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Open channels and radiation trapping eigenstates in complex resonant media
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We present a statistical study of the transmission and dwell-time matrices in disordered media composed of
resonators, focusing on how frequency detuning influences their eigenvalue distributions. Our analysis reveals
that the distribution of transmission eigenvalues undergoes a transition from a monomodal to a bimodal profile,
and back to monomodal, as the frequency approaches the resonant frequency of the particles. Moreover, the
distribution of dwell-time eigenvalues broadens significantly near resonance, with the longest lifetimes exceeding
the median by several orders of magnitude. These results are explained by examining how frequency ω affects the
transport mean free path of light �(ω) and the energy transport velocity vE (ω), which in turn shape the observed
distributions. We demonstrate the strong potential of wavefront shaping to synthesize wavefronts associated
with eigenstates that enhance transmission and energy storage (or radiation trapping) in resonant disordered
media. In the diffusive regime, where the system thickness L exceeds the mean free path, both transmission
and dwell time can be enhanced by a factor ∝ L/�(ω) � 1 when using wavefronts associated with the largest
eigenvalues instead of plane waves. In the localized regime, the enhancements become ∝ Ne2L/ξ for transmission
and ∝ Nξ/L for dwell time, where ξ is the localization length and N is the number of controlled scattering
channels. Finally, we show that employing high-Q resonators instead of low-Q ones increases energy storage
within the medium by a factor of ∝ Q/k�(ω) in both the diffusive and localized regimes.
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I. INTRODUCTION

In recent years, the development of wavefront shaping
techniques has enabled the measurement of the scattering
matrix in various complex media, such as disordered waveg-
uides [1–3], scattering slabs [4,5], multimode fibers [6–8], and
biological tissues [9,10], which can support a large number of
propagation channels. These advancements have shown that
specific wavefronts can be focused deep within turbid sys-
tems or fully transmitted through materials that are otherwise
opaque to plane waves [11,12]. Additionally, by calculating
the derivative of the scattering matrix with respect to fre-
quency, it is possible to construct the Wigner-Smith operator
and the associated dwell-time operator, whose eigenvalues
represent the duration a quasimonochromatic wave packet
can spend within an open system [13,14]. Using a spatial
light modulator to generate the eigenstates of the dwell-time
operator, it is thus in principle possible to optimize the energy
stored in any arbitrary complex system [15].

So far, these properties have been established in nonres-
onant scattering materials. However, resonant media are now
ubiquitous in nanophotonics and atomic optics. Technological
advancements have enabled the creation of optically resonant
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systems structured either at the wavelength scale (such as
photonic crystals and arrays of microcavities) or at a deep
subwavelength scale (such as plasmonic nanoresonators and
atomic arrays). Light-matter interactions in these systems are
typically described in terms of collective modes rather than
by their scattering matrices [16–22]. Furthermore, the effect
of coherent control via wavefront modulation on such media
has been scarcely explored. Previous research has examined
a few resonant elements embedded in otherwise nonresonant
materials, such as using resonators to focus light deep into
complex media without a guide star [15,23] or employing
fluorescent probes to resolve the three-dimensional (3D) pro-
file of open channels in a nonresonant disordered slab [24].
In contrast, this work addresses systems where all scattering
units are resonant, aiming to understand the influence of local
resonances on the properties of transmission and dwell-time
matrices.

The impact of resonant scattering on simple plane wave
propagation is relatively well understood, as demonstrated in
a variety of disordered systems, ranging from cold atomic
gases [25] to random dielectric materials supporting Mie res-
onances [26], as well as acoustical systems made of droplets
[27] or Helmholtz resonators [28]. Internal resonances are
known to affect both stationary and dynamic transport prop-
erties. The ability to tune the refractive index near resonance
allows for significant variations in the phase and group ve-
locities that characterize the propagation of the ballistic wave
[27,29]. However, in a disordered scattering medium, most
of the energy is carried by the diffusive component rather
than the ballistic wave component. This diffusive component
propagates at a speed vE � c for all frequencies and can be
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dramatically slowed down near resonance [30], giving rise
to spectacular radiation trapping in atomic gases [25,31–33].
Additionally, the scattering cross section of the resonators
increases significantly near resonance, reducing the transport
mean free path � and mean transmission coefficient 〈T 〉, while
substantially increasing the time needed to cross the sample,
termed the Thouless time τTh. The objective of this work is
to extend the analysis beyond plane wave behavior to arbi-
trary wavefronts, whose propagation cannot be adequately
explained by the traditional diffusion model, even when the
sample thickness L greatly exceeds � [34].

To address this problem, we consider light wave prop-
agation in an assembly of pointlike resonators randomly
distributed within a finite volume much larger than the wave-
length. For convenience, this volume is placed in a waveguide,
which limits the size of the studied matrices to the number of
propagating modes in the waveguide. Section II focuses on
establishing the coupled equations describing light-matter in-
teractions and the procedure for constructing the transmission
and reflection matrices from these equations. It also presents
the results of numerical simulations of the transmission ma-
trix, evaluated at different frequencies and across numerous
disorder configurations. The statistical properties of transmis-
sion eigenvalues and eigenstates as a function of frequency
ω are shown to depend crucially on the mean free path �(ω),
allowing for the exploration of different propagation regimes
(quasiballistic, diffusive, localized). In a symmetric fashion,
Sec. III presents results related to the dwell-time operator,
demonstrating that the behavior of eigenvalue distribution
and eigenstate propagation can be understood through the
interplay between the frequency-dependent mean free path
�(ω) and energy velocity vE (ω). Section IV provides a sum-
mary of the results, emphasizing the significant advantages of
wavefront shaping in achieving much higher transmission and
energy storage compared to simple plane wave propagation,
in both the diffusive and localized regimes.

II. TRANSMISSION MATRIX AND OPEN CHANNELS

A. Transmission and reflection matrices
for resonant scattering media

The system under study consists in an assembly of Ns

identical pointlike resonant scatterers of polarizability α(ω),
randomly distributed in a two-dimensional (2D) waveguide of
thickness L and width W , as sketched in Fig. 1. It is illumi-
nated from the left by waves of frequency ω = ck, polarized
along the z direction. This two-dimensional configuration can
be interpreted as a system and sources invariant along the z
direction. While this choice is primarily motivated by numer-
ical convenience, the main results of this study are expected
to remain valid in more general, three-dimensional scenarios.
Possible experimental implementations of the system are dis-
cussed in the concluding remarks.

