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Abstract
Objective. Shear wave elastography has enriched ultrasound medical imaging with quantitative
tissue stiffness measurements. We aim to explore the limitations that persist related to
viscoelasticity, guiding geometry or static deformation. Approach. A nearly-incompressible soft
elastomer strip is chosen to mimic the mechanical behaviour of an elongated tissue. A supersonic
shear wave scanner measures the propagation of shear waves within the strip. It provides a wide
range of shear wave velocities, from 2 to 6m s−1, depending on the frequency, the static strain as
well as the orientation of the strip.Main results. To explain these different measurements, the
guided wave effect is highlighted and analysed from the dispersion diagrams provided by the
spatio-temporal Fourier transform of the raw data. The guided waves are then described using a
material model that accounts for both the rheology and the hyperelastic behaviour, and allows to
extract the mechanical parameters of the sample. Significance. To overcome some limitations of
current elastography, we propose a theoretical framework which allows the simultaneous
characterization of the viscoelastic and hyperelastic properties of soft tissues, paving the way for
robust quantitative elastography of elongated tissues.

1. Introduction

Elastography, a non-invasive medical imaging technique, offers insights into tissue elasticity akin to
traditional palpation but with greater precision. By quantifying tissue deformation in response to external
mechanical forces such as compression or shear waves, elastography provides information on valuable
mechanical properties. This technique has proven particularly useful in diagnosing conditions like liver
fibrosis (Sandrin et al 2003, Asbach et al 2010, Deffieux et al 2015, Kennedy et al 2018), breast lesions (Sinkus
et al 2005, Barr and Zhang 2012, Barr 2019), prostate cancer (Correas et al 2013), thyroid nodules (Cantisani
et al 2015), heart problems (Elgeti and Sack 2014, Sinkus 2014, Hansen et al 2015, Khan et al 2018, Pruijssen
et al 2020), tendinopathies (Farron et al 2009, Prado-Costa et al 2018, Mifsud et al 2023) and other
musculoskeletal disorders (Paluch et al 2016, Winn et al 2016, Taljanovic et al 2017, Davis et al 2019).

Utilizing ultrasound imaging, magnetic resonance imaging, or optical coherence tomography,
elastography records tissue displacement dynamics for stiffness assessment (Ormachea and Parker 2020).
While various methodologies exist across imaging modalities for stiffness evaluation, recent years have seen
significant advancements in optical coherence elastography (OCE) (Zvietcovich and Kirill 2022, Leartprapun
and Adie 2023), particularly in ophthalmology (Kirby et al 2017, Lan et al 2023), but also in magnetic
resonance elastography (MRE) (Low et al 2016, Sack 2023) with clinical applications involving large tissue
regions like the breast (Sinkus et al 2005), heart (Elgeti and Sack 2014, Khan et al 2018, Marlevi et al 2020)
and brain (Hiscox et al 2016).

Ultrasound, the most widely used elastography method (Shiina 2014, Sigrist et al 2017), offers real-time
and in-depth tissue elasticity assessment, notably through acoustic radiation force methods (Doherty et al
2013). In this study, we employ supersonic shear wave imaging (SSI) (Bercoff et al 2004, Deffieux 2008) with
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an AixplorerTM system, measuring the shear wave velocity VT to deduce the shear modulus µ and the Young’s
modulus of the tissue. Indeed, in an incompressible material of mass density ρ, they are calculated from this
velocity using the simple relation E= 3µ= 3ρVT

2.
However, this equation only holds under certain strong assumptions that are rarely valid, thus limiting

the robustness of quantitative elastography. These limitations can be attributed to four different causes. First,
the viscoelasticity of a tissue leads to frequency-dependent mechanical parameters, including the deduced
Young’s modulus (Kennedy et al 2014, 2018, Sinkus 2014, Hiscox et al 2016, Low et al 2016, Kirby et al 2017).
Second, tissues like muscles are inherently anisotropic and VT strongly depends on the propagation direction
of the wave (Sinkus 2014, Prado-Costa et al 2018, Mifsud et al 2023). Third, most tissues have boundaries
and act as waveguides, leading to strong dispersion (Kirby et al 2017, Li et al 2017, Khan et al 2018, Pelivanov
et al 2019, Ramier et al 2019). Last, surrounding fluids or other external factors may apply a prestress in the
tissue of interest, leading again to changes in the measured velocity (Elgeti and Sack 2014, Cantisani et al
2015, Hansen et al 2015, Li et al 2017, Barr 2019) due to acoustoelasticity. It is common that biological
tissues combine several of the above-mentioned aspects as it is highlighted in several reviews involving
different imaging modalities (Sigrist et al 2017, Bilston 2018, Davis et al 2019, Ormachea and Parker 2020,
Caenen et al 2022, Crutison et al 2022, Zvietcovich and Kirill 2022, Lan et al 2023, Leartprapun and Adie
2023). These limits are known and still the subject of active research.

