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Transmission eigenvalue distribution in disordered media from radiant field theory
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We develop a field-theoretic formalism, called radiant field theory, to calculate the distribution of transmission
eigenvalues for coherent wave propagation in disordered media. At its core is a self-consistent transport equa-
tion for a 2 × 2 matrix radiance, reminiscent of the radiative transfer equation but capable of capturing coherent
interference effects. This framework goes beyond the limitations of the Dorokhov-Mello-Pereyra-Kumar theory
by accounting for both quasiballistic and diffusive regimes. It also handles open geometries inaccessible to
standard wave-equation solvers such as infinite slabs. Analytical and numerical solutions are provided for
these geometries, highlighting in particular the impact of the waveguide shape and the grazing modes on the
transmission eigenvalue distribution in the quasiballistic regime. By removing the macroscopic assumptions
of random matrix models, this microscopic theory enables the calculation of transmission statistics in regimes
previously out of reach. It also provides a foundation for exploring more complex observables and physical
effects relevant to wavefront shaping in realistic disordered systems.
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I. INTRODUCTION

In 2007 it was demonstrated that it is possible to focus
light behind a strongly scattering material by coherent phase
manipulation of the incident wavefront [1]. This coherent
control technique, known today as wavefront shaping [2–4],
has led to a wide range of applications in various domains
of technology including medical imaging [5], telecommuni-
cations [6,7], electronic microscopy [8], and more [9,10]. The
success of wavefront shaping largely relies on a powerful
theoretical tool: the transmission matrix t, which links the field
in the input and output channels. When the incident wavefront
is matched to the conjugate of a row of this matrix, con-
structive interference takes place in the corresponding output
channel, creating a focus point. Alternatively, the wavefront
can also be tailored to maximize the total transmitted energy
[11,12]. In this case, the achievable transmittances are given
by the eigenvalues of t†t, usually referred to as transmission
eigenvalues, which due to flux conservation always belong to
the unit interval T ∈ [0, 1]. It is a famous result of quantum
transport theory that, for a nonabsorbing disordered waveg-
uide in the diffusive regime, the transmission eigenvalues are
universally distributed according to the bimodal law, ρ(T ) =
T̄ /(2T

√
1 − T ), where T̄ is the mean transmittance [13,14].

This distribution extends over the entire interval up to T = 1,
indicating the unintuitive existence of perfectly transmitted
channels even when the disordered medium is largely opaque
on average (T̄ � 1).
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More generally, the eigenvectors of t†t, often called trans-
mission eigenchannels, are transmitted with a well defined
probability given by the corresponding eigenvalue. Despite
the attention that these states attracted in the literature, they
currently escape theoretical description. Indeed, since they are
produced by coherent phase control, they cannot be treated by
simple radiative transfer equations. Largely for this reason,
very few properties of transmission eigenchannels are known.
One emblematic feature that is not completely understood
is their spatial profile in the bulk [15–17]. Other unresolved
issues regarding transmission eigenchannels include their spa-
tial correlations [18–20], their spectral correlations [21,22],
or their intensity fluctuations [19]. In fact, the transmission
eigenvalue distribution itself is unknown as soon as the system
leaves the universality class of the bimodal law.

In certain circumstances, the transmission eigenvalue dis-
tribution can be described by random matrix theories. A
particularly successful theory addressing this issue is the
Dorokhov-Mello-Pereyra-Kumar (DMPK) theory [14,23,24],
which is based on cutting the disordered waveguide into
infinitesimal slices modeled by random scattering matrices.
The result is a Fokker-Planck-type equation, known as the
DMPK equation, for the joint distribution of transmission
eigenvalues. One of its remarkable predictions is the bimodal
law. The DMPK theory has achieved great success due to the
elegance of its formalism and the accuracy of its predictions,
in both the diffusive and the localized regime in quasi-one
dimensional systems. A more recent example is the filtered
random matrix theory [25,26], which captures the effect of
incomplete channel control on the measured statistical prop-
erties of the scattering matrix using free probabilities [27,28]
and microscopic renormalization of filtering parameters
[12,26,29].

A recurring issue with random matrix theories is the ad hoc
nature of some of their assumptions regarding the spectral or
scattering properties of the system’s constituents. In the case
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of DMPK theory, these assumptions limit its applicability to
rectilinear disordered waveguides in the multiple-scattering
regime without absorption and with complete channel control.
From this point of view, the bimodal law predicted by DMPK
is not as universal as often assumed. This limitation makes it
inadequate for describing realistic optical experiments where
quasiballistic regime, absorption, incomplete channel control,
and open geometries are common. We will return to the as-
sumptions behind DMPK theory in Sec. II A.

To date, there is no microscopic theoretical framework
based solely on the statistics of the disorder for the optimized
states generated by wavefront shaping. We lay the foundations
for such a framework in this article. Instead of random ma-
trices, our framework relies on field theory to carry out the
disorder averaging, making it independent of the geometry of
the disordered region, the propagation regime (quasiballistic
or diffusive), and the considered observable. Our central result
is a transport equation similar to the radiative transfer equa-
tion of incoherent propagation [30] but unlike the latter able to
capture the coherence of the wave due to its matrix nature. We
name our framework radiant field theory (RFT) in reference to
the radiative transfer equation. In order to validate our theory,
we focus the present article on the calculation of the transmis-
sion eigenvalue distribution through a disordered waveguide
and an infinite slab without absorption. The accompanying
Letter [31] further extends the framework to the quasiballistic
regime with absorption and incomplete channel control. We
defer the study of other properties of transmission eigenchan-
nels, other observables, and other open geometries to future
works.

This paper is organized as follows. The need for a mi-
croscopic theory for transmission eigenvalues beyond DMPK
theory is motivated in Sec. II A. The field theory itself is
derived step by step from Secs. II B to II G. The relationship
between this theory and the nonlinear sigma model is dis-
cussed in Appendix A. In Appendices B and C, it is shown that
the matrix field, the main variable of the theory, slowly varies
at the wavelength scale, thereby making the semiclassical
approximation of Sec. III A relevant. The result of this approx-
imation is the matrix transport equation (97), the central result
of this paper. The boundary conditions of this equation are
obtained in Sec. III B. An analytical solution in the quasibal-
listic regime is derived in Appendix D. Numerical results are
presented in Sec. IV. The matrix transport equation is solved
numerically in two geometries, the waveguide in Sec. IV A
and the infinite slab in Sec. IV B, using the integration method
of Appendices E and F. Finally, conclusions are drawn in
Sec. V.

II. FIELD THEORY FOR THE TRANSMISSION
STATISTICS

A. Motivations

Like most random matrix theories, DMPK theory relies on
assumptions that govern the statistical ensembles of random
matrices used to describe wave-matter interactions. The most
restrictive and least well-controlled of these is the so-called
isotropy hypothesis [14,24,32,33]. According to this hypothe-
sis, each infinitesimal slice of the disordered medium along
the waveguide scatters the wave uniformly in every direc-

tion. This assumption implies that the statistical distribution
of the slice’s transfer matrix is independent of its singular
value decomposition (SVD) and depends only on the trans-
mission eigenvalues. In addition, this statistical isotropy is
preserved under the stacking of slices [24]. As a result, the
random transfer matrices belong to a well-defined rotation-
invariant ensemble reminiscent of the Gaussian ensembles.
The evolution of this ensemble with increasing system length
is governed by a Fokker-Planck-type equation (Eq. (5) of
Ref. [32]), which can be closed on the transmission eigen-
values only. This leads to the DMPK equation (Eq. (2) of
Ref. [32]).