In order to compute the transmission matrix and dwell-time
operator, we need to evaluate the scalar Green’s function of
the wave equation, G(r, r′, ω), for a source located at any
point r′ = (x′, y′) on the front surface of the medium and an
observation point r = (x, y) located either on the back surface
or on the front surface. In Appendix A, we demonstrate that,

FIG. 1. Schematic representation of the system under study. Ns

resonant scatterers are uniformly distributed in a region of size L ×
W of a 2D waveguide. An incident field ψin at frequency ω is sent
onto the scattering region from the left. The resonant scatterers, here
represented with a finite size, will be taken to be pointlike in the rest
of this paper. Their quality factor is Q = ω0/(�0/2). The inset shows
the scattering cross section σs = k3|α(ω)|2/4 of a single resonator in
free space, with polarizabilty α(ω) given by Eq. (5).

in the presence of the waveguide, the coupled dipole equa-
tions governing the evolution of G(r, r′, ω) can be expressed
in the following form:

G(r, r′, ω)= G̃0(r, r′, ω)− k2
Ns∑

i=1

G̃0(r, ri, ω)α̃(ri, ω)ψ̃i,

(1)

ψ̃i = G̃0(ri, r′, ω) − k2
Ns∑
j=1
j �=i

G̃0(ri, r j, ω)α̃(r j, ω)ψ̃ j . (2)

Here, ψ̃i is the z-component of the field exciting the
scattering dipole at the position ri. Note that no electric
dipoles appear explicitly in these equations, as they were
replaced by their expressions pi = ε0α̃(ri, ω)ψ̃i to simplify
the formulation. Nevertheless, we refer to Eqs. (1) and (2)
as the coupled dipole equations henceforth. Furthermore,
G̃0(r, r′, ω) is the retarded Green’s function of the wave
equation in the empty waveguide, which solves (∇2 + k2 +
i0+)G̃0(r, r′, ω) = δ(r − r′). The presence of the waveguide
imposes Dirichlet boundary conditions in the y direction,
yielding

G̃0(r, r′, ω) = 1

W

∑
n>0

sin

(
nπy

W

)
sin

(
nπy′

W

)
eikn|x−x′|

ikn
, (3)

where kn = k
√

1 − (nπ/kW )2. Note also that the expression
of the polarizability α̃(ri, ω) of each scatterer i is modified
compared to its free space value α(ω). It is given by (see
Appendix A)

1

α̃(ri, ω)
= 1

α(ω)
+ k2
G0(ri, ω), (4)

where 
G0(ri, ω) = G̃0(ri, ri, ω) − G0(ri, ri, ω), with G0 the
retarded free space Green’s function. For z-polarized waves in
2D, the bare polarizability reads

α(ω) = −4c2�0/ω0

ω2 − ω2
0 + i�0ω2/ω0

, (5)
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where ω0 and �0 are, respectively, the resonant frequency and
line width in free space (see inset of Fig. 1). This expression
satisfies the condition Im[1/α(ω)] = k2Im[G0(ri, ri, ω)], im-
posed by energy conservation of the scattering process in free
space. In addition, G0(r, r′, ω) = −(i/4)H (1)

0 (k|r − r′|), with
H (1)

0 the Hankel’s function of the first kind of order 0. The
numerical procedure used to evaluate 
G0(ri, ω) efficiently
is detailed in Appendix B.

Consequently, replacing free space with a waveguide
means not only replacing the free space retarded Green’s
function G0 with G̃0 in the coupled dipole equations, but
also renormalizing the polarizability. This renormalization
is essential to satisfy the energy conservation condition
Im[1/α̃(ri, ω)] = k2Im[G̃0(ri, ri, ω)] in the waveguide. The
local polarizability can also be expressed as

α̃(ri, ω) = −4c2�0/ω0

ω2 − ω̃0(ri )2 + i�̃0(ri )ω2/ω0
, (6)

where ω̃0(ri )2=ω2
0 + 4ω2�0Re[
G0(ri, ω)]/ω0 and �̃0(ri ) =

−4�0Im[G̃0(ri, ω)]. In the waveguide, translation invariance
is broken, so that both the Lamb shift and decay rate, propor-
tional to the local density of state, depend on the position ri of
the resonator.

We can express now the transmission matrix t(ω) and
reflection matrix r(ω) of the disordered medium using a ba-
sis composed of the N = �kW/π	 propagating channels of
the empty waveguide. These channels are represented by the
functions eiknxξn(y), with ξn(y) = √

2/W sin(nπy/W ). After
normalizing each state by its flux, ε0ckn/2k, the elements of
the N × N transmission and reflection matrices can then be
determined through the Fisher-Lee relations [35],

tmn(ω) = 2i
√

kmkn〈L, ξm|G(ω)|0, ξn〉, (7)

rmn(ω) = −δmn + 2i
√

kmkn〈0, ξm|G(ω)|0, ξn〉, (8)

where the Green’s operator G(ω) is defined through its real-
space representation, 〈r|G(ω)|r′〉 = G(r, r′, ω). The choice
of normalization guarantees that the matrices t(ω) and r(ω)
satisfy the condition

t(ω)†t(ω) + r(ω)†r(ω) = 1 (9)

in the absence of absorption. This flux conservation condition
is only satisfied if the dressed polarizabilty α̃(ri, ω) is used in
the evaluation of the Green’s operator; it is not satisfied if the
bare polarizability α(ω) is used instead.

In order to compute the transmission and reflection ma-
trices through Eqs. (7) and (8), the evaluation of the Green’s
operator is needed. According to Eqs. (1) and (2), we can write
it in the form

G(ω) = G̃0(ω) + G̃0(ω)T(ω)G̃0(ω), (10)

where the collective T operator is defined as

T(ω) = −k2
Ns∑

i=1

Ns∑
j=1

[
a(ω)

1

1 + k2G0(ω)a(ω)

]
i j

|ri〉〈r j |.

(11)
Here, a(ω) and G0(ω) are Ns × Ns matrices, defined as
ai j (ω) = α̃(ri, ω)δi j and G0,i j (ω) = (1 − δi j )G̃0(ri, r j, ω).

Fisher-Lee relations (7) and (8) along with Eq. (10) re-
veal that the matrices t(ω) and r(ω) can be computed
directly in the constant-flux basis from the combination
of the matrices a(ω) and G0(ω) with the propagators
〈x, ξm|G̃0(ω)|0, ξn〉 = δmneikmx/2ikm and 〈x, ξm|G̃0(ω)|ri〉 =
ξm(yi )eikm|x−xi|/2ikm. Explicitly, Eqs. (7) and (8) can be rewrit-
ten as tmn(ω) = 2i

√
kmknGmn(L, ω) and rmn(ω) = −δmn +

2i
√

kmknGmn(0, ω), where G(x, ω) is a N × N matrix that
reads

G(x, ω) = B(x, ω)

− k2C(x, ω)a(ω)
1

1 + k2G0(ω)a(ω)
CT (x, ω),

(12)

with Bmn(x, ω) = δmneikmx/2ikm and Cmi(x, ω) =
ξm(yi )eikm|x−xi|/2ikm. B(x, ω) is a N × N square matrix,
whereas C(x, ω) is an N × Ns rectangular matrix. The
simulation results presented in the following sections were
obtained using this procedure, whose simulation cost depends
only on Ns and N . It is in particular completely independent
of the system length L. Indeed, the advantage of the coupled
dipole method is that it does not require discretization of
space, as is the case with other methods such as the recursive
Green’s function method.