We have developed a strong expertise in modelling elastic waves in soft waveguides, notably on the
combined roles of viscoelasticity and acoustoelasticity (Lanoy et al 2020, Delory et al 2022, 2024). Recently,
the dispersion curves in a stretched free strip (Delory et al 2024) have been studied and accurate predictions
have been made. In this context, we believe it is straightforward to compare conventional elastography
measurements with results obtained using the model developed within the frameworks of
visco-acoustoelasticity.

In this article, using a simple silicone strip immersed in water and a standard ultrasound sequence, we
provide tools to overcome the issues raised by the combination of viscoelasticity, waveguiding geometry and
prestress. The anisotropy is also naturally considered since prestress leads to extrinsic anisotropy for the
propagation of shear waves in soft media (Delory et al 2023). By applying large deformations to the
viscoelastic strip in different orientations, a wide range of phase velocities is measured. First, we identify the
nature of the generated shear waves. Then, combining our previous works (Delory et al 2023, 2024) with the
method described in Kiefer et al (2019), we predict their dispersion curves and phase velocities. Finally, we are
able to capture the frequency and elongation-dependent nature of the mechanic properties of the material.

2. Methods

We first describe the experiment and rheology. After a few finite elements simulations, we then introduce the
new elasticity tensor that accounts for visco-elasticity and hyper-elasticity. We finally comment its numerical
implementation for guided waves.

2.1. Rheological characterization of Ecoflex-OO20
The soft material investigated throughout this article is Smooth-On Ecoflex-OO20. This material, selected
for its similarity to biological tissues and its practical advantages over agar gels (e.g. stability over time), is
prepared by mixing equal quantities of a polymer and its crosslinking agents. While the properties of Ecoflex
are well-documented in the literature (Liu et al 2014, Kearney et al 2015, Brinker and Klatt 2016, Liao et al
2021, Delory et al 2022), we conducted rheological measurements on our samples to reduce uncertainties.

A conventional rheometer (Anton-Paar MCR501) operating in the plate-plate configuration was used to
examine the rheology. A sample was cured directly in the rheometer. Both the real (storage modulus) and
imaginary (loss modulus) parts of the shear modulus measured for frequencies ranging from 0.1 to 100Hz
are depicted in figure 1.

In such a logarithmic scale, the loss modulus appears to vary linearly while the storage modulus slowly
increases after a particular frequency, as already observed in the literature for other elastomers of the Ecoflex
range (Henni et al 2011). As the slope of the loss modulus is not an integer, here almost 1/3, a fractional
derivative model needs to be used. One of the simplest models which satisfies the Kramers–Kronig relations
is the fractional derivative Kelvin–Voigt model (Smit and De Vries 1970, Bagley and Torvik 1983, Liu et al
2014, Rolley et al 2019, Mainardi 2022, Sharma et al 2023), where the shear modulus takes the form:

µ(ω) = µ0

[
1+(iωτ)n

]
(1)

where ω is the angular frequency and µ0, τ , n are parameters of the model. This viscoelastic model has
become widespread in soft mechanics literature (Sharma et al 2023) and is recommended to describe the
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Figure 1. Storage and loss shear moduli of Ecoflex-OO20 — Obtained with an Anton-Paar MCR501 conventional rheometer
operating in the plate-plate configuration.

behavior of soft tissues (Parker et al 2019) as well as the Ecoflex silicone considered here (Yasar et al 2013, Liu
et al 2014).

The rheological measurements are fitted using this model. The best parameters to describe the
experimental data points were found equal to: µ0 = 12 kPa, τ = 3.7ms, and n= 0.30.