The issue with the isotropy hypothesis is that it does not
hold in the thin-slab limit. A straightforward perturbative
calculation based on the Born approximation shows that the
scattering probabilities of an infinitesimal disordered slice
inevitably depend on the input and output directions, even in
the case of delta-correlated disorder [32,33]. Consequently,
the actual ensemble of transfer matrices is not microscopi-
cally independent of its SVD, i.e., it is not isotropic. This
anisotropy induces statistical correlations between the trans-
mission eigenvalues and eigenvectors which prevent the
closure of the Fokker-Planck-type equation on the eigenvalues
alone. Neglecting these correlations is only justified in the
diffusive regime, where the flux is approximately uniformly
distributed across channels. However, in the quasiballistic
regime, this approximation fails, rendering the predictions of
the DMPK equation inaccurate. A similar issue arises when
absorption or amplification is introduced [34,35], or when
the system features obstacles, nonideal waveguiding, or open
geometries. While several generalizations of the DMPK equa-
tion have been proposed to account for some of these effects
[36–38], a fully satisfactory and comprehensive solution re-
mains elusive.

Another important limitation of DMPK theory stems from
its mathematical formulation based on stacking infinitesimal
disordered slices. As a consequence of this construction, the
theory does not naturally give access to observables inside the
disordered medium, such as the spatial profile of transmis-
sion eigenchannels, without substantial modifications of the
formalism.

To address the limitations of random matrix theories,
one can turn to a microscopic description that links the
scattering matrix directly to the statistical properties of the
disorder. A promising framework for this is field theory. The
first field-theoretic approaches to wave propagation in ran-
dom media emerged in the late 1970s with the works of
Wegner and Schäfer [39,40], inspired by concurrent develop-
ments in coherent electron transport [41–44]. This framework
was extended to include Anderson localization by Efetov
and collaborators through the introduction of supersymme-
try [45–47]. An interesting connection was soon identified
between the field theory of disordered conductors and the qua-
siclassical theory of nonequilibrium superconductivity [48],
originally developed at the inception of Bardeen-Cooper-
Schrieffer (BCS) theory. Key contributions in this domain
include the kinetic equations of Gorkov [49], Eilenberger
[50], Usadel [51], and Larkin and Ovchinnikov [52], who
analyzed how disorder, introduced by impurities, affects the
superconducting coherence length in type-II superconductors.
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This analogy proved fruitful: in the 1990s, Nazarov exploited
it to derive the transmission eigenvalue distribution through a
disordered conductor in the diffusive regime [53]. His deriva-
tion of the bimodal law via field theory is an important result
in mesoscopic physics and forms the foundation of his circuit
theory [54]. In modern terms, this approach belongs to the
class of nonlinear sigma models [55,56], and, as such, remains
confined to the diffusive regime.

The field-theoretical framework developed in this work is
inspired by Nazarov’s technique but goes beyond the diffu-
sion approximation, making it applicable to the quasiballistic
regime. At its core is a matrix transport equation structurally
similar to the Eilenberger equation of nonequilibrium super-
conductivity [50,51,57]. We derive this equation not only for
rectilinear waveguide geometries but also for open systems
such as an infinite disordered slab—a configuration inaccessi-
ble to direct numerical simulation of the wave equation. Our
approach thus provides insight into systems that were previ-
ously out of reach. This framework is further extended in the
accompanying Letter [31] to incorporate additional physical
effects, including absorption and incomplete channel control.

Since the equations of this paper are valid in a space of
arbitrary dimension, the volume and surface area of the unit
ball in the space Rd frequently appear. They are respectively
given by

Vd = π
d
2

�
(

d
2 + 1

) , and Sd = dVd = 2π
d
2

�
(

d
2

) , (1)

where �(z) stands for the gamma function [58]. Furthermore,
regarding the notations, we will use the hat (Â) for operators
acting in the position space and Dirac’s bra-ket notations for
the corresponding vectors. In addition, Tr(·) will represent the
trace over a continuous basis and tr(·) the trace over a discrete
basis.

B. Presentation of the model

In this section, we present the physical model studied in
this paper, along with the key quantities of interest, including
the transmission matrix. The system involves a generic scalar
field ψ (r) obeying the stationary wave equation[∇2

r + k2 − U (r)
]
ψ (r) = 0, (2)

where k is the wavenumber and U (r) is a random potential
related to the refractive index n(r) by U (r) = k2[1 − n(r)2].
We assume that the random realizations of this potential are
distributed according to the normal distribution:

P[U (r)] = N exp

(
−
∫
Rd

dr
U (r)2

2α(r)

)
. (3)

The arbitrary factor N in Eq. (3) is defined such that the
functional integral of P[U (r)] over U (r) equals 1. The local
variance α(r) in Eq. (3) is referred to as the disorder strength.
The potential U (r) obeying the distribution (3) is character-
ized by a Dirac-delta autocorrelation function in space [59],

〈U (r)U (r′)〉 = α(r)δ(r − r′), (4)

where 〈· · · 〉 stands for the average over the realizations of
U (r) weighted by the distribution (3). The characteristic dis-
tance between two successive scatterings is measured by the

mean free path �, which is related to the disorder strength by

1

�(r)
= πν

k
α(r). (5)

Since the autocorrelation length prescribed by Eq. (4) is in-
finitely smaller than the wavelength, each scattering event
caused by U (r) fully randomizes the wave’s direction of prop-
agation. This scattering isotropy is different from the DMPK
isotropy hypothesis mentioned earlier because the latter cor-
responds to the scattering by an infinitesimal slice of disorder
and not by the fluctuations of U (r). This scattering isotropy
makes both the scattering and transport mean free paths equal
to �. We will assume that the disordered region has a finite
spatial extent of length L:

α(r) =
{
α if x ∈ [0, L],
0 otherwise. (6)

According to Eq. (6), the potential U (r) vanishes identically
outside the disordered region. From now on, we will omit
the spatial dependency of �(r) and α(r) but all following
equations remain valid for any disorder profile. In Eq. (5), ν is
the density of states defined by

ν(k)
def= 1

V
Tr[δ(k2 − Ĥ )], (7)

where V is the quantization volume of the system, Ĥ the
Hamiltonian corresponding to Eq. (2),

Ĥ = p̂2 + U (r̂), (8)

and p̂ = −i∇r the momentum operator. We assume that the
disorder strength is not too large in order to prevent the po-
tential from significantly affecting the density of states. This
assumption is typically valid in the weak scattering regime:
k� 	 1. In this regime, the density of states (7) is given in
fairly good precision by

ν(k) = 1

V

∑
p

δ(k2 − p2). (9)

However, the value of ν(k) in Eq. (9) still relies on the ge-
ometry of the system, especially the boundary conditions.
If the wavelength is much smaller than the system size in
all directions, then the density of states (9) reduces to the
free-space density of states

ν0(k) =
∫
Rd

dp
(2π)d

δ(k2 − p2) = Sd kd−2

2(2π)d
. (10)

In this paper, we assume that the wave described by Eq. (2)
propagates in a waveguide containing a disordered medium
and connected to the outside by two leads, as shown in
Fig. 1(a). We also consider the limit of an infinitely wide
waveguide, which we refer to as the infinite slab, depicted in
Fig. 1(b). In each lead, the field ψ (r) can be decomposed on
the basis of transverse eigenmodes by

ψ (r) =
Np∑

n=1

(a+
n eikx,nx + a−

n e−ikx,nx )
χn(y)√

kx,n

. (11)
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FIG. 1. Schematic representation of the two geometries consid-
ered in this paper, namely, the waveguide (a) and the infinite slab
(b). Both geometries contain a disordered medium of thickness L
characterized by a random potential U (r). The dashed lines at xa and
xb represent the emission and reception surfaces in the Fisher and
Lee formula (18).

The transverse eigenmodes χn(y) in Eq. (11) are defined by(∇2
y + p2

⊥,n

)
χn(y) = 0,

∫
dy χ∗

m(y)χn(y) = δmn. (12)

If we gather all the coefficients in the vectors a± =
(a±

1 , a±
2 , . . . , a±

Np
) and b± = (b±

1 , b±
2 , . . . , b±

Np
), then the in-

cident wave amplitudes are related to the outgoing wave
amplitudes by the scattering matrix, or S matrix, according
to (

a−
b+

)
=
(

r t′
t r′

)
︸ ︷︷ ︸

S

(
a+
b−

)
, (13)

where t, t′ are transmission matrices, and r, r′ reflection matri-
ces [14].