B. Transmission eigenvalue distribution

Our goal is to study the impact of the detuning δ = 2(ω −
ω0)/�0 on the distribution of the eigenvalues Tn of the matrix
t(ω)†t(ω). This distribution is defined as

P(T ) = 1

N

〈
N∑

n=1

δ(T − Tn)

〉
. (13)

In order to explore different propagation regimes by sim-
ply tuning the frequency, we focus our analysis to systems
of width W � N�(ω), for which the localization length is
ξ � πN�(ω)/2 [36]. Since N � kW/π , this imposes that
k�(ω) � 1. In this regime, an estimate of the mean free path is
�(ω) = 1/ρσs(ω), with ρ = Ns/LW the density of scatterers
and σs(ω) their scattering cross section; see Fig. 1 for an
illustration. Explicitly, this gives [37,38]

k�(ω) = 4

ρk2|α(ω)|2 �
δ�Q

(kW )(kL)

4Ns
(δ2 + 1). (14)

Reaching the diffusive regime ξ � L � �(ω) requires a large
number N of propagating channels, while reaching the local-
ized phase close to resonance (W � N�(ω0) � L) requires a
number of scatterers Ns such that (kW )(kL) � Ns � (kW )2.
All those requirements will be met in the following results.
Figure 2 shows the distribution P(T ) at different detunings
δ, in a waveguide supporting N � 50 channels (k0W = 161)
filled with Ns = 2 × 104 scatterers of quality factor Q =
ω0/(�0/2) = 103. Each value of detuning corresponds to a
different transport regime, as reported in Table I.

For large detuning (δ = 50), the coupling between light
and matter is weak. As a result, the mean free path, given by
Eq. (14), exceeds the medium’s thickness, causing most waves
to undergo quasiballistic transport. Consequently, the trans-
mission eigenvalue distribution P(T ), shown in Fig. 2 (shaded
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TABLE I. Correspondence between detuning value δ, mean free path �, and localization length ξ , normalized by the system thickness
L. The values are given for the parameters used in the numerical simulations shown in Figs. 2 and 4, namely, k0L = 5000, k0W = 161, and
Ns = 2 × 104. For each detuning, the values of �/L and ξ/L determine the transport regime in the system.

Transport regime Localized Quasilocalized Diffusive Quasiballistic

δ 0.5 2 8 50
�

L ∝ N
Ns

(δ2 + 1) 2.5 × 10−3 1.0 × 10−2 1.3 × 10−1 5.0
ξ

L ∝ N2

Ns
(δ2 + 1) 2.0 × 10−1 8.0 × 10−1 1.0 × 101 4.2 × 102

green), is peaked around 1, with a minimum eigenvalue Tmin

that remains strictly positive. This indicates that no wavefront
is fully reflected by the scattering medium. The precise value
of Tmin depends on the transverse width W , with Tmin → 0 as
W → ∞. This is because the number of propagating chan-
nels, which travel along distances L′

n = L/
√

1 − (nπ/kW )2,
increases as W grows, leading to more channels for which
L′

n > �(ω). We note that there is no theoretical prediction
available to accurately describe P(T ) for L � �(ω). In partic-
ular, the prediction from the Dorokhov-Mello-Peyrera-Kumar
(DMPK) equation is inaccurate (result not shown) because
it relies on the assumption of scattering channel isotropy
[36,39,40], which does not hold in the quasiballistic regime.

As ω progressively approaches ω0 (δ = 8), light and mat-
ter increasingly couple, and the transport mean free path
decreases. As a consequence, transmission eigenchannels
cover the full range T ∈ [0, 1], with a distribution P(T ) that

FIG. 2. Probability distribution of the eigenvalues Tn of the ma-
trix t†(ω)t(ω). Different histograms correspond to different detuning
values δ = 2(ω − ω0)/�0, and therefore to different mean free paths
(see Table I for reference). The solid blue line is the analytical
prediction in the diffusive regime given by Eqs. (14)–(16). The solid
red line corresponds to the analytical prediction in the localized
regime, given by Eqs. (17) and (18), where ξ = Nπ�(ω)/2 with
�(ω) given by Eq. (14). All distributions are computed for 5760
disorder configurations with Ns = 2 × 104 scatterers, with a quality
factor Q = ω0/(�0/2) = 103 in a waveguide of longitudinal size
k0L = 5000 and of transverse size k0W = 161. The number of modes
(which increases with the detuning) is N = 53 in the quasiballistic
regime and N = 51 in the other regimes.

develops a second peak at T = 0 (shaded blue in Fig. 2). In
the diffusive regime �(ω) � L � ξ , the average transmission
eigenvalue, 〈T (ω)〉 = 〈Tr[t(ω)†t(ω)]〉/N , follows from the
result of the diffusion equation for the mean intensity of light
[34],

〈T (ω)〉 = π�(ω)/2

L + π�(ω)/2
, (15)

and the distribution P(T ) is very well described by the bi-
modal prediction [36,39]

P(T ) = 〈T (ω)〉
2T

√
1 − T

, (16)

which supports a finite number g = N〈T (ω)〉 � 1 of open
channels with transmission close to unity [41], whereas the
medium is opaque for random wavefronts and plane waves
(〈T (ω)〉 � 1). The blue solid line in Fig. 2 corresponds to the
prediction given by Eqs. (14)–(16). Since the result in Eq. (16)
can be derived using the DMPK approach–a scaling analysis
of transmission that presumes a characteristic length scale,
�(ω), linked to a linearly inverse decrease in conductance
with system size—it is unsurprising that this result holds for
the resonant media considered here, provided that �(ω) is
appropriately calculated.

When the localization length equals the system length
(δ = 2), the number of open channels reduces to g � 1, caus-
ing the distribution P(T ) to lose its peak at T = 1 (shown in
pink in Fig. 2). At δ = 0.5, where ξ � L, most transmission
eigenvalues approach zero (see orange histogram in Fig. 2).
More specifically, for each realization of disorder, all eigen-
values Tn are much smaller than the largest one. Consequently,
the eigenvalue distribution takes the form

P(T ) � N − 1

N
δ(T ) + 1

N
Pmax(T ), (17)

where Pmax(T ) is the distribution of Tmax = max(Tn). The
largest eigenvalue, which exhibits significant fluctuations,
follows an approximately log-normal distribution with
Var[ln(Tmax)] = −2〈ln(Tmax)〉 = 4L/ξ � 1. Its distribution
can be closely approximated by

Pmax(T ) = C(ξ )

√
ln

(
4

T

)
e− ξ

2L

[ ln(T/4)
2 + L

ξ

]2

T
, (18)

where C(ξ ) is a normalization factor that depends on ξ .
This expression is obtained from Refs. [42,43] in the limit
of vanishing conductance g. The distribution P(T ) given by
Eqs. (17) and (18) is in very good agreement with our numer-
ical results (red solid line in Fig. 2). It implies in particular
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that

〈T 〉 � κ
e−L/2ξ

N
� 〈Tmax〉 � κe−L/2ξ � max(Tmax) � 1,

where κ = C(ξ )[2
√

πerfc(ln(4)1/2) + ln 4], with erfc the
complementary error function. For a finite number Nr

of disorder realizations, a rough estimate of the largest
accessible eigenvalue, TM = max(Tmax), is given by the so-
lution of NNr

∫ 1
TM

dT P(T ) = 1. In the simulations at δ = 0.5
presented in Fig. 2, where L/ξ = 5, N = 51, and Nr = 5760,
we find 〈T 〉 � 1.3 × 10−4, 〈Tmax〉 � 7 × 10−3, and TM � 0.2.
This shows that the use of wavefront shaping can lead to
orders-of-magnitude enhancement in transmission, transition-
ing from an incident plane wave—which typically exhibits a
transmission comparable to the mean transmission 〈T 〉—to
the maximally transmitted eigenchannel.

