002-8476-3915
http://orcid.org/0000-0002-2491-8620
http://orcid.org/0000-0002-2491-8620
http://orcid.org/0000-0002-2491-8620
http://orcid.org/0000-0002-2491-8620
http://orcid.org/0000-0002-2491-8620
http://orcid.org/0000-0001-9478-0674
http://orcid.org/0000-0001-9478-0674
http://orcid.org/0000-0001-9478-0674
http://orcid.org/0000-0001-9478-0674
http://orcid.org/0000-0001-9478-0674
http://orcid.org/0009-0000-6126-2125
http://orcid.org/0009-0000-6126-2125
http://orcid.org/0009-0000-6126-2125
http://orcid.org/0009-0000-6126-2125
http://orcid.org/0009-0000-6126-2125
http://orcid.org/0009-0000-6391-0691
http://orcid.org/0009-0000-6391-0691
http://orcid.org/0009-0000-6391-0691
http://orcid.org/0009-0000-6391-0691
http://orcid.org/0009-0000-6391-0691
http://orcid.org/0000-0002-3231-1570
http://orcid.org/0000-0002-3231-1570
http://orcid.org/0000-0002-3231-1570
http://orcid.org/0000-0002-3231-1570
http://orcid.org/0000-0002-3231-1570
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0003-3320-2904
http://orcid.org/0000-0001-9993-5348
http://orcid.org/0000-0001-9993-5348
http://orcid.org/0000-0001-9993-5348
http://orcid.org/0000-0001-9993-5348
http://orcid.org/0000-0001-9993-5348
http://orcid.org/0000-0002-0210-7800
http://orcid.org/0000-0002-0210-7800
http://orcid.org/0000-0002-0210-7800
http://orcid.org/0000-0002-0210-7800
http://orcid.org/0000-0002-0210-7800
http://orcid.org/0000-0002-6013-7020
http://orcid.org/0000-0002-6013-7020
http://orcid.org/0000-0002-6013-7020
http://orcid.org/0000-0002-6013-7020
http://orcid.org/0000-0002-6013-7020
http://orcid.org/0000-0002-2833-5553
http://orcid.org/0000-0002-2833-5553
http://orcid.org/0000-0002-2833-5553
http://orcid.org/0000-0002-2833-5553
http://orcid.org/0000-0002-2833-5553
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0001-5057-1846
http://orcid.org/0000-0002-8625-0996
http://orcid.org/0000-0002-8625-0996
http://orcid.org/0000-0002-8625-0996
http://orcid.org/0000-0002-8625-0996
http://orcid.org/0000-0002-8625-0996
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61949-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61949-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61949-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61949-x&domain=pdf
mailto:gorka.munoz-gil@uibk.ac.at
mailto:giovanni.volpe@physics.gu.se
mailto:carlo.manzo@uvic.cat
www.nature.com/naturecommunications


experimental acquisition and data analysis1,2,4,5. The abundance of
experimental single-particle trajectories, encompassing molecules,
protein complexes, vesicles, and organelles, has led to the develop-
ment of numerous methods dedicated to the reliable detection of
changes in their motion patterns (as summarized in Supplementary
Table 1). These changes serve as valuable indicators for the occurrence
of interactions within the system. For instance, diffusing particles may
exhibit variations in diffusion coefficients (due to processes like
dimerization, ligand binding, or conformational changes) or shifts in
their mode of motion (attributed to transient immobilization or con-
finement at specific scaffolding sites) (Fig. 1a)6. These interactions can
also result in deviations from standard Brownian motion, as char-
acterized by Einstein’s free diffusion model, which includes a linear
mean-squared displacement (MSD) and a Gaussian distribution of
displacements7. This is the case, e.g., of spatiotemporal hetero-
geneities producing transient subdiffusion at specific timescales8–19.
Other mechanisms can instead produce asymptotic anomalous
diffusion2,20–22. Anomalous diffusion compatible with models such as
fractional Brownian motion23–28, continuous-time random walk29,30,
scaled Brownian motion31, and Lévy walk32 has been observed for tel-
omers, macromolecular complexes, proteins, and organelles in living
cells. Several approaches have been recently proposed to detect and
quantify these behaviors33,34, also involving machine-learning
techniques35–41.

To gain insights into the performance of methods to detect
anomalous diffusion from individual trajectories, in 2021, we suc-
cessfully ran the 1st AnDi Challenge42. The discussion that developed
between members of diverse research communities working on biol-
ogy, microscopy, single-particle tracking, and anomalous diffusion
(including experimentalists, theoreticians, data analysts, and compu-
ter scientists) emphasized the necessity for deeper insights into bio-
logically relevant phenomena. First, it identified a need to evaluate
methods to determine the switch between different diffusive beha-
viors, as often observed in experiments. Second, it highlighted the
necessity to assess the methods’ crosstalk in detecting inherent
anomalous diffusion from nonlinearity in the MSD due to motion

constraints or heterogeneity. Third, it emphasized the importance of
determining whether the bottleneck of the analysis process was at the
level of the analysis of the single trajectory or associated with their
extraction from experimental videos. These needs shaped the design
of the 2nd AnDi Challenge, defining its scope with a focus on char-
acterizing and ranking the performance of methods that analyze
changes of dynamic behavior. While we retained the name of the 1st
AnDi Challenge to build upon its already-established community, the
2nd AnDi Challenge focused mainly on revealing heterogeneity rather
than anomalous diffusion. In the simulated datasets, anomalous dif-
fusion emerged from heterogeneity itself or was intentionally intro-
duced for evaluation purposes.

A multitude of methods have been designed to identify and
characterize heterogeneous diffusion (Supplementary Table 1). They
canbe classified based on the heterogeneity they aim to identify or the
kind of analysis they perform. We considered three heterogeneity
classes that these methods aim to identify: (i) changes in the diffusion
coefficient D; (ii) changes in the anomalous diffusion exponent α
(often classified as subdiffusion, diffusion, or superdiffusion); and (iii)
changes in the phenomenological behavior associated with interac-
tions with the environment (often classified as immobilization, con-
finement, (free) diffusion, and directed motion). While changes in the
diffusion coefficient and in the phenomenological behavior have been
widely reported, the exploration of changes in the anomalous diffu-
sion exponent is a more recent development43–46, which is attracting
increasing interest also from the theoretical point of view47–50. The
introduction of new methods for data analysis, as promoted by the
Challenge, had the objective to push the performance for detecting
subtle changes in these diffusion properties in systems where they
could have been overlooked. Along this line, it must be pointed out
that the traditional analysis based on the calculation of the scaling
exponent of the mean-squared displacement (MSD) can create some
ambiguity between the last two classes. Just to provide an example, a
particle performing Brownian diffusion in a confined region has an
exponent α = 1 in terms of the generatingmotion, but its MSD features
a horizontal asymptote at long times, corresponding to α =0. In the
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Fig. 1 | Rationale for the challenge organization. a The interactions of biomole-
cules in complex environments, suchasdimerization, ligandbinding, or trapping at
the cell membrane, regulate physiological processes in living systems. These
interactions produce changes in molecular motion that can be used as a proxy to
measure interaction parameters. b, c Time-lapse single-molecule imaging allows us
to visualize these processes with high spatiotemporal resolution (b) and, in

combination with single-particle tracking methods, provide trajectories of indivi-
dual molecules (c). d, e Analytical methods can be applied to imaging data, either
raw (b) or processed in the form of trajectories (c), to infer interaction kinetics and
quantify their dynamic properties at the ensemble (e.g., probability distributions,
d) or single-trajectory level (e.g., changepoints, e).
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following, we will refer to the exponent α as the characteristic feature
of the generating motion.