The ability to transmit more or less signal from lead “a” to
“b” is characterized by the singular values of the transmission
matrix. Indeed, if we take the singular value decomposition

t = V′ √T V†, (14)

where V and V′ are unitary matrices and T is a positive-
definite diagonal matrix, then each amplitude in lead “b” is
related to an amplitude in lead “a” by

b̃
+ =

√
T ã+, (15)

using b̃
+ = V′†b+ and ã+ = V†a+. Equation (15) shows that

the relevant mode-per-mode transmission coefficients are the
elements of

√
T. The corresponding transmittances are thus

simply the elements of

T = diag
(
T1, T2, . . . , TNp

)
, (16)

which also turn out to be the eigenvalues of the product t†t
according to Eq. (14): t†t = V T V†. The values T1, T2, . . . , TNp

are generally known as the transmission eigenvalues [14].
Since the S matrix is unitary, the transmission eigenvalues
are smaller than 1 and are thus contained in the unit interval:
Tn ∈ [0, 1] ∀n.

When considering transmission through a random medium,
the Tn’s fluctuate so that it is useful to look for their average
distribution defined by

ρ(T )
def= 1

Np

Np∑
n=1

〈δ(T − Tn)〉 = 1

Np
〈trδ(T − t†t)〉, (17)

and normalized according to
∫ 1

0 dT ρ(T ) = 1. Finding the
distribution ρ(T ) is the main purpose of this paper.

The question now is to relate the transmission matrix t to
the properties of the disordered potential U (r). To this end,
we resort to the Fisher and Lee formula [60]

tmn = 2i
√

kx,mkx,n 〈χm, xb|Ĝ+|χn, xa〉, (18)

which provides the matrix element corresponding to the trans-
mission from the mode χn in lead “a” to the mode χm in lead
“b”. In Eq. (18), xa and xb are the coordinates of the emission
and reception surfaces, respectively, and Ĝ+ is the Green’s
operator defined by

Ĝ± def= 1

k2 ± iε − Ĥ
(19)

in terms of the Hamiltonian (8) of the full problem. The
symbol ε in Eq. (19) represents a small but nonzero positive
quantity. The Fisher and Lee formula (18) can be used to
express any function of the transmission matrix, f (t†t), in
terms of the Green’s operator (19):

tr f (t†t) = Tr f (Ĝ+K̂aĜ−K̂b). (20)

The operators K̂a and K̂b in Eq. (20) are essentially projec-
tors on the surfaces at xa and xb, respectively. According to
Eq. (18), they are given by

K̂ (x) =
Np∑

n=1

2kx,n|χn, x〉〈χn, x|, (21)

with K̂a = K̂ (xa ) and K̂b = K̂ (xb). Several important remarks
should be made regarding Eqs. (20) and (21).

First, the fact that Eq. (20) holds for an arbitrary function
f (x) implies that t†t and Ĝ+K̂aĜ−K̂b are related by a simi-
larity transformation, and thus share the same eigenvalues.
This similarity is not trivial because they do not act on the
same space. While t†t acts on the modal space defined on
the surfaces at xa and xb, the operator Ĝ+K̂aĜ−K̂b acts on
the whole volume of the waveguide. The surface to volume
extension provided by Eq. (20) is a key ingredient of our field-
theoretic approach since it provides a way to relate the sought
transmission statistics to the characteristics of the random
potential U (r).

Second, we notice that the operator K̂ (x) in Eq. (21) is
very close to a current operator, but not quite because it is
positive definite (kx,n > 0) in contradiction with the possible
existence of negative currents. In order to restore the current
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interpretation of K̂ (x), it is possible to redefine it as

K̂ (x) = p̂xδ(x̂ − x) + δ(x̂ − x) p̂x. (22)

This redefinition coincides with Eq. (21) when inserted into
Eq. (20) if xa → −∞ and xb → +∞. However, the advantage
of Eq. (22) over (21) is that the current is conserved in the
absence of absorption (∂xK̂ (x) = 0). Therefore the positions
xa and xb can be moved to any place, including in the disor-
dered region, without altering the spectrum of t†t. The latter
will always correspond to the transmission from x → −∞ to
x → +∞. On the other hand, the pseudo-current (21) makes
the spectrum of t†t dependent on xa and xb when they are
located in the disordered region. This leads to the concept of
deposition matrix [22,61,62] which is beyond the scope of the
present paper and will be addressed in a future work.

C. Generating function and duplicated space

In this section, we construct a statistical field theory for the
transmission eigenvalue distribution (17) inspired by the work
of Nazarov [53,54].

Since the transmission matrix t is inversely proportional
to the Gaussian random potential U (r̂), it is more convenient
to consider the eigenvalues of (t†t)−1 rather than those of
t†t, although they are trivially related. We thus define the
generating function

F (γ )
def= 1

Np

〈
tr

(
1

(t†t)−1 − γ

)〉
, (23)

which depends on the variable γ ∈ C. According to the prop-
erty Im( 1

x−i0+ ) = πδ(x), the sought transmission eigenvalue
density (17) can be extracted from the imaginary part of the
generating function (23) up to the change of variable γ =
T −1:

ρ(T ) = 1

πT 2
Im F

(
1

T
+ i0+

)
. (24)

The generating function (23) can also be derived from the
function

Z (γ )
def= N det(1 − γ t†t)−1, (25)

using

F (γ ) = 1

Np

d

dγ
〈ln Z (γ )〉, (26)

and the determinantal relation ln det(A) = tr ln(A). The sym-
bol N in Eq. (25) is a γ -independent immaterial prefactor
which is eliminated anyway by the logarithmic derivative. The
relation (20) implies that t†t can be replaced by Ĝ+K̂aĜ−K̂b

under a trace or a determinant. Equation (25) thus becomes

Z (γ ) = N det(1 − γ Ĝ+K̂aĜ−K̂b)−1. (27)

In order to split the product of operators in the determinant
(27), we resort to the duplication technique proposed by
Nazarov [53] and other authors before [45–47,55]. We notice
that the determinant (27) closely resembles the determinant of
a two-by-two block matrix:

det

(
Â B̂
Ĉ D̂

)
= det(ÂD̂) det(1 − Â−1B̂D̂−1Ĉ). (28)

The correspondence between Eqs. (27) and (28) suggests to
define the Hamiltonian-type matrix

Ŵ def=
(

k2 + iε − Ĥ γaK̂a

γbK̂b k2 − iε − Ĥ

)
, (29)

such that the function Z (γ ) is given by

Z (γ ) = N det(Ŵ)−1. (30)

The remaining factor det(Ĝ+Ĝ−) in the right-hand side of
Eq. (28) does not depend on γ and can thus be absorbed
in N . The parameters γa and γb associated with the contact
interactions in Eq. (29) must obey the relation

γ = γaγb. (31)

They can be equal (γa = γb) but do not have to. We will see
the consequences of this degree of freedom in Sec. II G. Last
but not least, the determinant in Eq. (30) can be expressed as
a Gaussian functional integral

Z (γ ) =
∫

D[φ(r)] ei
∫

dr φ†(r)Ŵφ(r), (32)

where φ(r) = [φ1(r), φ2(r)]ᵀ is a two-component complex
field. By analogy with statistical field theory, Z (γ ) will be
referred to as the partition function.