2.2. Conventional shear wave elastography of a strip made of Ecoflex-OO20
A strip is placed in a water tank and acts as a waveguide for shear elastic waves. It is made of the
aforementioned elastomer, Ecoflex-OO20, and prepared with a thickness of h= 2.7mm, a width of b= 4 cm,
and a length of L0 = 20 cm. Elastography experiments are performed using an AixplorerTM ultrasound
system and a curved array XC6-1 transducer from Supersonic Imaging. This array offers a large field of view,
and up to 14 cm of the strip is visible in the B-mode of the scanner when the strip is positioned at a depth of
6 cm. A default SSI ultrasound sequence is used, consisting of 5 push lines, each composed of 4 push depths.
After each push line, the transducer switches to imaging mode (framerate of 1750 frames per second) to
follow, in real-time, the generated shear waves (Bercoff et al 2004, Deffieux 2008).

As described in figure 2, two orientations of the strip are studied. In both of them, the transducer array is
parallel to the strip axis x1, and each push line generates a displacement along x3. In the plate orientation
depicted in figure 2(a), the imaging plane cuts the strip along its thickness and an out-of-plane displacement
is generated. Conversely, in the strip orientation shown in figure 2(b), the imaging plane cuts the strip along
its width and an in-plane displacement is generated in the strip. For both orientations, the scanner evaluates
the velocity of the waves within the strip using its own commercially used procedure.

To observe the acousto-elastic effect, elongations are applied to the strip along the x1 axis. This is achieved
by clamping the two ends of the strip in a rigid aluminium frame and adjusting the distances between the
two edges of this frame. The shear wave measurements are then repeated for various elongations, quantified
by the stretch ratio λ1 (elongated length divided by undeformed length), and for both orientations.

2.3. Finite element simulations of guided elastic waves in a strip immersed in water
To obtain the dispersion relations of waves guided by an elastic strip immersed in water, we utilize finite
element simulations (specifically COMSOL Multiphysics 5.5). We consider a strip of thickness h= 2.7mm,
width b= 4 cm, length a= 1mm and density 1.07 g cm−3, with a longitudinal velocity of 1000m s−1 (Delory
et al 2022) and transverse velocity of 5.31m s−1. A Bloch periodic boundary condition is applied along the
length for a discrete set of wavenumbers k. For each value, an eigenproblem is solved to obtain the four
lowest eigenfrequencies as well as the corresponding eigenfields. To reduce computation time, only one
fourth of the strip is simulated by applying different symmetry constraints with respect to the width and
thickness middle planes. In this simulation, the motion of the strip induces displacements of the surrounding
water. Perfectly matched layers are used to mimic a non-reflecting infinite water domain. The relevant
dispersion curves corresponding to both orientations are presented in figure 3.
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Figure 2. Shear wave elastography in two different orientations—Using the Supersonic Shear Imaging technique, shear waves are
generated in an Ecoflex OO-20 strip in two different orientations. In the plate orientation (respectively strip), the imaging plane
(x1,x3) cuts the strip along its thickness (a) (resp. along its width (b)). The measurements are repeated for different elongations of
the strip along the x1 direction.

Figure 3. Simplified dispersion diagram for a strip in water—A linear elastic strip is considered with thickness h= 2.7mm, width
b= 4 cm, transverse velocity VT = 5.31m s−1 and longitudinal velocity VL = 1000m s−1. Two sets of dispersion curves are
plotted, the out-of-plane (or flexural) modes for positive wavenumbers, and the in-plane modes for negative wavenumbers. The
displacement component u3 at 10Hz is displayed for both of the first order modes. The flexural displacement is also displayed at
100Hz where the effect of lateral boundaries begins to show. The edge wave displacement is displayed at 300Hz and is the sum of
the first symmetric and antisymmetric in-plane modes. The strip axis is not to scale.

2.4. Addition of initial pre-stress
To describe waves in a pre-deformed viscoelastic body, one needs first to take into account the behaviour of
the medium with respect to initial static pre-stress, then its visco-elastic response to small dynamic
deformations.
Hyperelasticity— To model the hyperelastic behavior of the strip (Arruda and Boyce 1993, Treloar 2005)
subjected to static pre-stress, we assume a compressible Mooney–Rivlin solid. Stretch ratios along all
directions (λ1,λ2,λ3) are introduced, as well as the invariants I1 = λ2

1 +λ2
2 +λ2

3, I2 = λ2
2λ

2
3 +λ2

1λ
2
3 +λ2

1λ
2
2,

and J= λ1λ2λ3. The strain energy density functionW writes:

W=
µ0

2

[
(1−α)