From the analysis point of view, we identified two classes of
methods: (i) ensemble methods, meant to determine characteristic
features out of an ensemble of trajectories (Fig. 1d) and (ii) single-
trajectory methods, meant to identify changepoint (CP) locations
through trajectory segmentation (Fig. 1e). While most available
methods rely on the analysis of trajectories obtained from video
processing51, recent advances in computer vision have led to methods
capable of directly extracting information from raw movies without
requiring the explicit extraction of trajectories52,53. Eachmethod has its
own set of advantages and disadvantages, and its performance may
depend on the specific problem under consideration. However, there
is no universally accepted gold standard for determining which
method to use to address each specific problem.

To cater to these more advanced needs, we ran an open compe-
tition as the 2nd Anomalous Diffusion (AnDi) Challenge. The rationale
described above shaped the scope of the challenge, defining the
choice of the datasets and the design of the tasks. To rely on an
objective ground truth, we assessed the methods’ performance on
simulated datasets inspired by models of diffusion and interactions
documented in biological systems. These datasets describe particles
undergoing fractional Brownian motion (FBM,54) with piecewise-
constant parameters. FBM-type motion has been widely observed in
biological systems by means of microrheology, a technique that uses
large tracer particles as probes to study the properties of the
environment55. Anomalous diffusion compatible with FBM has also
been reported for telomers and macromolecular complexes in living
cells20,23–28,56. Beyond this evidence, in the context of the Challenge,
FBM served as a tool to enable the tuning of diffusion parameters. The
combination of parameter values and interaction models might pro-
duce situations that do not correspond to previously documented
biological scenarios but will be valuable to test the methods’ perfor-
mance in a wide range of conditions. In biological experiments, other
kinds ofmotion and evennon-Gaussianbehavior have been reported21.
However, the choice of FBM did not limit the generality of the Chal-
lenge since other models of diffusion and non-Gaussian behavior can
be obtained by properly tuning the parameters of the simulations.
Datasets provided for the last phase of the competition included
motion with parameters inspired by actual experiments for their
comparative analysis with the Challenge methods.

The standard and straightforward approach in live-cell single-
molecule imaging primarily captures information related to lateral
motion. In cases involving flat membranes or isotropic systems,
employing 2D imaging and tracking techniques suffices for obtaining
accurate motion-related parameters. However, when dealing with
motion on non-flat surfaces or within anisotropic 3D environments,
relying solely on 2D projections can result in critical information being
overlooked, potentially leading to the misinterpretation of diffusion
coefficients or the appearance of apparent anomalous diffusion
effects57,58. Consequently, drawing definitive conclusions under such
circumstances should be avoided or approached with caution. To
study motion occurring in 3D space, it is advisable to employ 3D
tracking methods, such as off-focus imaging (i.e., the analysis of ring
patterns in the defocused point spread function)59, interference/
holographic approaches60, multifocus imaging61, or point spread
function engineering62. Although more challenging, these methods
can also measure the motion along the axial dimension, facilitating a
more thorough characterization. For the purposes of the Challenge,
we choose to concentrate on studying changes in diffusion behavior
occurring within a 2D context, driven by particle interactions of var-
ious types.

While this challenge focused on data inspired by biological sys-
tems, the use of regime-switching detection and trajectory segmen-
tation extends well beyond the domain of living cells. Particularly

interesting applications also include, e.g., the analysis of biomedical
signals63, speech64, traffic flows65, seismic signals66, econometrics67,68,
ecology69, and river flows70.

Results
Datasets and ground truth
In order to benchmark the different methods on data with a known
ground truth, we relied on numerical simulations. We developed the
andi-datasets Python package71 to generate the required datasets
to train and evaluate the various methods. Details about available
functions can be found in the hosting repository71.

Particle motion was simulated according to fractional Brownian
motion (FBM,54), a model that reproduces Brownian and anomalous
diffusion processes by tuning the correlation of the increments
through the Hurst exponent H. FBM is a Gaussian process with a cov-
ariance function

E½BHðtÞBHðsÞ�=K t2H + s2H � jt � sj2H� �
, ð1Þ

where E[⋅] denotes the expected value and K is a constant with units
length2 ⋅ time−2H. In order to generalize FBM in two dimensions (2D), a
trajectory R(t) is represented as R(t) = {X(t), Y(t)}, where X(t) and Y(t)
are independent FBM processes along the x and y axes, respectively33.
The anomalous diffusion exponent is related to the Hurst exponent as
α = 2H54, and theMSD for an unconstrained FBM in 2D scales with time
t as

MSDðtÞ=4Ktα : ð2Þ

When α = 1, FBM reverts to Brownianmotion and K corresponds to the
diffusion coefficient D. FBM describes subdiffusion for 0 <H < 1/2
(0 < α < 1), Brownian diffusion forH = 1/2 (α = 1), and superdiffusion for
1/2 <H < 1 (1 < α < 2).

We considered the following physical models of motion and
interactions (Fig. 2a):

• Single-statemodel (SSM)—Particles diffusing according to a single
diffusion state, as observed for some lipids in the plasma
membrane14,15,72. This model also serves as a negative control to
assess the false positive rate of detecting diffusion changes.

• Multi-state model (MSM)—Particles diffusing according to a time-
dependent multi-state (2 or more) model of diffusion undergoing
transient changes of K and/or α. Examples of changes of K have
been observed in proteins as induced by, e.g., allosteric changes
or ligand binding73–76.

• Dimerization model (DIM)—Particles diffusing according to a
2-state model of diffusion, with transient changes of K and/or α
induced by encounters with other diffusing particles. Examples of
changes of K have been observed in protein dimerization and
protein-protein interactions77–81.

• Transient-confinement model (TCM)—Particles diffusing accord-
ing to a space-dependent 2-state model of diffusion, observed for
example in proteins being transiently confined in regions where
diffusion properties might change, e.g., the confinement induced
by clathrin-coated pits on the cell membrane82. In the limit of a
high density of trapping regions, this model reproduces the
picket-and-fence model used to describe the effect of the actin
cytoskeleton on transmembrane proteins9,83.

• Quenched-trap model (QTM)—Particles diffusing according to a
space-dependent 2-state model of diffusion, representing pro-
teins being transiently immobilized at specific locations as
induced by binding to immobile structures, such as
cytoskeleton-induced molecular pinning17,84.

While the interaction mechanisms producing the heterogeneous dif-
fusion are inspired by biological scenarios, some of the combinations
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of diffusion parameters and models lead to situations that may not
correspond to previously documented biological contexts. Never-
theless, this approach holds substantial value as it enables the com-
prehensive assessment of method performance across a broad
spectrum of conditions.

In the simulations, each dynamic state is characterized by a dis-
tribution of values for the parameters K and α. For each trajectory, the
values of K and α for each state are randomly drawn from Gaussian
distributions with bounds α ∈ (0, 2) and K ∈ [10−12, 106] pixel2/frameα.
The interaction distance and the radius of confinement or trapping
have constant values across each experiment. Simulations are pro-
vided in generalized units (i.e., pixels and frames) that can be rescaled
to meaningful temporal and spatial scales.

A detailed description of the simulation procedure is presented in
Extended Methods.

Competition design
Toenable the assessmentof theperformanceofpreviously established
methods while fostering the development of new approaches and the
participation from diverse disciplines, the challenge was organized
along two tracks:

• Video Track—based on the analysis of raw videos.
• Trajectory Track—based on the analysis of trajectories.

For each track, datasets were provided according to a hierarchical
structure (Fig. 2b, c) that includes:

• Experiment—A given biological scenario defined by a model of
interactions and a set of parameters describing the dynamic
interplay of the particles and the environment.