D. Disorder averaging and the replica method

In this section, we average the transmission eigenvalue
distribution over the random potential U (r). According to
Eqs. (24) and (26), the calculation of ρ(T ) boils down to
the calculation of 〈ln Z〉. However, due to the presence of the
logarithm, this calculation is not straightforward. To overcome
this issue, we exploit the replica method, which is based on the
formula:

〈ln Z〉 = lim
R→0

∂ 〈ZR〉
∂R

. (33)

The point is that 〈ZR〉 can be evaluated by replicating the fields
R times, hence the name of this method. Using Eq. (32) and
averaging over the potential distribution (3), we get

〈ZR〉 =
∫

D[U ] e− ∫
dr U (r)2

2α(r)

∫
D[�] ei

∫
dr �†(r)Ŵ�(r), (34)

where �(r) = [φ1(r),φ2(r), . . . ,φR(r)]ᵀ is the replicated
field, and Ŵ acts identically on all replicas. The normalization
factor N introduced in Eq. (3) has been absorbed into the dif-
ferential element D[U ] in (34). Henceforth, all γ -independent
prefactors will be systematically omitted from the expression
of 〈ZR〉, because they will be eliminated by the logarithmic
derivative (26), anyway. In order to achieve the integral over
the disorder U (r) in Eq. (34), we have to separate the potential
term from the Hamiltonian Ŵ. According to Eq. (29), the
latter can be expressed as

Ŵ = Ŵ0 − U (r̂)12R, (35)

where Ŵ0 contains all other terms independent of the disor-
der:

Ŵ0
def=

(
k2 − p̂2 + iε γaK̂a

γbK̂b k2 − p̂2 − iε

)
. (36)
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Just like Ŵ, the Hamiltonian Ŵ0 is proportional to the identity
in the replica space. In the following equations, we omit iden-
tity matrices for brevity. Substituting Eq. (35) into Eq. (34)
leads to

〈ZR〉 =
∫

D[U ]D[�] e
∫

dr(− U2

2α
+i�†(Ŵ0−U )�), (37)

which is a Gaussian functional integral over the potential
U (r). It is thus possible to evaluate it by completing the square
as follows:

−U 2

2α
− iU�†� = − (U + iα�†�)2

2α
− α

2
(�†�)2. (38)

Substituting Eq. (38) into Eq. (37) and integrating out U (r)
yields

〈ZR〉 =
∫

D[�] e
∫

dr(i�†Ŵ0�− α
2 (�†�)2 ). (39)

The occurrence of a �4 term in Eq. (39) suggests a first anal-
ogy with the superconductivity literature, where such terms
model electron-electron interactions.

In order to get rid of the �4 term in the Lagrangian of
Eq. (39), we perform a Hubbard-Stratonovich transformation
[47,56]. This transformation is based on the Gaussian func-
tional integral over a 2R × 2R complex matrix field Q(r):∫

D[Q] e
∫

dr α
2 tr((Q(r)−�(r)�†(r))2 ) = 1. (40)

The matrix Q(r) is not necessarily Hermitian, but the contour
integral over the matrix elements of Q is supposed to follow
the steepest descent so that there is no convergence issue.
Expanding the square in Eq. (40) and isolating the �4 term
provides

e− ∫
dr α

2 (�†�)2 =
∫

D[Q] e
∫

dr(−α�†Q�+ α
2 tr[Q(r)2]). (41)

Then, Eq. (41) can be used to replace the �4 term in Eq. (39)
by two nonquartic terms:

〈ZR〉 =
∫

D[Q]D[�] e
∫

dr(i�†(Ŵ0+iαQ)�+ α
2 tr[Q(r)2]). (42)

Physically, the Hubbard-Stratonovich transformation resem-
bles a mean-field approximation, with the matrix Q(r) �
〈�(r)�†(r)〉 playing the role of the mean field. However,
unlike a mean-field approximation, the Hubbard-Stratonovich
transformation is exact. Given that the integral over � in
Eq. (42) is now Gaussian, it can be evaluated exactly in terms
of a determinant:

〈ZR〉 =
∫

D[Q] det(Ŵ0 + iαQ̂)−1 e
∫

dr α
2 tr[Q(r)2]. (43)

This determinant can also be expressed by a logarithm using
the general property

det(Â) = eTr ln(Â) = e
∫

dr〈r|tr ln(Â)|r〉. (44)

The result is

〈ZR〉 =
∫

D[Q] eL
(R)[Q], (45)

with the Lagrangian

L(R)[Q]
def=

∫
dr
(α

2
tr[Q(r)2] − 〈r|tr ln(Ŵ0 + iαQ̂)|r〉

)
.

(46)

E. Single-replica approximation in the nonlocalized regime

In this section, we approximate the exact Lagrangian (46)
in the nonlocalized regime. To this end, we assume that the
field Q(r) can be diagonalized in the replica space by a
position-independent similarity transformation Q → UQU−1.
This assumption only holds if the replica fields Qrr′ (r) for
r, r′ ∈ {1, . . . , R} are linear combinations of at most R fields.
In this way, the partition function (45) can be written as

〈ZR〉 =
∫

D[Q1] · · ·D[QR]|�(Q1, . . . , QR)| e
∑R

r=1 L(1)[Qr ].

(47)

In Eq. (47), Q1(r), . . . , QR(r) are the 2 × 2 matrix fields from
individual replicas, �(Q1, . . . , QR) is a Jacobian involving
interactions between replicas, and L(1) is the Lagrangian (46)
corresponding to a single replica (R = 1). We want to show
that these single-replica Lagrangians L(1) dominate over the
contribution of the Jacobian in the nonlocalized regime. To do
this, we momentarily focus on the multiple-scattering regime
(L 	 �), where L(1) can be reduced to the nonlinear sigma
model Lagrangian (see Appendix A for the derivation),

L(1)[Q] �
∫

dr πν tr

(
D

2
(∇rQ̃)2 + · · ·

)
, (48)

where the trailing dots represent smaller terms. Since our goal
is only to reveal the order of magnitude of L(1), the present
reasoning remains general. The matrix field Q̃(r) in Eq. (48)
obeys the normalization constraint Q̃(r)2 = 12, where 12 is
the 2 × 2 identity matrix, and D is the (dimensionless) diffu-
sivity

D
def= k�

d
. (49)

If we restrict ourselves to a waveguide geometry free of
transverse localization (W � Np�) and use the normalized
coordinate x̃ = x/L, then Eq. (48) becomes

L(1)[Q] � A
∫ 1

0
dx̃ tr

(
1

4
(∂x̃Q̃)2 + · · ·

)
, (50)

where the factor A, proportional to the dimensionless conduc-
tance, reads

A = 2πνDS⊥
L

= Vd

2Vd−1

Np�

L
, (51)

S⊥ being the surface area of the waveguide cross section. The
second expression in Eq. (51) is based on Eqs. (10) and (49),
and the number of propagating modes

Np = Vd−1kd−1S⊥
(2π)d−1

. (52)

In the absence of strong localization in the longitudinal direc-
tion, that is when L � Np�, the factor A in Eq. (50) is much
larger than 1. Therefore, in this regime, we expect that the
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single-replica Lagrangians in Eq. (47) dominate the contribu-
tion of the Jacobian, so that the interaction between replicas
can be neglected:

〈ZR〉 �
∫

D[Q1] · · ·D[QR] e
∑R

r=1 L(1)[Qr ]. (53)

We can thus write

〈ZR〉 �
(∫

D[Q] eL
(1)[Q]

)R

. (54)

Then, in the limit A 	 1, the integral (54) can be approxi-
mated by the contribution at the saddle point

〈ZR〉 � eRL(1)[Qs], (55)

where Qs(r) is the single-replica 2 × 2 matrix field at the
saddle point defined by the equation

δL(1)

δQ(r)
[Qs] = 0. (56)

Substituting Eq. (55) into the replica limit (33) yields

〈ln Z〉 � L(1)[Qs]. (57)

Therefore we have just shown that in the nonlocalized regime
the full problem reduces to a single replica. It is clear from the
above calculation that, in the strongly localized regime (i.e.
for L 	 Np�), the approximation (53) does not hold anymore
since A is then small, and the interaction between replicas
cannot be neglected. The emergence of strong Anderson local-
ization in the replica formalism thus requires special attention
(see Ref. [63]), but this issue is not addressed in the present
paper. In the following sections, we will drop the subscript “s”
referring to the saddle-point solution.