(
I1
J2/3

− 3

)
+α

(
I2
J4/3

− 3

)]
+

K

2
(J− 1)2 (2)

where α governs the behavior of the material (α= 0 corresponds to the Neo-Hookean solid). In the
elastography community, it is more common to derive this law in terms of the Landau coefficients A and D
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and an equivalence between the different strategies has already been thoroughly described (Destrade and
Ogden 2010, Destrade et al 2017).
Acousto-elasticity— To describe waves propagating in this pre-deformed viscoelastic body, an incremental
approach (Delory et al 2023) is constructed as described by Ogden and Destrade (Ogden 1997, Destrade and
Saccomandi 2007). The main result of this theory is that the effects of both initial deformation and
viscoelasticity can be fully accounted for by introducing a new elastic tensor Cω . This tensor accounts for the
numerous broken symmetries induced by the initial pre-stress, therefore preventing the use of the
conventional Cauchy tensor that would describe transverse isotropy for instance. The wave equation writes:

Cω
jikl

∂2u ′
k

∂xj∂xl
+ ρω2u ′

i = 0 (3)

with u ′(x,ω) = x ′ − x the incremental monochromatic displacement. Cω depends on the strain energy
density functionW, the stretch ratios λi, the rheology of the material and a new material parameter β ′.
Introducing the specific rheology of equation (1) for the case of Ecoflex-OO20, Cω decomposes as Delory
et al (2023):

Cω
ijkl = C0

ijkl +µ0 (iωτ)
n

(
1+β ′ λ

2
i +λ2

j − 2

2

)(
δikδjl + δilδjk

)
(4)

where C0
ijkl is the equivalent stiffness tensor for the usual acoustoelastic effect (without viscoelasticity) of a

hyperelastic solid. Given equation (2) forW, and knowing the deformation, one can derive the coefficients of
the tensor C0 with the formulas:

C0
iijj =

λiλj

J
Wij (5)

C0
ijji =

λ2
i

J

λiWi −λjWj

λ2
i −λ2

j

(
i ̸= j,λi ̸= λj

)
(6)

C0
ijji =

C0
iiii −C0

iijj +λiWi/J

2

(
i ̸= j,λi = λj

)
(7)

C0
ijij =

λiλj

J

λjWi −λiWj

λ2
i −λ2

j

(
i ̸= j,λi ̸= λj

)
(8)

C0
ijij =

C0
iiii −C0

iijj −λiWi/J

2

(
i ̸= j,λi = λj

)
(9)

whereWi =
∂W

∂λi
andWij =

∂2W

∂λi ∂λj
. Here, the formulas slightly differ from those found in books (Ogden

1997, Destrade and Saccomandi 2007) because the conventions for dot products are different. To transition
from their definition to the one presented in this work, a simple permutation for the last two indices is
required. Ultimately, the wave equation to be solved remains the same. It is worth noting that when dealing
with intrinsically anisotropic materials, additional invariants should be considered when writing the strain
energy density functionW (Balzani et al 2006, Peyraut et al 2010, Li and Cao 2017, Mukherjee et al 2022),
but everything can be incorporated in an effective elastic tensor Cω .

2.5. Spectral collocationmethod to model guided waves in a pre-stressed viscoelastic strip
The newly introduced elastic tensor takes into account both viscoelasticity and initial deformation of the
sample. However, this tensor exhibits some broken symmetries that do not conform to the solid mechanics
module of COMSOL Multiphysics. To address this issue, we have developed our own calculation code, which
is openly accessible (Kiefer et al 2023). It implements a semi-analytical technique based on the spectral
collocation method (Trefethen 2000, Weideman and Reddy 2000). Semi-analytical methods for guided waves
date back to the work by Waas (1972) as well as Kausel and Roësset (1977) for layered media and Aalami
(1973) for arbitrary cross-sections. A rather general implementation for plates and cylinders is
GEWtool (Kiefer 2023), which is based on spectral elements. The underlying idea of semi-analytical methods
is to discretize the cross-section of the waveguide, in our case the thickness and the width of the strip, in
order to obtain an eigenvalue problem that can be solved numerically for the waveguide modes. For the
present work, we discretize with the spectral collocation method, because it is directly based on the modeled
differential equations, and it is accordingly simple to put in place and adapt. For a general overview on
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implementing spectral collocation for guided waves in plates (one-dimensional cross-section) refer to
Adamou and Craster (2004), Kiefer (2022). Lastly, a concise problem derivation for anisotropic plates is
presented in Kiefer et al (2023) and for arbitrary cross-sections in Plestenjak et al (2024).