• FOV—A region of the sample where the recording takes place.
Particles within the same field of view (FOV) can undergo inter-
actions among themselves and/or with the environment.

• Video (Video Track only)—Videos corresponding to each FOV.
• Trajectory (Trajectory Track only)—Trajectory corresponding to
the motion of an individual particle.

For both tracks, all particles used in the simulations and located in the
FOV are provided/visualized (i.e., full labeling conditions). The effect
of blinking or photobleaching was not taken into account.

In each track, participants could compete in twodifferent tasks, as
typically done in the analysis of experimental data:

• Ensemble Task—Ensemble-level predictions providing, for each
experimental condition, the model used to simulate the experi-
ment, the number of states, and the fraction of time spent in each
state. For each identified state, participants had to determine the
mean and standard deviation of the distribution of the general-
ized diffusion coefficientsK, and themean and standarddeviation
of the distribution of the anomalous diffusion exponent α corre-
sponding to the underlying motion.

• Single-trajectory Task—Trajectory-level predictions providing for
each trajectory a list ofM inner CPs delimitingM + 1 segmentswith
different dynamic behavior. For each segment, participants had to
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Fig. 2 | Physical models of interaction and structure of the simulated datasets.
a Examples of 2-dimensional trajectories undergoing interactions inducing changes
in their motion. From left to right: single-state model (SSM) without changes of
diffusion; multi-state model (MSM) with time-dependent changes between differ-
ent diffusive states (red and blue); dimerizationmodel (DIM) where a particle (red)
selectively interacts with another particle (gray) and the two transiently co-diffuse
with a different motion (blue trajectory); transient-confinement model (TCM)
where a particle diffuses inside (blue) and outside (red) compartments with
osmotic boundaries (gray area); quenched-trap model (QTM) where a particle is
transiently immobilized (blue) at specific loci through interactions with static fea-
tures of the environment (gray areas). b An experiment (left panel) consists of

simulations performed according to one of themodels of interactions described in
(a) (here showing a TCM experiment), with a set of parameters describing the
dynamic interplay of the particles and/or the environment. From the same
experiment, severalfieldsof view (FOVs) are selected. Particleswithin the sameFOV
(right panel) diffuse and undergo interactions among themselves and/or with the
environment (gray areas) that affect their trajectories. c Time traces of the coor-
dinates of exemplary trajectories from the experiment depicted in (b), displaying
changes of diffusionproperties at specific times (changepoints CPs, dashedvertical
lines). For the Challenge, themotion analysis can be either performed directly from
the video recording of the FOV (Video Track) or from detected trajectories linking
the coordinates of individual particles at different times (Trajectory Track).
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identify the generalized diffusion coefficient K, the anomalous
diffusion exponent α corresponding to the underlying motion,
and an identifier of the kind of constraint imposed by the
environment (0= immobile, 1 = confined, 2 = free (unconstrained,
0.05 ≤ α < 1.9), 3 = directed (1.9 ≤ α < 2.0). For the Video Track,
predictions had to be provided for a subset of particles (in the
following, we will refer to them as VIP, very important particles)
identified through a label map of the first frame of the movie. For
the Trajectory Track, predictions had to be provided for all
trajectories in the FOV.

For each task, several metrics were evaluated (see Scoring and eva-
luation). Participants were allowed to provide partial submissions, e.g.,
including predictions for a limited subset of experiments or for spe-
cific parameters. For ranking purposes of the Challenge, missing pre-
dictions were scored with the worst possible value of the
corresponding metric.

Competition overview
The 2nd AnDi Challenge was held between December 1, 2023, and July
15, 2024, on the Codalab platform. It was divided into three phases,
namely Development, Validation, and Challenge. The Development
Phase (5 months) was intended for the participants to set up their
methods, test them, and familiarize themselves with the datasets and
the scoring platform. An unlabeled dataset was available, and the
public leaderboard showed scores obtained on this dataset. An online
workshop was held on February 22, 2024, to instruct the participants
about thedetails of the challenge. TheValidationPhase (1month)was a
test of the actualfinal challenge. A newdataset (described in Challenge
Dataset) was provided, and the leaderboard was again public. The
Challenge Phase (15 days)was the final stage of the competition. A new
dataset was provided, and the number of submissions per team was
limited to 1 per day. The results were not publicly disclosed, and the
leaderboard was made public only after the end of the competition. In
total, we received 1343 submissions during the three phases. Partici-
pants registered in teams of 1 to 5 people. In the final stage, out of 80
registered participants, 53 individuals, divided into 18 teams, were
included in the leaderboard (see Supplementary Table 2 for the list of
participating teams). The teams’ affiliations spanned Europe (12
teams), Asia (6 teams), and America (1 team). From the final leader-
board, members of the top 5 teams in each task were invited to co-
author this article. An overview of these teams and the methods is
provided in Supplementary Information— Overview of Teams and
Methods.

The results of the Challenge were discussed with the participants
and other experts from the field during the 2nd Anomalous Diffusion
Workshop that was held in June 2025.

Challenge dataset
The Challenge dataset was composed of 12 experiments corre-
sponding to different diffusion models and parameter values. Details
about the numeric values of parameters of the experiments are given
in Supplementary Table 3. In addition, Supplementary Fig. 1 sum-
marizes the distribution of specific features within the dataset. EXP 1
aimed at mimicking multistate diffusion in membrane proteins.
Average diffusion coefficients and the transition matrix of the MSM
were chosen to reproduce, with the appropriate scaling, the three
fastest states reported for the diffusion of the α2A-adrenergic
receptor80. EXP 2 reproduced changes in diffusion coefficient due
to protein dimerization, inspired by the behavior reported for the
epidermal growth factor receptor ErbB177. EXP 3, EXP 4, and EXP 5
were designed to compare the methods’ ability to detect changes
from the same free diffusive state to a slow diffusing state char-
acterized either by traps (QTM, EXP 3), small confinement regions
(TCM, EXP 4), or a subdiffusive dimeric state (DIM, EXP 5). EXP 6 and

EXP 7 were meant to assess the methods’ ability to take advantage of
the knowledge of the physical model itself and additional informa-
tion present in the experiment to improve predictions. The experi-
ments corresponded to different theoretical models (DIM and MSM)
with the same diffusive parameters. EXP 8 served as a negative
control and contained only SSM trajectories with very broad dis-
tributions of K and α. EXP 9 was generated from QTMwith very short
trapping times and superdiffusion in the free state to assess how the
methods deal with such extreme conditions. The other three
experiments contained data with extreme and unrealistic parameters
meant to assess potential biases of the methods, and will not be
discussed further.

Scoring and evaluation
The performance of the methods was evaluated using specific metrics
for each task. For ranking purposes in the Challenge, composite
metrics were used, as described below.

Ensemble task. Participation in the Ensemble Task required predic-
tions of the type of model used for simulating each experiment, the
number of states S of themodel, and the parameters of each state. The
type of model was simply evaluated as correct or wrong. The predic-
tion of the number of states was assessed by measuring the difference
with the ground truth. For both the generalized diffusion coefficient
and the anomalous diffusion exponent, predictions had to include the
mean, the standard deviation, and the relative weight of each state.
From these values, we computed the associated multi-modal dis-
tributions Pα and PD. The similarity of these distributions to the
ground-truth distributions Qα and QD was assessed by means of the
first Wasserstein distance (W1),

W 1ðP,QÞ=
Z

suppðQÞ
jCDFPðxÞ � CDFQðxÞjdx ð3Þ

where CDFQ is the cumulative distribution function of the distribution
Q and supp(Q) is the support (α ∈ (0, 2) and K ∈ [10−12, 106] pixel2/
frameα).