C. Eigenstate propagation

The eigenstates of t(ω)†t(ω) are of the form Vn(x, y) =∑N
p=1 c(n)

p

√
k/kpeikpxξp(y), with

∑N
p=1 |c(n)

p |2 = 1. The fields
�n(r) resulting from their propagation through the disordered
system are obtained by solving the coupled dipole equations,

�n(r) = Vn(r) − k2
Ns∑

i=1

G̃0(r, ri, ω)α̃(ri, ω)ψ̃i, (19)

ψ̃i = Vn(r) − k2
Ns∑
j=1
j �=i

G̃0(ri, r j, ω)α̃(r j, ω)ψ̃ j . (20)

Figure 3 displays the intensity patterns In(x, y) = |�n(x, y)|2
and the corresponding integrated intensity profiles In(x) =∫ W

0 dy In(x, y), shown for both the diffusive (top row) and
localized (bottom row) regimes. Typical input states Vn are
illustrated for low transmission in the left column and high
transmission in the right column. To improve clarity, these
simulations are conducted for square systems (k0W = k0L =
60). In each regime, however, the detuning is adjusted so
that the distribution of transmission eigenvalues qualitatively
resembles that in Fig. 2, in the diffusive (blue histogram) and
localized (orange histogram) regimes.

In the diffusive regime, the intensity maps In(x, y) are sta-
tistically invariant along the y direction (Fig. 3, top), with a
profile 〈In(x)〉 that depends on the eigenvalue Tn. The most
open channels (Tn � 1) have a symmetric bell shape [blue
dashed line in Fig. 3(b)], whose maximum increases linearly
with the optical thickness L/�(ω), in agreement with exper-
imental and numerical observations for nonresonant media
[2,44,45]. For L � �(ω), their profile is well captured by the
formula

〈IT =1(x)〉 � 2〈IT =1(0)〉
π〈T (ω)〉 sin

[
π

x + z0(ω)

L + 2z0(ω)

]
, (21)

where 〈IT =1(0)〉 = 〈∑N
p=1 |c(n=1)

p |2k/kp〉 � 1 and z0(ω) =
π�(ω)/4 is the extrapolation length [46]. On the other hand,
by extrapolating the results of Ref. [44] at small transmission,
we find that closed channels (Tn � 1) are expected to decay
exponentially as

〈ITn�1(x)〉 � 2〈IT =1(x)〉e−2x/ξn , (22)

FIG. 3. Intensity maps In(x, y) = |�n(x, y)|2 (in units of k0) and
integrated intensity profiles In(x) = ∫ W

0 dyIn(x, y) for typical inci-
dent wavefronts, chosen as different eigenstates Vn of the matrix
t†(ω)t(ω), in both the diffusive (first row) and localized regimes
(second row). The left (right) column corresponds to the propagation
of a low (high) transmission eigenstate in each regime. For clar-
ity, the results correspond to square systems with k0L = k0W = 60,
Ns = 960, and Q = 103. In each regime, detuning is adjusted so that
the distribution of transmission eigenvalues qualitatively resembles
Fig. 2: δ = 3, yielding k�(δ = 3) � 9.4 in the diffusive regime and
δ = 0 yielding k�(δ = 0) � 1.0 in the localized regime. The solid
red lines in In(x) represent the specific disorder realization associated
with the intensity map below, while dashed blue lines show the
average intensity over 30 disorder configurations. The dashed-dotted
black lines in the diffusive regime correspond to Eqs. (14) and (21)
for the open channel and to Eq. (22) for the closed channels. In the
localized regime, numerical results for closed channel profile 〈In(x)〉
are compared with the exponential profile e− ln(4/Tn )x/L .

with ξn � 2L/ln(4/Tn). This prediction is in qualitative agree-
ment with our results for resonant media [black dash-dotted
line in Fig. 3(a)]. Both results (21) and (22) drastically differ
from the linear decay of plane wave propagation, 〈I (x)〉 ∝
(L − x)/L, imposed by conservation of the mean current.

In the localized regime, the intensity maps In(x, y) ex-
hibit significant fluctuations. Notably, the states associated
with the largest transmission eigenvalues lose their invariance
along the y direction [see Fig. 3(d)]. Each of these states
arises from the efficient excitation of a cluster of a few ex-
ponentially localized quasinormal eigenmodes of the system
[47,48], enabling light to percolate through to the transmission
side, with transmission potentially orders of magnitude larger
than the transmission of a simple plane wave. The intensity
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of these states inside the medium can also be much larger
than the intensity of the open channels found in the diffusive
regime (compare the intensity values in the two maps on the
right). This could be attributed to a difference in the value
of �(ω) in both scenarios. The vast majority of the transmis-
sion eigenstates present, however, a very low transmission.
The corresponding intensity profiles In(y) decay exponentially
within the medium [see Fig. 3(c)], with localization lengths
ξn � n(π/2)�(ω) related to the transmission by Tn = 4e−2L/ξn

[36], similar to the behavior observed for closed channels in
the diffusive regime [see Eq. (22)].

III. DWELL-TIME OPERATOR AND RADIATION
TRAPPING

A. Electromagnetic energy and the dwell-time operator

To establish the expression of a dwell-time operator
in a resonant medium, it is useful to formally write the
coupled dipole equations (1) and (2) as a wave equa-
tion, [∇2 + k2ε(r, ω) + i0+]G(r, r′, ω) = δ(r − r′). By not-
ing that the exciting fields ψ̃i in Eq. (2) can be written as
ψ̃i = G(ri, r′, ω)/[1 − k2G̃0(ri, ri, ω)α̃(ri, ω)], we find that
G(r, r′, ω) in Eq. (1) obeys a wave equation with a frequency-
dependent dielectric constant of the form

ε(r, ω) = 1 +
Ns∑

i=1

α̃(ri, ω)