F. Saddle-point equation

According to Eqs. (46) and (56), the saddle point equa-
tion reads

Q(r) = 〈r| i

Ŵ0 + iαQ(r̂)
|r〉. (58)

Equation (58) means that the field Q(r) can be interpreted as
the return probability at r = r′ of a matrix Green’s function
Γ(r, r′) = 〈r|Γ̂|r′〉 formally defined by

Γ̂
def= i

Ŵ0 + iαQ(r̂)
. (59)

Using this Green’s function and Eq. (36), the saddle-point
equation (58) can be represented in position space by[∇2

r + k2 + iεΛ3 + iαQ(r) + γaK̂aΛ+ + γbK̂bΛ−
]
Γ(r, r′)

= i12δ(r − r′), (60)

with the self-consistent condition

Q(r) = Γ(r, r). (61)

In Eq. (60), the symbols Λ3,± stand for the Pauli matrices
acting in the duplicated space,

Λ+
def=

(
0 1
0 0

)
, Λ−

def=
(

0 0
1 0

)
, Λ3

def=
(

1 0
0 −1

)
.

(62)

Notably, Eqs. (60) and (61) are analogous to the Gorkov
equation for type-II superconductors with impurities, where
the duplicated space is interpreted as the Nambu (electron-
hole) space [49,50,57]. In particular, we identify a similar self-
consistent term iαQ(r) that accounts for impurity scattering.
This explains the strong connection with superconductivity
theory pointed out by Nazarov [53,54]. The main difference is
the absence in Eq. (60) of the superconducting order param-
eter Δ(r) = �(r)Λ+ + �∗(r)Λ−, where �(r) is a function of
the matrix element Q12(r). This term Δ(r), derived from the
mean-field approximation of the BCS Hamiltonian, is central
to the self-consistency of the Gorkov equation. Unlike the
field Q(r) in Eqs. (60) and (61), the superconducting term
Δ(r) lacks diagonal elements. Another difference is the pres-
ence of contact interactions γaK̂aΛ+ and γbK̂bΛ−, which have
no direct equivalent in superconductivity.

G. Disorder-averaged generating function

Once the field Q(r) satisfying the saddle-point equa-
tions (60) and (61) is found, the disorder-averaged generating
function can be obtained from Eqs. (26) and (57):

F (γ ) = 1

Np

d

dγ
L(1)[Q(r)]. (63)

The total derivative in Eq. (63) reads

dL(1)

dγ
= ∂L(1)

∂γ
+
∫

dr
δL(1)

δQ(r)

∂Q(r)

∂γ
. (64)

The last term in the right-hand side of Eq. (64) is identically
zero by definition of the saddle point so that only the explicit
dependency of L(1) in γ matters. Since this dependency comes
solely from the second term in the Lagrangian (46), Eq. (63)
becomes

F (γ ) = − 1

Np

∂

∂γ
Tr ln(Ŵ0 + iαQ(r̂)). (65)

Then, using the Green’s operator (59) and the fact that the
only dependency of Ŵ0 on the parameter γ comes from the
interaction terms γaK̂a and γbK̂b, we get

F (γ ) = i

Np
Tr[Γ̂(γ ′

aK̂aΛ+ + γ ′
bK̂bΛ−)], (66)

where the primes refer to derivatives with respect to γ . It
should be noted that, due to the constraint (31), we must have

γaγ
′
b + γ ′

aγb = 1. (67)

In the numerical simulations of Sec. IV, we will set γa = γb =√
γ , so that we have in this case

γ ′
a = γ ′

b = 1

2
√

γ
. (68)

Another valid choice, made in the Letter [31], could be γa =
γ , γb = 1, and thus γ ′

a = 1, γ ′
b = 0. More explicitly, the gen-

erating function (66) is given by

F (γ ) = i

Np
tr
∫

dr 〈r|Γ̂(γ ′
aK̂aΛ+ + γ ′

bK̂bΛ−)|r〉. (69)
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Using the expression (22) of the current operator K̂ (x), it can
be shown that∫

dr 〈r|Γ̂K̂ (x0)|r〉 = 2
∫

dy Jx(x0, y), (70)

where Jx is the longitudinal component of the matrix current
defined by

J(r)
def= lim

r′→r

∇rΓ(r, r′) − ∇r′Γ(r, r′)
2i

. (71)

Each of the components of the length-d vector J(r) is a 2 × 2
complex matrix. Since the current in a rectilinear waveguide is
invariant with respect to the transverse coordinate y, Eq. (70)
even reduces to∫

dr 〈r|Γ̂K̂ (x0)|r〉 = 2S⊥Jx(x0). (72)

Using the property (72), Eq. (69) becomes

F (γ ) = 2iS⊥
Np

tr(γ ′
aJx(xa )Λ+ + γ ′

bJx(xb)Λ−). (73)

The remaining trace over the duplicated space in Eq. (73)
selects the off-diagonal components of the matrix current.
Therefore we obtain

F (γ ) = 2iS⊥
Np

(
γ ′

aJ21
x (xa ) + γ ′

bJ12
x (xb)

)
. (74)

The result (74) suggests to define for later use a normalized
matrix current absorbing the prefactors:

J̃(r)
def= 2S⊥

Np
J(r). (75)

Note that, according to Eq. (52), the ratio Np/S⊥ only depends
on the wavelength and thus remains finite in the limit of an
infinitely wide waveguide (Np → ∞). In the notation (75),
Eq. (74) becomes

F (γ ) = i
(
γ ′

a J̃21
x (xa ) + γ ′

bJ̃12
x (xb)

)
. (76)

Here, we recall that J̃x(x) in Eq. (76) is the matrix current at
the saddle point. Of course, the values of J̃x(x) at xa and xb

still depend on the choice of γa and γb.

III. SEMICLASSICAL APPROXIMATION

In order to determine the generating function from
Eq. (76), we have to solve the saddle-point equations (60)
and (61). This is, however, a nontrivial task because in ad-
dition to the matrix nature of this system of equations, the
self-consistency condition (61) makes the problem nonlinear.
Nevertheless, it is possible to effectively approach the solution
of this problem in the semiclassical approximation, that is,
when the wavelength is vanishingly small compared to the
other characteristic lengths of the model. As we will see in
this section, this approximation gives rise to a matrix transport
equation similar to the Eilenberger equation initially devel-
oped for superconductivity [50,51,57].

A. Matrix transport equation

There are several ways to proceed to the semiclassical
approximation. Perhaps the most rigorous way is to exploit

the phase-envelope decomposition (B1) of Appendix B, as
proposed by Refs. [64,65]. This way is however rather long
and technical due to the four carrier waves ( eikx,n (σx+σ ′x′ ) for
all σ = ± and σ ′ = ±) and leads to the same results as the
Wigner transform approach presented in this section. The
Wigner transform of a operator Â acting on the position space
is defined by [66,67]

W (Â)p,r
def=

∫
Rd

ds
〈
r + s

2

∣∣∣Â∣∣∣r − s
2

〉
e−ip·s. (77)

In particular, the Wigner transform of the Green’s operator Γ̂
reads

Γ(p, r)
def= W (Γ̂)p,r. (78)

In order to obtain a transport equation for Γ(p, r), we consider
the commutation relation [Γ̂−1, Γ̂] = 0. According to the defi-
nition (59), this relation is equivalent to

[Ŵ0 + iαQ(r̂), Γ̂] = 0. (79)

The definition (36) allows us to rewrite Eq. (79) as

[−p̂2 + iεΛ3 + iαQ(r̂) + γaK̂aΛ+ + γbK̂bΛ−, Γ̂] = 0. (80)