Single-trajectory task. Participation in the Single-trajectory Task
required predictions of theM CPs and the dynamic properties, i.e., the
generalized diffusion coefficient K, the anomalous exponent α, and
diffusive-type identifiers of the resulting M + 1 segments. Different
metrics were used to evaluate the methods’ performance.

CP detection metrics. Following Ref. 51, given a ground-truth CP at
locations t(GT),i, and a predicted CP at locations t(P),j, we defined the
gated absolute distance:

di, j = minðjtðGTÞ, i � tðPÞ, jj, εCPÞ, ð4Þ

where εCP was used as a fixed maximum penalty for CPs located more
than εCP apart. For a set ofMGT ground-truthCPs andMP predictedCPs,
we solved a rectangular assignment problem using the Hungarian
algorithm85 by minimizing the sum of distances between paired CPs:

dCP = min
pairedCP

X
di, j

� �
: ð5Þ

The distance dCP allows to define a pairing metric:

αCP = 1�
dCP

dmax
CP

, ð6Þ

where dmax
CP =MGT εCP is the distance associated with having all pre-

dicted CPs unpaired or at a distance larger than εCP from all ground-
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truth CPs. The metric αCP is bound in [0, 1], taking a value of 1 if all
ground-truth and predicted CPs are matching exactly. Similarly, we
define a CP localization metric:

βCP =
dmax
CP � dCP

dmax
CP +dCP

, ð7Þ

where dCP is the distance associated with having all unassigned
predicted CPs at a distance larger than εCP from all ground-truth CPs.
This metric measures the presence of spurious CPs and is bound in
[0, αCP], taking value αCP if no spurious CPs are present. We also
calculate the number of true positives (TP), i.e., the paired true and
predicted CPs with a distance smaller than εCP. Spurious predictions,
i.e., not associated with any ground truth or having a distance larger
than εCP were counted as false positives (FP). Ground truth CPs not
having an associated prediction at a distance shorter than εCP were
considered false negatives (FN). Given an experiment containing N
trajectories, we computed the overall number of TP, FP, and FN. We
then used these values to calculate the JSC over the whole
experiment as:

JSC =
TP

TP+FN+FP
: ð8Þ

For the predictedCPs classified asTP,we also computed the rootmean
square error (RMSE), defined as:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
pairedCP

di, j < εCP

tðGTÞ, i � tðPÞ, j
� �2

vuuuuut
:

ð9Þ

Metrics for the estimation of dynamic properties. For the evaluation
of the methods’ performances on the estimation of the dynamic
properties, we first followed a procedure similar to the one described
above for the pairing of the CPs. Predicted CPs were used to define the
predicted trajectory segments. We defined a distance between pre-
dicted and ground-truth segments based on the JSC calculated with
respect to their temporal support, where time points at which pre-
dicted and ground-truth segments overlap were considered as TP,
predicted time points not corresponding to the ground truth as FP,
and ground-truth time points not predicted as FN. The Hungarian
algorithmwasused topair segments bymaximizing the sumof the JSC.
Only paired segments were used to calculate metrics assessing meth-
ods' performance for the estimation of dynamic properties. For the
generalized diffusion coefficient K, we used the mean squared loga-
rithmic error (MSLE) defined as:

MSLE =
1
N

X
paired

segments

logðK ðGTÞ, i + 1Þ � logðK ðPÞ, j + 1Þ
� �2

:
ð10Þ

For the anomalous diffusion exponents α, we used the mean absolute
error (MAE):

MAEα =
1
N

X
paired

segments

jαðGTÞ, i � αðPÞ, j j,
ð11Þ

where N is the total number of paired segments in the experiment,
α(GT),i and α(P),j represent the ground-truth and predicted values of the
anomalous exponent of paired segments, respectively. For the

classification of the type of diffusion, we used the F1-score:

F1 =
2TPc

2TPc + FPc + FNc
, ð12Þ

where TPc, FPc, and FNc represent true positives, false positives, and
false negatives with respect to segment classification. The metric was
calculated as a micro-average, which aggregates the contributions of
all classes to compute the average metric and is generally preferable
when class imbalance is present.

Metrics for challenge ranking
For ranking purposes, we used the mean reciprocal rank (MRR) as a
summary statistic for the overall evaluation of software performance42:

MRR=
1
N
�
XN
i= 1

1
rankMi

, ð13Þ

where rankMi
corresponds to the position in an ordered list based on

the value of the corresponding metrics Mi.
For the Ensemble Task, the metrics involved in the calculation

were the F1-score of the model and the MAE of the distributions of K
and α. For the Single-trajectory Task, we used the JSC and the RMSE of
CPs, the MSLE of K, and the MAE of α.

Overview of the challenge results
The Challenge dataset was comprehensively designed to test the
submitted methods under distinct scenarios, using ad hoc metrics to
evaluate their specific capabilities. For ranking, we employed compo-
site metrics that aggregate the scores from different experiments and
subtasks. The results are summarized in Fig. 3. Here, we present an
overview of the Challenge results, highlighting the general trends
observed. The complete rankings are provided in Supplemen-
tary Fig. 2.

In the Single-trajectory Task (Fig. 3a), one method based on
UNet3+86,87 (team I) clearly outperformed the others, whereas the
Ensemble Task (Fig. 3b) showed a more balanced competition. From
the MRR breakdown, we observed that the top team in the Single-
trajectory Task performed consistently well across all metrics. In
contrast, for the Ensemble Task, the top teams improved their final
ranks by specializing in one of the two subtasks.

We also show the correlation between pairs of metrics associated
with CP detection (Fig. 3c) and the prediction of diffusive properties
(Fig. 3d, e). The predictions for the Video Track (represented by filled
squares) are also included alongside those of the Trajectory Track
(represented by empty circles). Across methods, enhanced CP detec-
tion, reflected by higher JSC and lower RMSE, yields a tight correlation
between thesemetrics (Fig. 3c). A similar but weaker trend appears for
K and α errors (Fig. 3d, e), because their estimation often relies on
distinct algorithms, decoupling improvements in one from the other.

In the plots, the dashed lines connect the predictions of teams
participating in both tracks. All teams in the Video Track (teams E and
Q for the Single-trajectory Task, teams E and F for the Ensemble Task),
except for team K, improved their predictions in the Trajectory Track
compared to the Video Track. Notably, all four teams first extracted
the trajectories using a previously established tracking method5,40,88–91

and then performed the ensuing analysis using the same method
developed for the Trajectory Track. While this highlights the influence
of error associated with the tracking process51, none of the methods
explored the possibility of obtaining results directly from the video,
which was one of the exploratory goals of this competition.

Finally, Fig. 4 shows the score obtained for subtask metrics by all
teams for each experiment (filled symbols). The consistently lower
performance of the Video Track compared to the Trajectory Track
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lends support to the third rationale: it suggests that challenges in
accurately extracting trajectories from experimental videos represent
a more significant bottleneck than the downstream analysis of pre-
extracted tracks.

These plots provide further insight into which experimental
conditions were more challenging for each subtask. For example, CP
detection in EXP 1 (MSM with 3 states) was particularly difficult, as
indicated by the low JSC in Fig. 4a. As shown in Fig. 4e, classification of
the type of diffusion for EXP 4 (TCM)wasmore challenging than EXP 3
(QTM), despite having similar parameters for the unrestrainedmotion.
For the Ensemble Task, we observe poorer predictions for K in EXP 8
(SSM, Fig. 4f) and for α in EXP 9 (QTM, Fig. 4g). In the following, wewill
comparatively discuss results obtained for groups of experiments
aimed at detecting specific method capabilities. For most of these
analyzes, we will mainly consider the methods of the top 5 teams in
each Track and Task.