1 − k2G̃0(r, ri, ω)α̃(ri, ω)
δ(r − ri ),

(23)

which satisfies Im[ε(r, ω)] = 0, although Re[G̃0(ri, ri, ω)]
diverges, since Im[1/α̃(ri, ω)] = k2Im[G̃0(ri, ri, ω)] in the
absence of absorption. Here, ε(r, ω) should be regarded as
a formally defined quantity, and not as the relative dielectric
permittivity associated with a macroscopic displacement field.
For such nonabsorbing medium, the local electromagnetic
energy density, associated with an arbitrary field ψ (r, ω) so-
lution of the wave equation, is [49]

u(r, ω) = ε0

4ω
∂ω[ω2ε(r, ω)]|ψ (r, ω)|2. (24)

In Ref. [15], it was demonstrated that the total energy within
the scattering region V , given by U (ω) = ∫

V dr u(r, ω),
where u(r, ω) takes the form of Eq. (24), can be expressed
in terms of the so-called dwell-time operator Qd (ω),

U (ω) = φin〈ψin|Qd (ω)|ψin〉. (25)

Here, φin is the power carried by the incoming field |ψin〉,
normalized such that 〈ψin|ψin〉 = 1 (the original incident field
must be multiplied by

√
ε0c/2φin to get ψin). Equation (25)

shows that τ (ω) = U (ω)/φin = 〈ψin|Qd (ω)|ψin〉 represents
the dwell time of the field inside the scattering region when
illuminated with the wavefront |ψin〉.

Focusing on the case where |ψin〉 propagates from left to
right (see Fig. 1) and contains no evanescent components,
|ψin〉 can be represented in the basis of the N propagating
channels. The N × N dwell-time operator takes the form [15]

Qd (ω) = Q(ω) + Qi(ω) + Qe(ω), (26)

where Q(ω) is the Wigner-Smith operator [50,51],

Q(ω) = −i[t(ω)†∂ωt(ω) + r(ω)†∂ωr(ω)]. (27)

For standard input wavefronts |ψin〉, such as plane waves
close to normal incidence, Q(ω) is responsible for the largest
contribution to the dwell time. The Wigner-Smith operator
enables the multichannel generalization of the notion of time
delay through a scattering potential. It gives information on
the delay experienced by the central component of a wave
packet propagating through the disordered sample [13]. The
second term Qi(ω) results from the interference of the incident
and reflected fields. It reads

Qi(ω) = −i
D(ω)r(ω) − r(ω)†D(ω)

2
, (28)

where D(ω) is an N × N diagonal matrix with elements
Dmm(ω) = ω/[ω2 − (mπc/W )2] (m � N). The contribution
of Qi(ω) is significant for states of low dwell time, which do
not penetrate deeper than a few mean free paths inside the
scattering volume. Finally, Qe(ω) captures dwell-time con-
tributions due to scattering into evanescent channels of the
empty waveguide,

Qe(ω) = te(ω)†De(ω)te(ω) + re(ω)†De(ω)re(ω)

2
. (29)

Here, te(ω) and re(ω) are the transmission and reflection
matrices that connect the N input propagation channels
to Ne output evanescent channels; they are of size Ne ×
N and take the same form as in Eqs. (7) and (8), ex-
cept that km = ik

√
(mπ/kW )2 − 1, with N < m � Ne + N .

In addition, De(ω) is an Ne × Ne diagonal matrix with ele-
ments De mm(ω) = ω/[ω2 − (mπc/W )2] (N < m � Ne + N).
The contribution of Qe(ω) to the dwell time is negligible,
except when the transverse system size causes a geometrical
resonance due to the birth of a new propagating mode, i.e.,
when kW is close to a π -integer.

B. Dwell-time eigenvalue distribution

The dwell-time eigenvalue distribution is defined as

P(τ ) = 1

N

〈
N∑

n=1

δ(τ − τn)

〉
, (30)

where τn are the eigenvalues of the matrix Qd (ω) introduced
in Eq. (26). This distribution is shown in Fig. 4 for different
detuning values δ, while keeping all other parameters (the
waveguide length L, width W , number of resonators Ns, and
quality factor Q) fixed. To facilitate comparison between the
results for P(τ ) and P(T ), these parameters are identical to
those used in Fig. 2.

In the quasiballistic regime (δ = 50, green histogram in
Fig. 4), the distribution P(τ ) reflects the dispersion of the
channels of the empty waveguide. The dwell time of channel
n of the waveguide is simply τn = τb/

√
1 − (nπ/kW )2, with

τb = L/c the ballistic time for straight propagation along the
waveguide axis. In the limit of a large number of propagation
channels, N = �kW/π	 � 1, we deduce the following distri-
bution of normalized dwell time τ̃ = τ/τb:

P(τ̃ ) = 1

τ̃ 2
√

τ̃ 2 − 1
. (31)

This simple prediction appears in good agreement with simu-
lations, provided a scaling factor is introduced to account for
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FIG. 4. Probability distribution of the eigenvalues τn of the dwell-time operator Qd . Different histograms correspond to varying detuning
values δ, with system dimensions and density matching those used in Fig. 2 (see Table I for details on the propagation regimes). The left panel
displays the short-time histograms on a linear scale, while the right panel shows the long-time tails on a log-log scale. The solid green line is
a theoretical prediction based on the ballistic time of rays in the sample, as expressed in Eq. (31), multiplied by a 1.5 scaling factor. The solid
blue line represents the theoretical prediction for the diffusive regime, as described by the combination of Eqs. (14), (32), (33), and (34). The
solid and dotted red lines correspond to Eqs. (36) and (37), respectively. All times are normalized by the ballistic time, τb = L/c.

the residual scattering at short dwell time (green solid line
in Fig. 4). In the tail of the distribution, the spacing between
successive τn becomes larger than the disorder-induced fluctu-
ations around each τn value, revealing the underlying discrete
nature of the channels in P(τ̃ ). This effect disappears as W
increases (result not shown).

In the diffusive regime (δ = 8), the distribution P(τ̃ )
broadens, with a minimum at τ � τb (Fig. 4, left) and a tail
extending to large times τ � τb (Fig. 4, right). The eigenstates
associated with short dwell times correspond to reflected
wavefronts, while those with long dwell times correspond
to transmitted wavefronts. In Ref. [15], it is proven that the
distribution P(τ̃ ) of nonresonant diffusive media takes the
form

P(τ̃ ) = 2τs

πτb

1

τ̃ 2

√
(ατ̃ − 1)(1 − βτ̃ )(1 + γ τ̃ ). (32)

Here, τs is the scattering time (which expression will be
given later), and α, β, and γ are coefficients that depend
on τs/τb and τs/〈τ 〉, where 〈τ 〉 is the mean dwell time.
Defining X = √

β/α, these coefficient are solutions of
(1 − X )2(3 + 2X + 2X 2)/[2X (1 + X 2)] = 〈τ 〉/τs, α =
(τb/τs)(1 + X )/(1 − X 2)2 and γ = 2(τb/τs)X 2/(1 − X 2)2.
In the regime of large optical thickness, the distribution
(32) predicts that nonzero eigenvalues lie in the interval
τs � τ � 4〈τ 〉2/9τs, and that the maximum of the distribution
is reached for τ � 4τs/3.