Then, we take the Wigner transform of Eq. (80) using Eq. (77).
The first transform is given exactly by

W ([p̂2, Γ̂]) = −2ip · ∇rΓ(p, r). (81)

The transform of [εΛ3, Γ̂] is trivial because εΛ3 does not de-
pend on the position. The third transform in Eq. (80) reads

W ([Q(r̂), Γ̂]) = [Q(r), Γ(p, r)] + i

2
{∇rQ,∇pΓ} + · · · ,

(82)

where {A, B} = AB + BA denotes the anticommutator. Note
the implicit dot product of the two gradients in Eq. (82). The
trailing dots in Eq. (82) represent terms with higher-order
derivatives, which can be neglected as long as Q(r) smoothly
varies in space. As discussed in Appendix B (see especially
Fig. 6), this condition is satisfied in the absence of strong vari-
ations of the potential on the wavelength scale. It is interesting
to note that, if Q(r) and Γ(p, r) were scalar quantities, the first
term in the right-hand side of Eq. (82) would be zero, and the
expansion would be dominated by the drift term i∇rQ · ∇pΓ.
The preponderance of the commutator [Q(r), Γ(p, r)] over the
other terms in Eq. (82) stems from the matrix nature of these
quantities. More generally, we understand that this matrix
nature makes the Wigner transform transparent in the sense
that the formal operators r̂ and p̂ are simply replaced by their
corresponding eigenvalues r and p. The last transforms with
the current operators in Eq. (80) are given by

W ([K̂ (x0)Λ±, Γ̂]) = 2pxδ(x − x0)[Λ±, Γ(p, r)], (83)

according to Eq. (22). The result (83) can be obtained by
smoothing the Dirac delta on a much greater length scale than
the wavelength, as required by the semiclassical approxima-
tion discussed in Appendix B, and then by letting the length
scale tend to zero after the Wigner transform. Although this
approach seems approximate, the result (83) turns out to be
exact because it can be proved rigorously in the representation
(B1). Gathering Eqs. (81)–(83) into Eq. (80) leads to a matrix
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transport equation for Γ(p, r),

2ip · ∇rΓ + iε[Λ3, Γ] + iα[Q(r), Γ]

+ 2γa pxδ(x − xa )[Λ+, Γ] + 2γb pxδ(x − xb)[Λ−, Γ] = 0,

(84)

Equation (84) is supplemented by the self-consistent condi-
tion (61), which, in the Wigner representation (77), becomes

Q(r) =
∫

dp
(2π)d

Γ(p, r). (85)

The momentum integral in Eq. (85) suggests the definition
of a directional version of Γ(p, r), that we refer to as the
matrix radiance by analogy with radiative transfer,

g(�, r)
def= Sd

πν

∫
dp

(2π)d
Γ(p, r)δ

(
p

‖p‖ − �

)
, (86)

where � is a unit directional vector (‖�‖ = 1). The integral
in Eq. (86) suffers from ultraviolet divergence (p → ∞) in
dimensions d � 2, and thus needs regularization. To this end,
we restrict the integration domain to the momentum shell
‖p‖ ∈ [k − δk, k + δk]. The momentum cutoff δk should be
much smaller than k, but still significantly larger than both ε

k

and 1
�
. This ensures that we capture the full contributions from

absorption, represented by a finite ε, and scattering, which
correspond to the terms iεΛ3 and iαQ in Eq. (59):

max

(
ε

k
,

1

�

)
� δk � k. (87)

Exploiting the smallness of the cutoff δk with respect to k
to let appear the free-space density of states (10), Eq. (86)
becomes

g(�, r) = 2kν0

πν
−
∫

k
dp Γ(p�, r), (88)

where

−
∫

k
f (p) dp

def= lim
δk→+∞

∫ k+δk

k−δk
f (p) dp (89)

denotes the Cauchy principal value of the integral on the
momentum shell at k. We will see in Sec. III B that the nor-
malization factor in the definition (86) ensures the property
g(�, r)2 = 12. According to Eq. (86), the expression (85)
becomes Q(r) = πν

∮
d�
Sd

g(�, r). It is then convenient to
absorb the prefactor πν in a normalized version of the Q field
defined by

Q̃(r)
def= 1

πν
Q(r). (90)

Therefore the self-consistent condition (85) now reads

Q̃(r) =
∮

d�

Sd
g(�, r). (91)

The Q̃ field can thus be interpreted as the directional average
of the matrix radiance. Furthermore, the matrix current J
can also be expressed from g(�, r). By applying the same

approach used for Q to the definition (71), we find

J(r) =
∫

dp
(2π)d

p Γ(p, r)

= πνk
∮

d�

Sd
� g(�, r). (92)

Moreover, according to Eqs. (52) and (75), the normalized
matrix current can be written as

J̃(r) =
∮

d�

2Vd−1
� g(�, r). (93)

It should be noted that the relations (91)–(93) implicitly
assume that the number of transverse modes tends to in-
finity (Np → ∞). Some of these relations will have to be
adapted when the number of modes is finite, as explained
in Appendix E. In anticipation of these future changes, it
is convenient to define the directional mean of any quantity
A(�) by

〈A〉±κ =
∫
±�x>0 d�|�x|κA(�)∫

±�x>0 d�|�x|κ , (94)

where the sign refers to the forward and backward hemi-
spheres, and κ is the order of the moment. The normalization
factor in Eq. (94) is given by∫

±�x>0
d�|�x|κ = Vd+κ−2

Vκ−1
=
{

1
2 Sd (κ = 0),
Vd−1 (κ = 1).

(95)

Using the notation (94), the matrix field and currents become

Q̃(x) = 〈g〉+0 + 〈g〉−0
2

, J̃x(x) = 〈g〉+1 − 〈g〉−1
2

. (96)

By integrating it over the momentum shell, the matrix
transport equation (84) now reads

� · ∇rg + ε

2k
[Λ3, g] + 1

2�
[Q̃(r), g]

− iγa�xδ(x − xa )[Λ+, g] − iγb�xδ(x − xb)[Λ−, g] = 0,

(97)

which is reminiscent of the Eilenberger equation of super-
conductivity [50,51,57]. The Eilenberger equation was first
derived in Ref. [50] using a diagrammatic approach and is the
semiclassical approximation of the Gorkov equation of type-II
superconductors with impurities [49], mentioned previously
below Eq. (60). The differences between Eq. (97) and the
Eilenberger equation is the absence of the superconducting
term Δ(r) and the presence of the contact interactions at xa

and xb.
The first three terms in Eq. (97) govern propagation in the

disordered waveguide, while the last two account for contact
interactions at xa and xb. Let us integrate the equation over
infinitesimal intervals surrounding xa and xb to determine the
effect of these two terms. The integration over x can be carried
out rigorously by replacing the Dirac deltas by window func-
tions. The results are the following discontinuity conditions:

g(�, x+
a ) = eiγaΛ+g(�, x−

a ) e−iγaΛ+ ,

g(�, x+
b ) = eiγbΛ−g(�, x−

b ) e−iγbΛ− , (98)
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where x± = x ± ε for ε
>−→ 0. It should be noted that the

discontinuity conditions (98) do not depend on the direction,
so that they can be integrated over � exactly. From that, we
deduce the corresponding discontinuity conditions for the Q̃
field,

Q̃(x+
a ) = eiγaΛ+Q̃(x−

a ) e−iγaΛ+ ,

Q̃(x+
b ) = eiγbΛ−Q̃(x−

b ) e−iγbΛ− , (99)

and for the matrix current

J̃(x+
a ) = eiγaΛ+ J̃(x−

a ) e−iγaΛ+ ,

J̃(x+
b ) = eiγbΛ− J̃(x−

b ) e−iγbΛ− . (100)