CP detection and segment diffusion properties
A main aspect of the Challenge was the evaluation of CP detection
capability and the ensuing assessment of diffusion properties for the
identified segments. In particular, we tested the methods’ ability to
distinguish true anomalous diffusion from subdiffusive behavior that
emerges solely from physical constraints, directly addressing the
second rationale. These insights were provided by the Single-
trajectory Task.

As shown in Fig. 4a–e, the methods generally performed well
when tested on time-varying processes. We sought to characterize the

false positive rate of themethods by evaluating their behavior over the
trajectories of EXP 8 having no CPs (Fig. 5a, b). EXP 8 also served to
assess the methods’ ability to estimate parameters K and α indepen-
dently of errors induced by incorrect segmentations. Submitted pre-
dictions were benchmarked with the estimations of K and α obtained
by linear and logarithmic fits of the MSD, respectively (dashed lines).
Mostmethodspredicted very fewCPs for these trajectories, producing
a low false positive rate and outperformed theMSD fit for both K and α
(Fig. 5a, b).

A relevant aspect associated with CP detection accuracy is its
dependence on the number of CPs per trajectory, shown in Fig. 5c–e,
which is inversely related to the average segment duration. As expec-
ted, the JSC shows worse performance as the number of CPs increases
(Fig. 5c). Regarding the diffusion parameter estimation, we observe
that the methods allow a robust estimation of K independently of the
number of CPs (Fig. 5d), whereas for α we observe a drop in perfor-
mance as the number of CPs increases (Fig. 5e). This confirms the
difficulty of estimating α from short segments, due to its asymptotic
nature, already observed in the 1st AnDi Challenge42.

Classification of types of diffusion
One of the goals of this competition was to assess the methods’ ability
to classify different diffusion types and distinguish among distinct
physical models. Results for all experiments of the Video and Trajec-
tory Tracks are shown in Supplementary Figs. 3 and 4, respectively.
The results of the two tracks were qualitatively similar but the Video
Track had overall lower scores since all teams except team Q missed

Performance
high

low

Fig. 3 | Challenge rankings.Mean reciprocal rank (MRR) of all methods partici-
pating in the Single-trajectory Task (a) and Ensemble Task (b) in the Trajectory
Track. The colors represent the relative contributions of the metrics of each sub-
task to the overall MRR. c–e Correlation between subtask metrics associated with
changepoint (CP) detection (c), the prediction of segment properties (d) in the
Single-trajectory Task, and the prediction of diffusive properties in the Ensemble

Task (e). Empty circles and filled squares represent the metrics obtained for the
Video Track and the Trajectory Track, respectively. Dashed lines join results
obtained by the same team in the two tracks. The darker background color indi-
cates the area of the plot corresponding to better performances. Source data are
provided as a Source Data file.
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the immobile state (Supplementary Fig. 3). To summarize the meth-
ods’ ability to assign segments to diffusion types, in Fig. 6 we show the
distribution of each diffusive state compared to the ground truth
(horizontal segments) for representative experiments of the Trajec-
tory Track. In Fig. 6a we exemplarily show the results obtained for EXP
9, a QTMwith an unconstrained state having a narrow distribution ofK
but with α values that could produce either superdiffusive or directed
motion. In this case, only the top method (team I, light blue) was able
to produce a reliable classification of the diffusion type of the seg-
ments. The difficulty in inferring the correct type of mechanism pro-
ducing interaction underscores the challenges in accurately analyzing
this kind of data, which can have significant implications for the bio-
logical interpretation of the results. Although perfect classification of
diffusive states remains challenging, the algorithms nonetheless pro-
vide precise estimates of critical biophysical parameters, namely, the
average dwell times in both trapped and unconstrained states (inset of
Fig. 6a). The measure of these parameters is essential for quantifying
binding kinetics, confinement lifetimes, and transition rates that
directly inform biological interpretation.

The second rationale for the Challengewas to probe themethods’
ability to disentangle genuine anomalous diffusion from subdiffusive
behaviors arising purely frommotion constraints. To test themethods
in challenging conditions, we designed a group of experiments (EXP 3,
EXP 4, and EXP 5) with different underlying models but with diffusive
parameters that produce similar trajectories. The three experiments
share an unconstrained state with normal diffusion, and K ≈ 1: EXP 3 is
simulated as QTM, whereas EXP 4 is from a TCM with a small con-
finement radius and α ≈0.2, and EXP 5 is DIM with a dimeric state with
α ≈0.2. Other parameters were set to obtain similar residence times in
the different states. Figure 6b–d highlights the performance of the top
five methods across EXP 3–5. Teams I, C, and R each correctly classify
over 95% of segments, closely matching the true distribution of dif-
fusive states. Team E tends to over-label segments as diffusive, while
Team O occasionally confuses confined segments for diffusive ones

and vice versa. Team R, despite its high overall accuracy, also makes
occasional misclassifications of diffusive segments as immobile or
confined. Importantly, for EXP 4 (small-radius confinement) and EXP 5
(dimerization-induced subdiffusion), misclassification as immobile is
negligible for Teams I, C, and R. Detecting confinement in EXP 4 is
particularly challenging since short dwell times in confined areas yield
few boundary reflections, inducing confusion with unconstrained anti-
persistent subdiffusion of EXP 5. The ability of Teams I, C, and R to
resolve these subtle cases underscores the high sensitivity and
robustness of their methods.

Using physical models to enhance method performance
The information contained in an individual trajectory is typically suf-
ficient to estimate CPs and diffusive properties. However, for some
physical models, the knowledge of the model itself offers additional
information that could be used to improve further CP detection and
parameter estimation. This is the case for QTM and TCM, where
changes in diffusion correspond to spatial constraints. For DIM, dif-
fusion changes are associated with particle proximity; in addition,
since particles in a dimer co-diffuse, one could, in principle, use twice
as much information to estimate K and α, although in typical experi-
mental conditions it may be very challenging to track two co-diffusing
particles.

Along these lines, for the Single-Trajectory Task, the lowest JSC
values were obtained for EXP 1 and EXP 7 (circles in Fig. 4a). Both
experiments correspond to simulations of MSM, a model where the
diffusion changes are produced in a purely time-dependent fashion
and the dataset itself does not provide additional hints to determine
them. This suggests that the methods can directly or indirectly take
advantage of the presence of a physical event (e.g., trapping, con-
finement, or dimerization) to enhance CP detection accuracy. To
assess this effect quantitatively, we used EXP 5 and EXP 6, which cor-
respond to different physical models (DIM and MSM, respectively)
generated with an identical set of diffusive parameters. To quantify
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Fig. 4 | Overviewof the results. a–e Scores obtained for each subtaskmetric by all
teams for each experiment of the Single-trajectory Task (filled symbols). Squares
and circles represent the metrics obtained for the Video Track and the Trajectory
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represent the metrics obtained for the Video Track and the Trajectory Track,
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Source data are provided as a Source Data file.
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model-based gains, we computed the relative improvement

Δmð%Þ= mDIM �mMSM

mMSM
× 100% ð14Þ

for each subtask metric (JSC, MSLE, and MAE). Figure 7 reports these
improvements for all methods, with the overall average shown as a
dashed line.

Surprisingly, while most of the methods showed improved per-
formance for the CP prediction in DIM (Fig. 7a), there were minor
differences in the prediction of diffusive properties (Fig. 7b, c). We
believe this is because the methods predict each trajectory’s proper-
ties without considering it in the ensemble of the FOV or of the
experiment, an observation that may improve the next generation of
methods.