In nonresonant disordered media, the scattering time
and mean time are given by τs = (π/2)�/vϕ and 〈τ 〉 =
(π/2)L/vϕ , where vϕ = c/n is the phase velocity, n being
the real part of the effective refractive index experienced by
the mean field [15]. This implies that the largest accessi-
ble dwell time is τmax = (2π/9)L2/�vϕ = (π3/9)τTh, where
τTh = L2/π2DB is the Thouless time. Here, DB = �vE/2 is
the diffusion coefficient of the mean intensity, with vE = vϕ

for nonresonant media, and τTh is the longest mode lifetime
of the corresponding diffusion equation.

It is worth noting that the largest dwell time τmax ∼ τTh

is significantly greater than the dwell time τPW associated
with a plane wave or a random wavefront, as the latter scales
with the average dwell time 〈τ 〉 [15]. This difference arises
because τPW is essentially the product of the transmission
diffusive time τTh and the probability ∼�/L of reaching the
transmission side. Wavefront shaping allows an increase in the
transmission probability, resulting in τmax/τPW ∼ L/� � 1.
Notably, this property is also preserved in resonant materials,
as we shall see.

In resonant disordered media, the energy velocity vE is
strongly reduced near resonance, as light can spend a time
of order �−1

0 inside each resonator between two scattering
events separated by a distance �(ω). By adapting expressions
found in Ref. [30] to the case of 2D scattering, we find that, in
the dilute regime k0a � 1, with a = (Ns/W L)−1/2 the mean
distance between scatterers, the energy velocity is given by

1

vE (ω)
= vϕ

c2
+ 1

�0�(ω)

(
1 + 2

πQ

)
, (33)

for δ � Q, where vϕ � c(1 + 2δ/[(k0a)2(δ2 + 1)]). Conse-
quently, both the Thouless time τTh and the mean dwell time
〈τ 〉 [52] are increased near resonance. Assuming that the
scaling of τmax with τTh must hold for resonant media, we find
that the scattering time and mean time are given by

τs = π

2

�(ω)

vE (ω)
and 〈τ 〉 = π

2

L

vE (ω)
. (34)

Very good agreement is observed in the diffusive regime be-
tween the prediction for P(τ̃ ) given by Eqs. (32)–(34) with the
above parameters and the simulation results (solid blue line in
Fig. 4, right).

An interesting result of energy velocity modulation is the
potential to significantly increase the maximum accessible
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FIG. 5. Maximal dwell time in the diffusive regime for mod-
erate (green) and large (purple) values of the quality factor Q of
the resonators. The normalized mean free path k0�(ω), given by
Eq. (14), is tuned by varying the number of scatterers from Ns =
100 to 12 750, while keeping the frequency on resonance (δ = 0).
The system has length k0L = 5000 and supports N = 47 transverse
channels. Numerical simulation results (dots) are compared to the
theoretical prediction (solid lines), determined by the upper edge
1/β of the distribution (32), with a good approximation provided
by Eq. (35). Dotted lines highlight the 1/�(ω) dependence of the
maximal dwell time when Q � 2k0�(ω) and the 1/�(ω)2 dependence
when Q � 2k0�(ω).

dwell time by enhancing the quality factor Q of the resonators.
To demonstrate this, we represent in Fig. 5 the largest normal-
ized dwell time τ̃max = τmax/τb computed at resonance (δ =
0) as a function of disorder strength, for both low and high
Q resonators. The disorder strength, quantified by k�(ω), is
modified by varying the number of scatterers Ns, while fixing
the system size. Apart from the excellent agreement between
simulations and theory, we find that the dwell time in high-Q
systems can be enhanced by a factor of ∼Q/2k�(ω) com-
pared to low-Q systems, potentially leading to high radiation
trapping effect. Indeed, by considering the limit L � �(ω)
in Eq. (32) and neglecting the small impact of the refractive
index on phase velocity, we find that the largest normalized
dwell time τ̃max = τmax/τb is given by

τ̃max � 2π

9

L

�(ω)

[
1 + Q

2k�(ω)

]
. (35)

Whereas τ̃max scales as 1/�(ω) for low-Q systems, it scales as
Q/�(ω)2 for high-Q systems (see dashed line in Fig. 5).

Figure 4 also presents results for P(τ̃ ) in the localized
regime ξ � L (δ = 0.5, orange histograms). In this regime, we
must distinguish between states that explore a region smaller
than the localization length ξ before escaping and those that
stay longer and are affected by the localization process. For
τ � ξ 2/DB ∼ N2τs, the states explore the system diffusively.

Taking the limit L → ∞ in Eq. (32), we obtain α = 1, β = 0,
and γ = 0, yielding

P(τ ) = 2τs

π

1

τ 2

√
τ

τs
− 1 for τ � N2τs. (36)

This prediction is shown as a solid red line in Fig. 4, right.
For τ � N2τs, the distribution P(τ ) can be derived by noting
that the longest dwell time corresponds to the Wigner time in
the localized regime, τW = ∑N

n=1 τn � max(τn). By extrapo-
lating known results for the Wigner time in nonresonant media
[53–55] to resonant cases, we find

P(τ ) = (π/2)N�(ω)

vE (ω)τ 2
for τ � N2τs, (37)

which becomes frequency-independent for high-Q systems,
P(τ ) � (π/2)N/�0τ

2. Up to a prefactor, Eq. (37) aligns with
the prediction of Ref. [56], which investigates P(τ ) for non-
resonant wave scattering, with waves injected from both sides
of the medium. The robustness of the power-law scaling in
P(τ ) originates from the distribution of decay rates � of
the quasimodes in localized disordered systems [53,57]. By
connecting the Wigner time and the density of quasimodes,
we find that

∫
τ

dτ ′P(τ ′) ∝ N〈τ 〉 ∫ 1/τ d� �P(�), leading to
P(τ ) ∼ 1/τ 2 because P(�) ∼ 1/� in any dimension within
the localized regime [57]. The prediction (37) is shown as a
dashed red line in Fig. 4, right.

C. Eigenstate propagation

According to Eq. (25), if the incident wavefront |ψin〉 is
chosen as an eigenstate of Qd (ω) with eigenvalue τ , it will
deposit the electromagnetic energy U (ω) = φinτ inside the
medium. In this sense, the eigenstates of Qd (ω) correspond to
incident wavefronts optimized for maximizing the total stored
energy. We refer to these as radiation trapping eigenstates.
Wavefront shaping can thus be applied to the dwell time
operator Qd (ω) in the same way as for the transmission matrix
t†(ω)t(ω).

In a symmetric manner to Fig. 3, we present in Fig. 6 typi-
cal intensity maps corresponding to the propagation of various
eigenvectors of the dwell-time operator Qd (ω). These maps
are obtained by solving the coupled dipole equations (19) and
(20), where Vn(r) now represents a dwell-time eigenstate. To
facilitate comparison with the intensity maps of transmission
eigenstates, the system parameters (k0W , k0L, Ns, δ, Q) are
identical to those in Fig. 3. This implies that the distribution
of dwell-time eigenvalues (not shown) qualitatively resembles
that in Fig. 4 for the diffusive (blue histogram) and localized
(orange histogram) regimes, but with a larger normalized
scattering time τs/τb � (π/4)Q/kL � 13, since the shorter
system length (k0L = 60 instead of k0L = 5000) reduces the
value of τb = L/c.