The effect of the discontinuity conditions (99) on the Q̃ field
is visible in Fig. 6. Furthermore, an important consequence of
Eq. (100) is that the matrix current is not conserved at the con-
tact points xa and xb. It is nevertheless conserved everywhere
else in the absence of absorption (ε = 0) since the integral
over all the directions of the matrix transport equation (97)
without the contact terms immediately provides

∇r · J̃(r) = 0. (101)

B. Boundary conditions at infinity

In this section, the boundary conditions at infinity (r →
∞) are derived for the matrix radiance g(�, r). We will
see that these boundary conditions are somewhat unusual for
transport equations due to the matrix nature of the variables.
These boundary conditions can be found in the expansion of
the Green’s operator (59), which is

Γ̂ = Ĝ0 + Ĝ1, Ĝ1
def= Ĝ0T̂Ĝ0, (102)

where Ĝ0 is the free-space Green’s operator defined by

Ĝ0
def= i

k2 − p̂2 + iεΛ3
, (103)

and T̂ is the transition operator collecting all scattering dia-
grams involving iαQ(r̂), γaK̂aΛ+, and γbK̂bΛ− in Eq. (60). In
order to determine the boundary conditions, we seek to know
the far-field asymptotic behavior of Γ(r, r′), or more precisely
of

g(�, r) = g0(�, r) + g1(�, r), (104)

where g0 and g1 are related to the Wigner transforms of Ĝ0

and Ĝ1 in Eq. (102).
Let us first consider the Ĝ0 term in Eq. (102). According to

Eqs. (88), we get

g0(�, r) = 2k

π
−
∫

k
dp G0(p�, r) = 1

iπ
−
∫

0

du

u − iεΛ3
, (105)

since the Wigner transform of Ĝ0 is just G0(p, r) = i/(k2 −
p2 + iεΛ3). This yields

g0(�, r) = Λ3. (106)

The result (106) is the contribution of the free Green’s opera-
tor Ĝ0 to the boundary conditions at infinity.

We still have to take into account the multiple-scattering
term Ĝ1 in Eq. (102). In order to compact the notations, we

split the T matrix into its four components in the duplicated
space:

T̂ = T̂11 + T̂12 + T̂21 + T̂22,

T̂11 =
(

T̂11 0
0 0

)
, T̂12 =

(
0 T̂12

0 0

)
,

T̂21 =
(

0 0
T̂21 0

)
, T̂22 =

(
0 0
0 T̂22

)
. (107)

Using the fact that Ĝ0 is diagonal in the duplicated space,

G0(r, r′) =
(

G+
0 (r, r′) 0

0 G−
0 (r, r′)

)
, (108)

the Green’s operator Ĝ1, expressed in the position basis, then
reads

G1(r, r′) =
∫∫

dr1 dr2

× [G+
0 (r, r1)T11(r1, r2)G+

0 (r2, r′)

+ G+
0 (r, r1)T12(r1, r2)G−

0 (r2, r′)

+ G−
0 (r, r1)T21(r1, r2)G+

0 (r2, r′)

+ G−
0 (r, r1)T22(r1, r2)G−

0 (r2, r′)]. (109)

We notice that the G+
0 G+

0 and G−
0 G−

0 terms in Eq. (109) oscil-
late at the wavelength scale, even at arbitrarily large distances
from the system (r, r′ → ∞). Since Appendix B established
that the Q field varies slowly at this scale, the contribution
of these terms must be negligible. This requirement enforces
that the diagonal elements of the T matrix are zero: T11 =
T22 = 0. To evaluate the contribution of the other elements
in Eq. (109), we consider the following change of variable
motivated by the assumed relative proximity between r and r′
on the one hand and between r1 and r2 on the other hand,{

r = r̄ + s
2 ,

r′ = r̄ − s
2 ,

{
r1 = R + �

2 ,

r2 = R − �
2 .

(110)

Assuming that ‖r̄ − R‖ 	 ‖s − �‖, which is true for r̄ out-
side the scattering region, we have the approximation

G±
0 (r, r1)G∓

0 (r2, r′) � |G+
0 (r̄, R)|2 e±ik(s−�)·er̄,R , (111)

where er̄,R is the unit vector defined by

er̄,R
def= r̄ − R

‖r̄ − R‖ . (112)

Note that the approximation (111) does not require the
far-field assumption, r, r′ → ∞, and is thus valid at finite dis-
tance from the system. Using Eqs. (110) and (111), Eq. (109)
becomes

G1(r, r′) =
∫∫

dR d�|G+
0 (r̄, R)|2

×
(

T12

(
R + �

2
, R − �

2

)
eik(s−�)·er̄,R

+ T21

(
R + �

2
, R − �

2

)
e−ik(s−�)·er̄,R

)
. (113)

In Eq. (113), we identify the integral over � as the Wigner
transform T(p, r) = W (T̂)p,r. In addition, we calculate the
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Wigner transform of Ĝ1, which consists of a Fourier transform
of Eq. (113) in the variable s. We get

G1(p, r̄) = (2π)d
∫

dR|G+
0 (r̄, R)|2

× (T12(ker̄,R, R)δ(p − ker̄,R )

+ T21(−ker̄,R, R)δ(p + ker̄,R )). (114)

Then integrating Eq. (114) over the momentum shell with
Eq. (88) and replacing r̄ by r, we obtain

g1(�, r) = Sd

πν

∫
dR|G+

0 (r, R)|2

× (T12(ker,R, R)δ(� − er,R )

+ T21(−ker,R, R)δ(� + er,R )). (115)

In summary, the radiance g(�, r) outside the disordered
region is given by Eq. (104) with Eqs. (106) and (115). The
arguments of the Dirac deltas in Eq. (115) show that the rays
in the outgoing direction behave as Λ3 + g12Λ+ and are thus
upper triangular matrices, while the incoming rays behave as
Λ3 + g21Λ− and are lower triangular matrices. Formally, these
boundary conditions read

g(�, r) =
⎧⎨
⎩

gout if ∃ R ∈ V | � = er,R,

gin if ∃ R ∈ V | � = −er,R,

Λ3 otherwise,
(116)

where V designates the scattering region containing the disor-
dered region and the contact interactions γaK̂aΛ+ and γbK̂bΛ−.
The matrices gout and gin are defined by

gout =
(

1 g12

0 −1

)
, gin =

(
1 0

g21 −1

)
. (117)

The boundary conditions (116)–(117) are schematically rep-
resented in Fig. 2(a) for the waveguide geometry considered in
this paper. It is worth noting that, due to the generality of our
derivation, these boundary conditions apply to a disordered
region of arbitrary shape, as depicted in Fig. 2(b). Since the
contact interactions γaK̂aΛ+ and γbK̂bΛ− must be included in
the T matrix, we have to take them into account in the volume
V of Eq. (116). This is emphasized in Fig. 2(b) by the coverage
of the interaction surface γaK̂aΛ+ by the boundary conditions.

In the waveguide, the boundary conditions (116)–(117)
mean that three out of four elements of the g(�, r) matrix are
fixed at infinity, with the last element (g12 or g21) remaining
free. This degree of freedom in both the incoming and out-
going directions makes the boundary conditions (116)–(117)
quite unusual for a transport theory. Indeed, in general, the
incoming radiance is imposed and the outgoing radiance is
unknown.