Ensemble predictions
The Ensemble Task was designed to test whether the methods could
take advantage of the increased statistics obtained from common
parameters shared by all trajectories within the same experiment to
better identify the type of motion and estimate its parameters. As
discussed earlier, several approaches of this type have been devised
and used in the past to extract biophysical information from single-

particle tracking data (Supplementary Table 1). However, no pure
ensemble-level method, i.e., one that disregards the individual tra-
jectory identity, was employed for the Challenge. Instead, all teams
that provided submissions for the Ensemble Task used predictions
obtained at the single-trajectory level, which were then pooled
together to estimate the moments of the distributions of the diffu-
sive parameters. Results for all experiments of the Video and Tra-
jectory Tracks are shown in Supplementary Figs. 5–8. The resulting
distributions are summarized in Fig. 8 for 4 exemplary experiments
(EXP 4, EXP 7, EXP 8, and EXP 9) of the Trajectory Track. The pooling
operation was performed using two general approaches: teams
either applied a Gaussian mixture model (GMM) or a clustering
algorithm on the predicted segments to extract subpopulation
parameters, with four of the top 5 teams opting for the former
approach (teams E, I, M, and O). Interestingly, as it can be inferred
from Fig. 3a, b, the scores obtained by the teams participating in both
tasks showed a low correlation. Therefore, accurate predictions at
the single-trajectory level do not necessarily translate into reliable
ensemble-level predictions, pointing to a critical role of the cluster-
ing approach.

Figure 8a, b shows an experiment where all teams provided
consistent and reasonable predictions. This is particularly evident for
the K distribution in EXP 7 and EXP 8 (Fig. 8b, c). Since the methods

Performance
high

low

Fig. 5 | CP detection and segment diffusion properties. a, b Scatter plots of the
metrics associated with segment diffusion properties in the Single-trajectory Task
of the Trajectory Track as a function of the false positive rate calculated for EXP 8,
composed of trajectories without CPs. Results obtained by all participants are
shown.Dashed lines correspond to the scores obtainedbyusing the fit of themean-
squared displacement, as a benchmark. The darker background color indicates the

area of the plot corresponding to better performances. c–eDependence of the JSC,
MSLE, andMAEon the number of changepoints for the Single-trajectoryTask of the
Trajectory Track. Only the results of the top 5 teams are shown. The color code
represents their position in the ranking (blue is the highest, red the lowest). Source
data are provided as a Source Data file.
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rely on estimates of K per segment and then apply GMM or k-means,
they generally tend to over-fragment wide K ranges, misrepresenting
the overall distribution. The corresponding predictions for the dis-
tributions of α for these experiments are shown in Fig. 8f, g. For EXP
8, characterized by the absence of CPs and nearly flat distributions of
K and α, most methods successfully captured the broad distribution
of α (Fig. 8g). However, their predictions for K (Fig. 8c) were often
biased toward different ranges within the allowed support. In con-
trast, EXP 9 presented a population of short dwell times in the
trapped state. Mostmethods successfully detected the occurrence of
these events, as reflected in the K distribution (Fig. 8d), but, with the
exception of team I, failed to associate these events with the correct
α = 0 Fig. 8h.

We further point out that optimizing methods to provide high
scores for the metrics of the competition did not always translate
into more meaningful insights about the underlying physical pro-
cesses. For instance, teams M, H, and O showed significant biases
across all experiments when predicting the K distribution but still
achieved high rankings according to the metric in Eq. (3) (Supple-
mentary Fig. 6). Moreover, accurately predicting the number of true
states did not provide a clear advantage with this metric, as most top
teams overestimated the number of states but carefully adjusted
their relative weights to minimize differences with the ground-truth
distribution.

Results summary and take-home messages
Robust changepoint detection. Top single-trajectory methods (e.g.,
based on UNet3+86) consistently achieve over 95% accuracy in identi-
fying segment boundaries, with only minor false-positive rates across
all scenarios.

Distinguishing confinement, immobilization, and anomalous diffu-
sion. Leading algorithms accurately classify segments arising from
geometric constraints or anomalous dynamics. Only very short seg-
ments and exponents close to zero remain challenging, indicating
minimal crosstalk between distinct diffusion mechanisms.

Trajectory extraction is a bottleneck. Video-Track performance lags
the Trajectory Track by 10−30%, highlighting that linking and locali-
zation errors-not downstream analysis–drive most of the
accuracy loss.

Parameter estimation benefits from physical priors. Incorporating
known physical models may yield significant gains in changepoint
detection, but separate estimation pipelines for K and α result in only
modest improvements in parameter accuracy.

Dedicated ensemble approaches are needed. Ensemble Task sub-
missions rely on GMMor k-means clustering of per-trajectory outputs,

Fig. 6 | Classification of types of diffusion.Only the results of the top 5 teams are
shown; the color code represents their position in the ranking (blue is the highest,
red the lowest). Predictions for the frequency of time spent with a given diffusion
type for EXP9 (a), EXP 3 (b), EXP 4 (c), and EXP 5 (d) for the Single-trajectoryTask of
the Trajectory Track. Horizontal segments represent the ground truth. Inset of (a)

predicted average residence time for the trapped and non-trapped states. The non-
trapped state includes segments corresponding to both unconstrained (free/
anomalous) diffusion and directed motion. Source data are provided as a Source
Data file.

Registered report https://doi.org/10.1038/s41467-025-61949-x

Nature Communications |         (2025) 16:6749 10

www.nature.com/naturecommunications


which fragments broad parameter distributions (e.g., EXP 7–8).
Ensemble approaches, either bypassing single-trajectory clustering or
using more sophisticated grouping techniques, hold potential for
uncovering population-scale insights.

Discussion
The2ndAnDiChallengeprovided aplatform for advancingmethods to
characterize diffusion trajectories, with a special focus on those exhi-
biting transitions between distinct diffusive regimes. Through this
Challenge, participants developed approaches that, when applied to
standardized benchmarks, demonstrate robust capabilities in analyz-
ing processes akin to those found in complex biophysical
environments.

The high participation from teams spanning different fields
vividly demonstrated the first rationale for the Challenge: the urgent

need for standardized, rigorously evaluated methods to analyze
dynamic changes in particle motion.

The Challenge highlighted several key insights. The methods for
changepoint analysis have reached a good level of maturity. Partici-
pants demonstrated strong capabilities in detecting changepoints,
which is crucial for understanding transitions between different dif-
fusive regimes. However, the characterization of the resulting seg-
ments can still be improved. Accurate estimation of diffusion
parameters within these segments remains challenging, particularly
for short segmentswhere the asymptotic nature of certainparameters,
such as the anomalous diffusion exponent α, complicates analysis.
Sequence-to-sequence machine learning methods, mostly based on
architectures combining convolutional92 and transformer93 layers,
have shown great flexibility and effectiveness. The top-performing
methods often utilized these architectures, highlighting their potential
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Fig. 8 | Ensemble task predictions for the trajectory track. a–d show the pre-
dicted distributions of the diffusion coefficientK, and e–h the anomalous exponent
α for EXP 4, EXP 7, EXP 8, and EXP 9, respectively. Distributions were computed
from the estimated means and variances (see Scoring and evaluation—Ensemble

Task).Only the results of the topfive teams are displayed, with color indicating rank
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Fig. 7 | Effect of the physical model. Relative improvement for all participants
when predicting trajectory properties from EXP 5 (DIM) with respect to EXP 6
(MSM) for the Single-trajectory Task of the TrajectoryTrack. Eachpanel reports the

metrics associated with a different subtask: JSC (a), MSLE (b), and MAE (c). Source
data are provided as a Source Data file.