The left column of Fig. 6 shows states with dwell times
similar to the mean dwell time in the diffusive regime,
〈τ 〉/τb � (π/4)Q/k�(ω) � πQ/[(1 + δ2)(ka)2] � 84 at δ =
3, yet significantly longer than the scattering time, which
corresponds to the most probable time in the diffusive regime,
4τs/3τb � 17. Conversely, the right column of Fig. 6 shows
states with dwell times close to the largest accessible val-
ues, in both the diffusive and localized regimes. In the
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FIG. 6. Intensity maps In(x, y) = |�n(x, y)|2 (in units of k0)
and integrated intensity profiles In(x) = ∫ W

0 dyIn(x, y) for typical
incident wavefronts, chosen as different eigenstates Vn of the ma-
trix Qd (ω), in both the diffusive (first row, k�(δ = 3) � 9.4) and
localized regimes (second row, k�(δ = 0) � 1.0). System dimen-
sions (k0W , k0L) and resonator characteristics (δ, Q, Ns) match
those used in Fig. 3. The left column corresponds to the propa-
gation of eigenstates with dwell times τn close to the mean time
〈τ 〉/τb = (π/2)(�(ω)/L)(c/vE (ω)) � 84 in the diffusive regime,
while the right column shows eigenstates with τn close to the largest
dwell time accessible in both regimes (see text for details). The solid
red lines in In(x) represent the specific disorder realization associated
with the intensity map below, while the dashed blue lines show the
average intensity over 30 disorder configurations.

diffusive regime, Eq. (35) gives τmax/τb � (π/9)QkL/

[k�(ω)]2 � (16π/9)QkL/[(1 + δ2)2(ka)4] � 2 × 102 at δ =
3. In the localized regime, a rough estimate of the accessi-
ble τmax using Nr disorder configurations is the solution of
NNr

∫ ∞
τmax

dτP(τ ) = 1, with P(τ ) given by Eq. (37). This gives
τmax/τb � (π/4)QN2Nr/kL � 5 × 105 for Nr = 100.

In the diffusive regime (Fig. 6, upper row), dwell-time
eigenstates are statistically invariant along the transverse di-
rection, but the profile 〈In(x)〉 = ∫ W

0 dy 〈In(x, y)〉 depends on
the eigenvalue τn. Generally, the larger τn, the deeper the
penetration of In(x) into the material. This property, which
is apparent in nonresonant media, is less straightforward in
resonant media because, according to the definition (25) of
Qd , the normalized eigenvalue τ̃n = τn/τb is related to the
field �n(r, ω) by

τ̃n =
∫
V

dr
L

∂ω[ω2ε(r, ω)]

2ω
|�n(r, ω)|2, (38)

which differs in a nontrivial way from the nonresonant result
(c/vϕ )

∫ L
0 dx In(x)/L. In particular, the values of τ̃n are much

larger than the typical values of In(x) because most of the en-
ergy is stored inside the material degrees of freedom instead of
the field. However, the profiles found for 〈In(x)〉 are consistent
with those for nonresonant media, as reported in Ref. [15].
As τn increases, 〈In(x)〉 evolves from an exponential profile
near the injection surface to a profile that deposits most of
the intensity within the bulk of the disordered system. The
maximum dwell-time eigenstates [Fig. 3(b)] exhibit a peak in-
tensity that is slightly shifted to the left of the sample midpoint
x = L/2, due to the asymmetry induced by left-side injection,
which breaks the system’s statistical mirror symmetry. This
symmetry can be restored by injecting light from both sides
[15]. Although no theoretical prediction exists for 〈In(x)〉,
we find that the profiles are qualitatively similar to those
associated with transmission eigenchannels, showing slightly
more intensity inside the sample for the largest dwell-time
eigenstates than for the open channels [compare Fig. 3(b) with
Fig. 6(b)].

In the localized regime (Fig. 6, lower row), eigenstates
with dwell times similar to the mean diffusive dwell-time
exhibit behavior quite distinct from that of corresponding
diffusive states [compare Figs. 6(a) and 6(c)]. Notably, the
intensity profile 〈In(x)〉 is significantly more localized near the
injection surface, suggesting that there is not always a straight-
forward relationship between the dwell time, as defined in
Eq. (38), and the integrated intensity. In contrast, wavefronts
with dwell time τ � N2τs produce intensity maps that are
exponentially localized within the sample [Fig. 6(d)], indi-
cating that they can efficiently couple to quasimodes deeply
localized within the material. Interestingly, these states not
only reach exceptionally large dwell times but also gener-
ate intensity patterns that are substantially more intense than
those in the diffusive regime [compare Figs. 6(b) and 6(d)],
and even surpass the intensity of the largest transmission
eigenchannels in the localized regime [compare Fig. 3(d)
with Fig. 6(d)]. This is because transmission eigenchannels
optimize coupling between localized quasimodes to maximize
transmission, whereas dwell-time eigenchannels optimize tar-
geting the deepest and most isolated quasimodes.

IV. CONCLUSION

In this work, we have shown that the transmission and
dwell-time eigenvalue distributions of resonant disordered
media, P(T ) and P(τ ), can be fully characterized by two
mesoscopic parameters—the transport mean free path �(ω)
and the energy velocity vE (ω)—along with two geometric
parameters, the system length L and the number of transverse
channels N .

In the diffusive regime (�(ω) � L � ξ ), P(T ) follows the
bimodal distribution (16), parameterized by the optical thick-
ness L/�(ω), while P(τ ) follows Eq. (32), which is governed
by both the optical thickness and the time between succes-
sive scattering events, �(ω)/vE (ω). In this regime, the use of
wavefront shaping to synthesize eigenstates of either the trans-
mission or the dwell-time operators enables transmission and
energy storage that surpass those achievable with a plane wave
or a random wavefront by a factor of L/�(ω) � 1. Indeed,
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〈T 〉 ∝ �(ω)/L and Tmax � 1 yield Tmax/〈T 〉 ∝ L/�(ω), while
〈τ 〉 ∝ L/vE (ω) and τmax ∝ L2/[�(ω)vE (ω)] give τmax/〈τ 〉 ∝
L/�(ω). Additionally, using the explicit expression for the en-
ergy velocity, we demonstrated that τmax can be enhanced by
a factor c/vE (ω) � Q/2k�(ω) � 1 when employing high-Q
resonators instead of low-Q ones [see Eq. (35) and Fig. 5].
This contrasts with the portion of energy stored in the field,
which scales as L/�(ω) for both the open channels [Fig. 3(b)]
and the eigenstates of Qd (ω) associated with τmax [Fig. 6(b)].
Notably, the field energy of the latter appears independent of
the energy velocity and therefore independent of the quality
factor of the resonators, at fixed detuning δ.