For the purpose of this article, the constitutive relation of the stretched viscoelastic elastomer is
implemented with the fourth-order stiffness tensor derived from equation (4). After discretization, an
equation describing the guided elastic waves with (discrete) displacement field u on the rectangular
cross-section is obtained, namely,

[
(ik)2 L2 + ikL1 + L0 +ω2M

]
u= 0, (10)

with known matrices Li andM. The above represents an algebraic eigenvalue problem for the eigenpair
(ω2,u) parameterized by k, as is common in commercial softwares such as COMSOL. Alternatively, it can also
be solved for the eigenpair (k, u) parameterized by ω, which is particularly useful for frequency-dependent
material parameters such as the viscoelastic ones studied here. Choosing different values for ω and solving
the quadratic eigenvalue problem for k with conventional methods (e.g. polyeig in Matlab) yields the
sought dispersion curves k(ω). Note that due to viscoelasticity, the wavenumbers k are complex-valued, while
ω remains a real quantity. This is handled naturally by the eigenvalue solver and presents no difficulty.

Although the coupling with the surrounding water is fully incorporated for a plate (Li and Cao 2017,
Kiefer et al 2019, Gravenkamp et al 2025), addressing this issue for a strip goes beyond the scope of the
present article. For the sake of simplicity, instead of modelling the leakage in water, we solve the eigenvalue
problem for a strip alone and multiply the retrieved wavenumbers by a factor of 1.05, as discussed in
appendix.

3. Results

We first present the results from the commercial procedure, then we propose a method that could be
integrated into existing devices.

3.1. Conventional supersonic shear wave velocities
Applying the commercial shear wave elastography procedure described in section 2.2, we probe the shear
wave velocity of our Ecoflex strip. We perform the same experiments in both orientations. The measured
velocities are displayed as a color code on figures 4(a) and (b) atop the grayscale B-scan images. The
measured velocities for the same sample yield significantly different values depending on the orientation
considered: in the plate orientation, a velocity of approximately 3m s−1 is measured, while in the strip
orientation, it is slightly less than 5m s−1. Geometry therefore has an influence on the results.

Additionally, when the same Ecoflex strip is subjected to initial elongation, the measured velocities are
also modified, as shown in figures 4(c) and (d). Both of them differ from the velocities measured without
initial elongation. They have both increased, reaching 4m s−1 for the plate orientation and 6.5m s−1 for the
strip orientation. Such changes in velocities are attributed to the acousto-elastic effect (Catheline et al 2003,
Destrade and Saccomandi 2007, Gennisson et al 2007, Crutison et al 2022).

3.2. Shear wave spectroscopy
In this subsection, we examine the raw data of the shear wave elastography experiment. Instead of extracting
a single velocity as shown in figure 4, we perform shear-wave spectroscopy to capture the frequency-
dependence of the velocities (Gennisson et al 2010, Nguyen et al 2011, Deffieux et al 2015). The AixplorerTM

in research mode enables the extraction of the full beamformed sequence of images after the release of a push
line. The displacement field u3 (x1,x3, t) is obtained by calculating the phase of the correlation between two
consecutive images (Bercoff et al 2004). Each image sequence is captured five times, and the resulting
displacement fields are averaged to improve the signal-to-noise ratio.

The datasets, consisting of 2D movies, need to be reduced for visualization purposes. For the plate
orientation, the displacement is supposed to be constant along the thickness (direction x3). Therefore, we
decide to average the values along the thickness, resulting in an average spatio-temporal displacement for
each push line. The result for the push in the middle of the scanned area is depicted in figure 5(a). For the
strip orientation, the post-processing is slightly different because the displacement in the strip varies along
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Figure 4. Shear wave elastography of a strip made of Ecoflex OO-20 — Ultrasound images obtained with the AixplorerTM in the
plate orientation (a) (resp. strip orientation (b)). The B-scan image is represented with a grayscale while the shear wave velocity
map is rendered using a colormap. Then, the strip is stretched by a factor λ1 and the results are displayed in (c) and (d).

x3. In fact, only the top strip edge displacement can be studied in an unbiased manner1. The spatio-temporal
displacement map corresponding to this top edge displacement is shown in figure 5(c).

Applying a spatial and temporal Fourier transform to the reduced displacement map u3 (x1, t) provides a
frequency versus wavenumber map. The use of a curved-array probe and therefore the imaging of a wider
region of the strip allows for a good resolution of the resulting reciprocal space maps. The magnitude of these
maps is normalized for each of the five push lines and summed to obtain the graphs shown in figures 5(b)
and (d). They are not local data as they represent an average over the entire scanned area. From these graphs,
we extract the wavenumber that corresponds to the observed maximum for each frequency, which gives us
our dataset.