Registered report https://doi.org/10.1038/s41467-025-61949-x

Nature Communications |         (2025) 16:6749 11

www.nature.com/naturecommunications


for further advancements in the field. Notably, the methods did not
take into account information coming from common parameters
shared among trajectories or the underlying physical processes.
Incorporating this knowledge could enhance the accuracy and
robustness of the analyzes.

Nevertheless, significant challenges remain, and we hope the
Challenge will help pave the way toward their resolution. In particular,
we highlight two promising new avenues, whichwe believemay have a
great impact on our understanding of the physics underlying bio-
physical processes.

First, the precision with which we can extract diffusion para-
meters remains fundamentally limited by current tracking algorithms,
directly highlighting the third rationale for the Challenge. Notably, all
participants in the Video Track relied on existing tracking techniques,
subsequently applying the methods developed for the Trajectory
Track to analyze the resulting trajectories. Despite the rapid advances
in deep learning, none of the participants have yet leveraged these
cutting-edge technologies to directly extract diffusive properties from
video data. This missed opportunity could be attributed to several
factors: the analysis technology may not yet be fully mature, the
training processes might be too lengthy and complex, or the compu-
tational resources and time required could be prohibitively high. We
foresee that as these bottlenecks are addressed, a new generation of
methods will emerge, capable of bypassing the tracking step alto-
gether and setting new standards of accuracy.

Second, in the Ensemble Task, all participants relied on post-
processing of single-trajectory outputs. Features were first extracted
from individual trajectories, and then a separate step was used to infer
the parameters of the diffusive populations. No team developed
dedicated ensemble-level algorithms or used established ensemble
frameworks.

Although this single-trajectory-based approach produced high
Challenge rankings, it offered limited biophysical insight due to the
proliferation of predicted states and the instability of each mode’s
variance. Minimizing the Wasserstein-1 (W1) distance aligns predicted
and ground-truth distributions, but W1 offers no penalty for over-
splitting into numerous states or for unstable variance estimates, nor
does it encourage physically interpretable solutions (e.g., filtering
overlapping modes or very low-population segments). This warns us
that outputs should not be blindly trusted when applied to real
experiments. Care should always be taken not to overfit the data with
too many states that cannot be assigned to a biophysical process.
Whenever an analysis yields a large number of states, their identities
should be validated through control experiments. In practice, a priori
biological knowledge often narrows the expected state count, pro-
viding essential context for interpreting algorithmic results.

Looking ahead, methods capable of inferring population dis-
tributions directly from the raw ensemble of trajectories, thereby
bypassing single-trajectory feature extraction and clustering, may
deliver deeper physical insights. Moreover, approaches that treat the
full set of trajectories contextually, rather than in isolation, are likely to
enhance both performance and interpretability.

To encourage further development of methods addressing these
issues, as well as those aligned with approaches used throughout the
challenge, we have made the labeled dataset discussed in this work
publicly available on Zenodo94. This resource allows researchers to
benchmark new methods in a standardized manner, while also pro-
viding the experimental biophysics community with a tool to better
identify the methods best suited to their specific experimental
scenarios.

Methods
Simulations of diffusion and interaction models
Trajectories are simulated according to a 2-dimensional fractional
Brownian motion (FBM)54. FBM is a continuous-time Gaussian process

BH(t) with stationary increments and a covariance function
E½BHðtÞBHðsÞ�= 1

2 ðjtj2H + jsj2H � jt � sj2HÞ, whereH represents theHurst
exponent and is related to the anomalous diffusion exponent α as
H = α/254. FBM features three regimes: one in which the increments are
positively correlated (1/2 <H < 1, i.e., 1 < α < 2, superdiffusive); one in
which the increments are negatively correlated (0 <H < 1/2, i.e.,
0 < α < 1, subdiffusive); and one in which the increments are uncorre-
lated (H = 1/2, i.e., α = 1, diffusive Brownian motion).

Themodels included in the Challenge describe trajectories where
diffusion properties are piecewise constant along segments of varying
duration Ts and undergo sudden changes. To obtain a trajectory seg-
ment of length Ts with given anomalous diffusion exponent α and
generalized diffusion coefficient K, a set of Ts − 1 displacements for
each dimension is sampled from a fractional Gaussian noise
generator95. The displacements are then standardized to have variance
σ2 = 2KΔt, where Δt is the sampling time.

Simulations are performed considering particles diffusing in a
square box of size L with reflecting boundary conditions. However, to
avoid boundary effects, the fields of view used for the Challenge
datasets correspond to a square region of size LFOV≪ L within the
central part of the original box (Fig. 2b).

For Track 1, trajectory coordinates are used as sub-pixel localiza-
tions of individual particles to simulate movie frames as in single-
molecule fluorescence experiments5. Each particle has a random
intensity Ii that corresponds to the total number of photons collected
by the detector. Ii is drawn from a uniform distribution in the interval
½Imin, Imax� and fluctuates over time according to a normal distribution
with mean Ii and standard deviation σI. Each particle is rendered as a
diffraction-limited spot using an Airy disk as a point-spread function
(PSF) with full width at half maximum FWHMPSF = 2.1 px. A constant
background of Ibg = 100 counts is added to each frame. Images are
corrupted with Poisson noise.

For Track 2, trajectory coordinates are corrupted with noise from
a Gaussian distribution with zero mean and standard deviation σN to
take into account the finite localization precision obtained in tracking
experiments. All simulated trajectories were generated without miss-
ing frames: no gaps were introduced, yielding continuous tracks to
isolate segmentation performance from linking or gap-filling
complexities.

All the models share a set of parameters required for the simula-
tions that are described here. Model-specific parameters are defined
when describing the details of the models in the following sections.

• [K1, K2,…, Kn]: average values of the (Gaussian) distribution of the
generalized diffusion coefficient for each of the n diffusive states
considered in a given experiment, with support [10−12, 106] pixel2/
frameα.

• ½σK1
,σK2

, . . . , σKn
�: standard deviations of the (Gaussian) dis-

tribution of the generalized diffusion coefficient for each of the n
diffusive states considered in a given experiment. If not provided,
the standard deviation is considered to be equal to 0 (i.e., the
distribution is δ(K −Ki)).

• [α1, α2,…, αn]: average values of the (Gaussian) distribution of the
anomalous diffusion exponent for each of the n diffusive states
considered in a given experiment, with support (0, 2).

• ½σα1
, σα2

, . . . , σαn
�: standard deviations of the (Gaussian) distribu-

tion of the anomalous diffusion exponent for each of the n dif-
fusive states considered in a given experiment. If not provided,
the standard deviation is considered to be equal to 0 (i.e., the
distribution is δ(α − αi)).

• L: size of the box in which trajectories are simulated with reflect-
ing boundary conditions.

• LFOV: size of the box defining the FOV used for the Challenge
datasets. The same particles can enter and exit the FOV over time
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but, for evaluation purposes, they will be considered as generat-
ing different trajectories.

• Δt: sampling time at which the original motion of the particle is
tracked. For the Challenge datasets, we consider Δt = 1.

• T: duration of the recording over each FOV, given as the number
of time steps Δt. It also corresponds to the maximum trajectory
duration. For the Challenge, we set T = 200;

• Tmin: minimum duration of a trajectory to be included in the
dataset. For the Challenge, we use T = 20;

• Ibg (Track 1): background level of noise (counts) used in the
simulation of videos.

• FWHMPSF (Track 1): full width at half maximum in pixels of the
point-spread function used to render fluorescent particles.

• Itot (Track 1): mean value in counts of the total fluorescence col-
lected for the detected particles.

• σtot (Track 1): standard deviation in counts of the distribution of
total fluorescence collected for the detected particles.