In the localized regime (W < ξ � (π/2)N�(ω) < L), the
distributions P(T ) and P(τ ) depend on an additional parame-
ter: the number of channels N . Most transmission eigenvalues
are close to zero, while the largest transmission eigenvalue
typically follows a log-normal distribution [see Eq. (18)],
exhibiting significant fluctuations [ln(Tmax) has a standard
deviation ∝

√
L/ξ � 1]. This implies that a plane wave

or a random wavefront typically yields a transmission ∝
e−2L/ξ /N � 1, although specific disorder configurations can
allow Tmax to approach unity. The enhancement Tmax/〈T 〉
achieved through wavefront shaping is therefore even more
pronounced than in the diffusive regime. The same applies
to the control of energy storage via wavefront shaping. In
contrast to the diffusive regime, P(τ ) remains unbounded
in the localized regime [see Eq. (37)]. Since the mean time
〈τ 〉 is proportional to the mean density of states and re-
mains largely unaffected by localization, we find τmax/〈τ 〉 ∝
N2Nr�(ω)/L � 1, where Nr is the number of disorder real-
izations probed. In addition, the advantage observed in the
diffusive regime of working with high-Q resonators is pre-
served in the localized regime, as τmax remains proportional
to c/vE (ω).

Previous predictions apply to a wide range of two-
dimensional disordered structures composed of resonant
units, including thin metallic waveguides filled with sub-
wavelength high-dielectric cylinders in the microwave domain
[58–60], planar disordered waveguides [2,61], and more ex-
otic nanostructures in the optical domain [62,63]. Moreover,
since all our predictions for the diffusive regime are generi-
cally expressed in terms of the mean free path and the energy
velocity—and since such a diffusive regime is also commonly
observed in three-dimensional systems—we anticipate that
our predictions will remain valid in three-dimensional diffu-
sive systems composed of pointlike scatterers. This includes
systems composed of resonant dielectric scatterers, cold
atoms far from saturation, or artificial atoms, which can be
accurately described using coupled-dipole equations [17,32].

An important aspect of energy storage in resonant media
not addressed in this work is the detailed analysis of how
energy is partitioned between the light and material degrees
of freedom. While it is evident that high-Q systems store
most of the energy within the material, it remains unclear to
which degree this partitioning is influenced by factors such as
disorder strength and the propagation regime (quasiballistic,
diffusive, or localized). Additionally, it is unclear to which
degree this partition can be controlled through wavefront
shaping techniques. This issue will be explored in a forthcom-
ing publication.
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APPENDIX A: COUPLED DIPOLE EQUATIONS
IN A WAVEGUIDE

In this Appendix, we derive the coupled dipole equa-
tions for an assembly of resonant scattering dipoles in a
waveguide. We consider the case of an incident z-polarized
wave propagating through a two-dimensional waveguide em-
bedded in the (x, y) plane. In this configuration, the scattering
process preserves the polarization of the incident field, mean-
ing all vector quantities are aligned with the ẑ unit vector. For
simplicity, we will omit vector notation and work exclusively
with scalar quantities in the following derivation.

The scalar Green’s function of the wave equation is given
by

G(r, r′, ω) = G̃0(r, r′, ω) − k2α(ω)
Ns∑

i=1

G̃0(r, ri, ω)ψi,

(A1)

where α(ω) is the free space polarizability of a resonant scat-
terer and G̃0(r, r′, ω) is the retarded Green’s function of the
wave equation in the empty waveguide with Dirichlet bound-
ary conditions in the y direction, defined in Eq. (3). In addition,
the field ψi, exciting the scatterer located at the position ri,
includes the contribution of the source, G̃0(ri, r′, ω), as well
as the contributions of the different scatterers,

ψi = G̃0(ri, r′, ω) + ψ�(ri ) − k2α(ω)
Ns∑
j=1
j �=i

G̃0(ri, r j, ω)ψ j .

(A2)

Note, in particular, the radiation-reaction contribution from
the scatterer i,

ψ�(ri ) = −k2
G0(ri, ω)α(ω)ψi, (A3)

where 
G0(ri, ω) = G̃0(ri, ri, ω) − G0(ri, ri, ω), and
G0(r, r′, ω) is the retarded free space Green’s function.
By definition, ψ�(ri ) = 0 in free space (where G̃0 = G0),
because the effect of the radiation-reaction in that case is
already encapsulated in the resonance frequency ω0 and
linewidth �0 of the polarizability α(ω).

By introducing the effective exciting field ψ̃i = ψi −
ψ�(ri ) and local polarizability α̃(ri, ω) = α(ω)ψi/ψ̃i, we
can rewrite the coupled dipole equations (A1) and (A2) as
Eqs. (1) and (2), where α̃(ri, ω) is given in Eq. (4). Similar
renormalization procedures for the polarizability due to the
environment can be found in the literature; see, for example,
Refs. [64,65].
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APPENDIX B: NUMERICAL COMPUTATION OF �G0(ri, ω)

In order to explicitly calculate the renormalization contri-
bution 
G0(ri, ω) appearing in Eq. (4), two strategies can be
adopted. Using the Poisson summation formula, we can write
it as


G0(ri, ω) =
∑
n∈Z∗

(−1)nG0
(
ri, r(n)

i , ω
)
, (B1)

where r(n)
i are the positions of the mirror images of the res-

onator located in ri: r(n)
i = (xi, nW + yi ) if |n| is even, and

r(n)
i = (xi, (n + 1)W − yi ) if |n| is odd. However, in prac-

tice, this sum is slowly converging. Alternatively, we may
use a modal expansion of the Green’s function G̃0, such as
the one given in Eq. (3), but we need to properly account
for the fact that both G̃0(ri, ri, ω) and G0(ri, ri, ω) diverge,
although their difference does not. This can be done by
replacing G0(
x,
y) ≡ G0(r, r′) (with 
x = x − x′, 
y =
y − y′) by its convolution with a Gaussian function of finite

width b along the y direction, G(b)
0 (
x,
y) = G0(
x,
y) ⊗

e−
y2/2b2
/
√

2πb, and using the relation


G0(ri, ω) =e
k2b2

2

∑
n∈Z

(−1)nG(b)
0

(
ri, r(n)

i , ω
) − G(b)

0 (ri, ri, ω),

(B2)

which holds for kb � 1. Explicit calculation gives


G0(ri, ω) =
∑
n>0

e(k2−π2n2/W 2 )b2/2

4iknW
(1 − e2iπnyi/W )

− γ + ln(b2k2/8) − iπ

4π
+ O(kb), (B3)

where γ is the Euler-Mascheroni constant. Simulation results
presented in this article have been obtained by computing the
polarizability α̃(ri, ω) defined in Eq. (4) with expression (B3)
for each scatterer position ri. Convergence is reached for a
number of terms in Eq. (B3) of the order of μNs, with μ � 1.
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