3.3. Systematic extraction of the dispersion curves
The processed experimental results are represented as symbols in figure 6 for all deformed configurations.
Frequencies above 300Hz are discarded due to the lack of signal above this range. We also remove
frequencies below 20Hz for the plate orientation and 90Hz for the strip orientation due to the signal
becoming discontinuous. Phase velocities Vϕ = ω/k are extracted from the dispersion curves and the
quantity ρVϕ

2, akin to a shear modulus, is plotted as a function of the frequency in figure 6.

4. Discussion

The standard technique used on conventional elastography devices defines the shear modulus and the
Young’s modulus directly from the shear wave velocity : µ= ρV2

T and E= 3ρV2
T. Indeed, the elastomer used

for our sample is nearly-incompressible, the longitudinal velocity of the propagating waves VL is considered
constant and all the variability in the measurement comes from VT. And, as the contrast between the shear
velocity and the longitudinal velocity is large, µ and E are directly calculated from VT

2.
With no supplementary assumption on the geometry of the sample, figure 6 reveals an increase in

velocity with the frequency and with the stretch ratio. A wide range of values from 1 kPa to 35 kPa is obtained
on one unique strip if the shear modulus is directly defined from this velocity according to the conventional
method. Moreover, figure 6 shows that none of these values match the data derived from the rheometer in
plate–plate configuration (superimposed as a dashed line). These experiments therefore clearly highlight the
errors induced by the assumption of bulk shear wave propagation, as already stated and observed in thin
biological tissues like arteries (Couade et al 2010). More importantly, we provide a comprehensive
explanation of this wide range of measured velocities as we discuss in the next parts.

1 The reason is that the longitudinal velocity used for imaging was assumed to be equal to that of water, which is 1480m s−1, but sound
propagates at around 1000m s−1 in our material. This implies two additional difficulties. Firstly, the x3 = ct axis is properly computed
between the transducer and the top strip edge, but in the strip, this axis is wrongly estimated, and the beamforming procedure is biased.
This is visible in figure 4(b), where the bottom edge appears curved in the B-mode image. Secondly, the push focusing must also be
degraded when going deeper into the strip.
2 Our sample has no intrisic anisotropy that would induce variability of VT depending on the direction of wave propagation.
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Figure 5. Spectroscopy shear-wave elastography in both orientations — (a), (c) For a given push line, a displacement field is
obtained and averaged over 4 or 5 consecutive acquisitions. (b), (d) The spatio-temporal Fourier transform yields the dispersion
curves of guided elastic waves for both orientations. It is summed over 5 different push lateral positions.

Figure 6. Results compared to rheology of Ecoflex OO-20 — From the measured phase velocities, we plot the quantity ρVϕ
2 akin

to a shear modulus, for all frequencies and stretch ratios without any additional assumption, in both orientations. We compare it
with the shear storage modulus obtained from the rheometer.

4.1. Identification of the guidedmodes
Let us begin by highlighting the guiding property that underlies the different velocities observed for the plate
orientation and the strip orientation (figures 4–6). On the raw data of figure 5, we can observe that the
displacement at the central position at time t= 0 (top line) symmetrically propagates as time increases
(echoes emerging at the abscissa of the push, at respectively 8ms and 13ms for the plate and strip
orientations, must not be mixed up with the generated waves). However, the behavior depends on the
orientation: in the strip orientation, the shear wave reaches the edges of the scanned area sooner than in the
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plate one. Additionally, the propagation exhibits a linear shape for the strip orientation, while the wavefronts
are bent in the plate orientation: short wavelengths travel faster than long ones, revealing dispersive
propagation.

The differences between the two orientations are clearly highlighted by the corresponding frequency
versus wavenumber maps in figures 5(b) and (d). A quadratic-shaped dispersion relation is observed for the
plate orientation, while a linear dispersion relation is observed for the strip orientation. Additionally,
intensity of the displacement depends on the frequency. In the plate orientation, intensities are high in the
low-frequency range and fade rapidly as frequency increases, almost disappearing around 300Hz. On the
contrary, energy is found at higher frequencies in the strip orientation, with maximal intensity around
150Hz (excluding the zero-frequency spot). Lastly, we notice some spots for certain frequencies on the k= 0
axis in both orientations. These spots are due to echoes of waves reflecting on the edges of the strip. In a
waveguide, these reverberations usually materialize as cut-off frequencies in the dispersion diagram.