• Ipeak (Track 1): mean value in counts of the peak fluorescence
collected for the detected particles. Can be calculated
as Ipeak = Itot

4 ln 2
πFWHM2

PSF

• SNR (Track 1): typical signal-to-noise ratio of the movies,
calculated as the average peak intensity over the standard
deviation of the noise51 and thus equal to

SNR=
Ipeakffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ipeak + Ibg
q : ð15Þ

• σN (Track 2): standard deviation of the Gaussian localization noise
used to corrupt trajectory coordinates.

• tmin: minimum distance between changepoints, corresponding to
the minimum amount of time that a particle spends in a state.
Shorter segments are eliminated by smoothing the time trace of
the state label using a majority filter with a window of 5 steps. For
the Challenge, we set tmin = 3 frames to test the sensitivity and
robustness of the segmentation methods under minimal data
conditions.

A schematic representation of each of the models presented
below is shown in Fig. 2a.

Model 1 - Single-state model (SSM). This model simply corresponds
to particles diffusing according to FBM with constant generalized
diffusion coefficient K and anomalous diffusion exponent α. For each
trajectory, a value of K and a value of α are sampled from the corre-
sponding distribution. Data corresponding to these models are
necessary to establish the falsepositive rate of themethods toward the
detection of changes of diffusion properties.

Model 2 - Multi-state model (MSM). The multi-state model is a Mar-
kov model describing particles undergoing FBM whose diffusion
properties can change at random times. The number of states S isfixed
for a given experiment, as are the parameters defining the distribu-
tions of K and α for each state. For each trajectory, S values of α and S
values of K are sampled from the distribution of the corresponding
states, i.e., one per state. At every time step, a diffusing particle has a
given probability to undergo a change in one of its diffusive para-
meters (either α or K). The probability of switching is given by a tran-
sition matrixM. Namely,Mij is the probability of switching from state i
to state j at each time step. In the same sense,Mii is the probability of
remaining in state i. The residence time in a given state i can bedirectly

calculated from the previous probability as

τi =
1P

j≠iMij
=

1
1�Mii

: ð16Þ

Model 2 (MSM) parameters.
• M: transition matrix between diffusive states.

Model 3 - Dimerization (DIM). This model considers the case in which
dimerization, i.e., the transient binding of two particles,may occur and
produce changes in the diffusion properties of both particles. In par-
ticular, we consider the case ofN circular particles of radius r. For each
trajectory, a value of α and a value of K are sampled from the corre-
sponding distributions associated with the monomeric state. If two
particles are at a distance d < 2r, then they have a probability Pb of
binding. The two particles forming a dimer move with equal dis-
placements, according to a generalized diffusion coefficient K and an
anomalous diffusion exponent α drawn from the distributions asso-
ciated with the dimeric state. At each time step, the dimer has a
probability Pb of breaking its bond, freeing the twoparticles to go back
to their originalmotionparameters. Theparticles cannot formanynew
dimers until taking a new step. Only dimers are allowed, and sub-
sequent hits with other particles will not affect either the particles or
the dimers.

Model 3 (DIM) parameters.
• N: number of diffusing particles in the box of size L.
• r: interaction radius, corresponding to the radius of the diffusing
particles.

• Pb: probability that twoparticles bind to form adimer in each time
step. For this to happen, the particles must be at a distance d < 2r.

• Pu: probability that a dimer breaks up at each time step so that the
two particles go back to diffusing independently.

Model 4 - Transient-confinement model (TCM). This model con-
siders an environment with Nc circular compartments of radius rc. The
compartments are distributed randomly throughout the environment
such that they do not overlap. We consider that the compartments are
osmotic, i.e., a particle reaching their boundary from the exterior has a
probability 1 of entering them, but a particle reaching the boundary
from the interior of a compartment has aprobabilityTof exiting it (and
1— T of being reflected back to the interior of the compartment). The
diffusion inside and outside the compartment is different, hence
defining two diffusive states. For each trajectory, two values of α and
two values of K are sampled from the corresponding distributions,
representing the motion outside and inside the compartments.

Model 4 (TCM) parameters.
• Nc: number of compartments in the box of size L.
• rc: radius of the compartments.
• T: transmittance of the boundary. Probability that a particle
reaching the boundary from inside the compartment exits the
compartment.

Model 5 - Quenched-trap model (QTM). This model considers the
diffusion of particles in an environment with Nt immobile traps of
radius rt. The values ofα andK are sampled for each trajectory from the
corresponding distributions and define its unrestrained motion. A
particle that enters the domain defined by a trap has a probability Pb of
binding to the trap and, hence, getting temporarily immobilized (K =0,
α = 0). At each time step, a trapped particle has a probability Pu of
unbinding and being released from the trap, going back to its
unrestrained motion. A particle cannot be trapped again until taking a
new step.
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Model 5 (QTM) parameters.
• Nt: number of traps in the box of size L.
• rt: radius of the traps.
• Pb: probability that a particle binds to a trap andgets immobilized.
For that to happen, a particle must be at a distance d < rt from
the trap.

• Pu: probability that a trapped particle unbinds from a trap and
starts diffusing independently at each time δt.

Dataset structure
The datasets used in the Challenge (Supplementary Fig. 9) include
different experiments, each contained in a folder labeled with a
sequential number (EXP_[exp number]) and corresponding to a
specific model and a fixed set of parameters. The information about
the model and the parameters is unknown to Challenge participants.
Each experiment folder contains a list of files labeled with a sequential
number (FOV_[fov number]) associated with 30 FOVs. Each FOV
reports data from a variable number of particles diffusing on a
128 × 128 pixel2 area.

For the Video Track, the coordinates of the particles in the same
FOV are used to generate 200-frame videos as a series of 8-bit images
in the multi-tiff format using Deeptrack 2.15. Noise is added to the
synthetic images to account for background fluorescence and shot
noise. Amap corresponding to the segmentation of VIP particles at the
first frame for whichCPs and diffusion parametersmust be detected is
also provided as a TIFF file. Connected components of the map are
labeled with unique integer values that correspond to the
particle index.

For the Trajectory Track, we provide a CSV file for each FOVwith
a table whose columns contain trajectory index, time step, x-coor-
dinate, and y-coordinate. Coordinates of simulated trajectories are
corrupted with Gaussian noise corresponding to finite (subpixel)
localization precision. The trajectories have a maximum length of
200 frames.

Besides localization precision, motion blur can introduce a sig-
nificant contribution to noise, in particular if the camera frame rate is
slow compared to particle motion96. However, this aspect will not be
included in the Challenge datasets since it would introduce complex-
ities in the definition of the ground truth that could detract from the
focus of the work. Nevertheless, the simulation software incorporates
the capability to introduce the effect ofmotion blur both in videos and
trajectories.

Exemplary data for all the models are shown in Supplementary
Fig. 10. Files in different Tracks labeled with the same experiment and
the FOV index (e.g., Track_1/EXP_4/FOV_3.tiff and Track_2/
EXP_4/FOV_3.csv) include simulations obtainedwith the same set of
dynamics parameters but donot correspond to themotionof the same
set of particles.

Protocol registration
The Stage 1 protocol for this Registered Report was accepted in prin-
ciple on 31st October 2023. The protocol, as accepted by the journal,
can be found at https://doi.org/10.6084/m9.figshare.24771687.v1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The labeled benchmark dataset used in this study is available on
Zenodo94. All datasets generated for the Challenge can be accessed on
the Codalab platform (registration required). Source data for all fig-
ures are provided with this paper. Source data are provided with
this paper.

Code availability
All code used to generate the Challenge datasets is publicly available
via the andi_datasets repository on GitHub: https://github.com/
AnDiChallenge/andi_datasets71.
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