The comparison of these dispersion relations with the simulation of guided waves in a strip immersed in
water (figure 3) is relatively straightforward because the dispersion curves are well separated, compared to
arteries for instance where modes of similar shapes are generated (Astaneh et al 2017) and where mixing
between flexural modes (Roy et al 2021) can be observed. In the plate orientation, the radiation force-induced
push corresponds to an out-of-plane displacement of the strip, and the generated guided wave is therefore
the first flexural out-of-plane mode displayed in figure 3 with a thick red line. Its power-law behavior is a
well-known characteristic of a bending mode (Delory et al 2024). Alternatively, for the strip orientation, the
pushes generate an in-plane displacement in the strip, corresponding to the first antisymmetrical mode (or a
combination of the first antisymmetrical mode and the first symmetrical mode for higher frequencies). Its
dispersion curve is plotted as a thick blue line with negative wavenumbers in figure 3. Again, the
displacement profile of this mode at 10Hz and 300Hz is compatible with an excitation at the top edge of the
strip. At 10Hz, this mode is, in fact, dispersive since it is very similar to a bending of the strip, but this time in
its width. When increasing the frequency, the wavelength decreases, and the width of the guide becomes
larger than the shear wavelength: most of the mode’s energy is now confined to the edge of the strip.

4.2. Spectral collocationmethod to account for viscoelasticity and initial deformation
In a non-viscous case, the edge mode generated in the strip orientation is theoretically almost non-dispersive.
However, the experimental phase velocity Vϕ of this mode, given by the dispersion curves in figure 5, is equal
to 4m s−1 at 150Hz and 4.8m s−1 at 300Hz. This dispersion is due to the viscoelasticity of the medium
i.e. its frequency-dependent material properties, described by equation (1). Similar dispersion has already
been observed in gel phantoms and muscle tissues (Catheline et al 2004, Chen et al 2004).

The spectral collocation method fully incorporates the rheology of the material and the guiding
geometry (see section 2.5). Resulting theoretical predictions for a strip of Ecoflex OO-20 of thickness
h= 2.7mm and width b= 4 cm are superimposed as solid lines on the experimental data of figure 7. The
rheological parameters µ0 = 11 kPa, τ = 2.3ms, and n= 0.44 were obtained after a minimisation procedure
to fit the prediction to the experimental dispersion curves. Here, n ̸= 1 validates the fractional-derivative
model, necessitating a supplementary parameter compared to the classical Voigt model (Roy and Guddati
2023). Figure 7(a) displays a very good agreement between the datapoints from our elastography
experiments and the dispersion curves corresponding to these parameters. Additionally, in figure 7(b), we
extend the conventional rheometer measurements from figure 1 with the shear modulus calculated using our
method and the above parameters (see section 2.1), on the frequency range of our elastography
measurements. Statistics were performed on the different shear moduli obtained by iteration of our
minimisation procedure to quantify its accuracy. Our estimated shear moduli are a good higher-frequency
extension of the rheometer datapoints. The small gap between the shear storage moduli could be due to
differences in polymerization in the rheometer and in our experimental strip, happening on a scale smaller
than 1mm for the former and around 1 cm for the latter.

Additionally, the ultrasound scanner allows us to measure shear wave propagation for several values of λ1

ranging from 1 (undeformed) to 1.67. For each stretch ratio and both orientations, the dispersion relations
are extracted. Figure 8 compares them with theoretical dispersion curves obtained using our spectral
collocation framework (see section 2.5). Acoustoelasticity explains the shift of the dispersion curves caused
by the increase of the stretch ratio (see section 2.4): in addition to the optimized rheological parameters
listed in the above paragraph, α= 0.27 and β

′
= 0.43 are the optimized acoustoelastic parameters.

In both orientations, applying a static stress tends to increase the slopes of the dispersion curves: the
higher the stretching, the higher the frequency for a given wavenumber. Put differently, the velocity of the
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Figure 7. Results for the undeformed configuration—(a) Dispersion curves obtained with our Spectral Collocation method
compared with the experimental elastography results. (b) Storage and loss shear moduli obtained with our Spectral Collocation
method, compared with the rheometer datapoints. The width of the purple curves contains 95% of prediction datapoints.

Figure 8. Results for different elongations of the sample—The predictions obtained with our Spectral Collocation Method are
compared with the experimental elastography datapoints for stretch ratios up to 1.67.

wave guided along the stretched direction is increased. This is a relatively intuitive behavior that can be easily
experienced with a tensed string. However, while the general trend is easy enough to conceptualize, the
details of the increase are harder to grasp.

The stretch-induced velocity change, called the acoustoelastic effect, is particularly significant in
biological tissues (Holzapfel and Ogden 2010, Chagnon et al 2015) and more generally in soft media, which
are highly deformable. It has already been studied in elastography for uniaxial (Salehabadi et al 2023) or
planar (Dore et al 2022) strains but the consideration of viscoelasticity is lacking. An experimental study on
Ecoflex with MRE (Brinker and Klatt 2016) also reveals changes of shear modulus with elongation ratio but
the mechanical model remains simple. Here, we would like to emphasis that the theoretical framework
recalled in sections 2.4 and 2.5, relying first on the modeling of a large static deformation and then
considering the propagation of small perturbations, is perfectly suited to explain these results. This approach
has already been investigated in a similar elastomer with guided waves in a plate (Delory et al 2023) and in a
strip (Delory et al 2024). It was shown that hyperelastic and viscoelastic material properties must be taken
into account simultaneously.
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For the plate orientation, the predictions provided by our approach in figure 8 are very satisfactory for
stretch ratios up to 1.5. For the strip orientation, the predictions overestimate slightly the phase velocities but
are still very satisfactory for all stretch ratios. The remaining errors may be due to the oversimplified model
that has been used (see appendix). Secondly, errors can also be attributed to the non-linear material model:
the involved hyperelastic model (Mooney–Rivlin, see section 2.4) remains a weakly nonlinear elastic model.

Based on these interesting results, we can imagine the implementation of an inverse method to
simultaneously evaluate the rheological and the hyperelastic parameters. Alternatively, as the geometric
parameters (h,b) of the sample also have an influence on the shape of the dispersion curves, especially on
cut-off frequencies, ultrasound images could be used to monitor their evolution with the applied prestress.

5. Conclusion

The influence of guiding geometry, frequency, and static deformation in elastography is addressed in this
study, utilizing a single material, straightforward experimental method and robust modeling. We
demonstrate that overlooking these factors may yield a broad spectrum of inaccurate shear moduli. The
methodology outlined here can be readily adapted to accommodate various material models, including
anisotropic ones, and may be extended to encompass diverse guiding geometries.

Furthermore, our approach suggests the potential for solving the inverse problem, allowing the inference
of hyperelastic and viscoelastic properties from measured dispersion curves on a soft material.

We contend that the simultaneous effect of elongation, guiding geometry and viscoelasticity can
encapsulate numerous physiological scenarios: from the stretching of muscles and tendons to the
propagation of pulsatile waves in arteries (Baranger et al 2023), or even the compression of tissues during
ultrasound examination. The availability of a versatile tool such as the Spectral Collocation Method, adept at
integrating these multifaceted aspects, holds promise for enhancing the quantitativeness of elastography and
fortifying its foundations within robust clinical databases.
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Appendix. Role of water on the dispersion relations

Using COMSOL Multiphysics, it is possible to compare the dispersion diagrams of a soft strip in air or
immersed in water (figure A1) as in the described experiments. The coupling with water has a significant
effect on flexural modes, that displace an additional quantity of water, thus adding inertia and lowering the
dispersion curves. On the other hand, the effect is weaker on the in-plane guided modes.

Additionally, the dispersion curve of the first flexural mode of a plate is included (black solid line
in figure A1). One notices that it almost coincides with the first flexural mode that propagates in the strip.
This observation is important because it allows comparison with theoretical predictions for a plate immersed
in water (Sun et al 2022).

For the in-plane mode of interest, it seems that the velocity is decreased by 5% when the coupling with
water is added. Consequently, we multiply the wavenumbers by 1.05 to simulate the influence of water when
calculating solutions in its absence with the Spectral Collocation Code.
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Figure A1. Dispersion curves of the two modes of interest for a strip in air and water—A purely elastic strip is considered with a
thickness h= 2.7mm, a width b= 4 cm and a transverse velocity VT = 4m s−1. The out-of-plane (or flexural) mode is mainly
polarized along the thickness axis while the in-plane mode is mainly polarized in the plane of the width and propagation axis.
Two dispersion diagrams are superimposed: with (full lines) and without (dashed lines) coupling with water.
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