The boundary conditions (116)–(117) also have important
consequences regarding the properties of g(�, r) everywhere
in space including in the disordered region. The first conse-
quence is the traceless property

tr g(�, r) = 0, ∀�, r, (118)

which is known for the Eilenberger equation in supercon-
ductivity [50,51,57]. The property (118) comes from the
tracelessness of the boundary conditions (116)–(117) and

FIG. 2. (a) Boundary conditions on the matrix radiance g(�, r)
in a waveguide according to Eq. (116). The filled region represents
the scattering term 1

�
Q̃(r) in Eq. (97), and the dashed lines are the

interaction surfaces. (b) Boundary conditions for a disordered region
and interaction surfaces of arbitrary shape in free space.

from the trace conservation property of the matrix transport
equation (97): ∇rtr g = 0. The second consequence is the
remarkable normalization property

g(�, r)2 = 12, ∀�, r, (119)

also known in superconductivity [50–52,57]. The property
(119) comes from the corresponding normalization of g(�, r)
in Eq. (116)–(117) and from the conservation of g2 by the
matrix transport equation (97): ∇r (g2) = 0. This less obvious
conservation law can be derived from the anticommutator of
Eq. (97) with g,

� · {g,∇rg} + {g, [P, g]} = 0, (120)

where P contains all the matrices other than g in Eq. (97). The
second anticommutator in Eq. (120) is zero,

{g, [P, g]} = [P, g2] = 0, ∀P, (121)

since g2 is proportional to the identity matrix due to Eq. (118).
Therefore Eqs. (120) and (121) show that the quantity g2 is
conserved,

∇r(g2) = 0, (122)

hence extending the domain of validity of the normalization
property g2 = 12 from the boundaries to the whole space. It
should be noted that the property tr g = 0 is inherited by the
Q̃ field and its current,

tr Q̃(r) = 0, tr J̃(r) = 0, (123)

but not the normalization property g2 = 12 since the latter is
not a linear relation. Despite this, when the radiance g(�, r)
weakly depends on � (typically in the multiple-scattering
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regime � � L), the directional integral (91) approximately
preserves this normalization, hence

Q̃(r)2 � 12. (124)

This explains the origin of the well-known normaliza-
tion property of the Q̃(r) field in nonlinear sigma models
[47,54–56]. The approximate nature of the property (124)
highlights the important fact that nonlinear sigma models are
restricted to the multiple-scattering regime and do not apply
to the quasiballistic regime (L � �).

IV. NUMERICAL RESULTS

In this section, we present some numerical results for the
transmission eigenvalue distribution based on the theory of
Sec. III.

A. Numerical results in a waveguide

We present here some numerical results based on RFT
for the transmission eigenvalue distribution in a disordered
waveguide of length L and square cross section W d−1. In
this geometry, the matrix transport equation (97) must be
modified to take into account the transverse quantization. In-
deed, Eq. (97) assumes a continuum of propagation directions,
which although valid in the semiclassical limit of a large
number of modes, does not apply when the waveguide width is
comparable to the wavelength, which we consider in this sec-
tion. The modifications of Eq. (97) are derived in Appendix E
resulting in Eqs. (E3) and (E7). These equations can be solved
numerically using the program EBSOLVE [68] which is based
on the integration algorithm of Appendix F.

Furthermore, we assume periodic boundary conditions in
the transverse directions. With periodic boundaries, the trans-
verse modes are plane waves, leading to constant Wigner
transforms in the transverse direction. Consequently, the field
Q̃ becomes constant in this direction, depending only on
the longitudinal coordinate x. This translational invariance
extends to g and J̃ as well. By contrast, Dirichlet boundary
conditions would introduce transverse dependencies in all
these quantities, complicating the numerical implementation.
Under the assumption of periodic boundaries, the direction
cosines of the modes entering Eqs. (E3) and (E7) are given by

μn = kx,n

k
=
√

1 −
(

2π

kW
n
)2

∀n ∈ Zd−1. (125)

It should be noted that only the propagating modes (such that
Im μn = 0) must be retained in Eq. (125). The contribution of
the evanescent modes cannot be taken into account since these
modes fall outside the scope of the semiclassical theory. In
practice, the numerical procedure can be improved by solving
the matrix transport equation (E3) only for distinct values of
μn. Of course, this should be implemented with care because
the directional means (E7) and (E8) must be weighted by the
appropriate multiplicities.

The numerical procedure to compute the transmission
eigenvalue density ρ(T ) is as follows [68]. For each trans-
mission value T in the interval [0, 1] do the following:

(1) Set γ = T −1 + i0+ and initialize Q̃(x) = 0.
(2) Iterate until Q̃(x) converges:

FIG. 3. Transmission eigenvalue distribution in a
two-dimensional (2D) waveguide of width W/λ = 25.5 and
aspect ratio L/W = 1, with transverse periodic boundary conditions,
shown at different optical thicknesses L/�. Predictions from the
modal matrix transport equation (E3) (solid lines) [68] are compared
to results from the saddle-point equations (60) and (61) (dots) and
the quasiballistic approximation (D14)–(D16) (dashed lines).

(a) Solve the matrix transport equation (E3) for g±
n (x)

along x, using the fixed field Q̃(x). See Appendix F
for more details on this step.
(b) Update Q̃(x) according to Eq. (E7).

(3) Compute ρ(T ) using Eqs. (24), (76), and (E8).
The convergence of this iterative process is discussed in

Appendix C. This algorithm produces the solid curves in
Fig. 3. For comparison, the dots represent numerical solu-
tions of the saddle-point equation (60) and (61), with ρ(T )
computed using Eqs. (24), (71), (75), and (76). The agree-
ment with the solid curves confirms the validity of the
semiclassical approximation carried out in Secs. III A and
Appendix E. An analytical approximation of the distribution
for the quasiballistic regime is derived in Appendix D. The
result (D14)–(D16) is depicted by dashed lines in Fig. 3. This
approximation is valid when the optical thickness is much
smaller than one and is particularly accurate in the vicinity
of the peak at T = 1. Notably, it provides higher accuracy
than the DMPK solution [Eqs. (203)–(204) of Ref. [14]] in
this regime. In the diffusive regime (L/� = 5), we retrieve the
expected bimodal law.

In the accompanying Letter [31], the transmission eigen-
value distributions in Fig. 3 are also compared to numerical
simulations based on the wave equation (2).

B. Numerical results in an infinite slab

In this section, we show that RFT is also able to predict the
transmission eigenvalue distribution in an infinite slab, that is
when the waveguide boundaries are sent to infinity (W → ∞).
In this scenario, momentum is no longer quantized in the
transverse direction, so the matrix transport equation (97)
must, in principle, be solved over a continuum of directions
�. This equation is accompanied by the expressions (96),
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where the directional mean is defined in Eq. (94). To evaluate
this mean numerically in the program [68], we resort to the
discrete ordinates method [30] and the Gauss-Jacobi quadra-
ture [69, Sec. 4.6]. Since g(�, x) is rotationally invariant in
� around the normal to the slab, the directional mean (94)
simplifies to

〈g〉±κ =
∫ 1

0 μκ (1 − μ2)
d−3

2 g(±μ, x) dμ∫ 1
0 μκ (1 − μ2)

d−3
2 dμ

, (126)

where we used d� = Sd−1(1 − μ2)
d−3

2 dμ and μ = �x =
cos θ . It would be tempting to apply a Gaussian quadrature
directly to the integral in the numerator of Eq. (126). However,
this approach does not work because the radiance g(μ, x)
exhibits an accumulation point of poles at μ = 0, as evidenced
by the functions tanh(1/μ) in the approximate solution (D14).
These poles are intrinsic to the matrix transport equation and
do not arise from the transverse momentum quantization in the
waveguide geometry. They pose a challenge for the evaluation
of the integral (126), as they are located close to the real axis
of μ. In order to overcome this problem, it is necessary to
move the integration path in the complex plane of μ. This can
be done with the change of variable

μ(t ) = t + iat (1 − t2) ∀t ∈ [0, 1], (127)

where a is an arbitrary contour parameter. This parameter
must be positive to avoid crossing the poles that are located
in the region Im(μ2) < 0 according to Eqs. (D14) and (D15).
After the change of variable (127), Gaussian quadrature can
be applied to the integral (126). As a reminder, Gaussian
quadrature is the discretization rule∫ 1

0
f (t ) dt �

Nμ∑
i=1

wi
f (ti )

W (ti )
, (128)

where ti is the i-th zero of the orthogonal polynomial of
order Nμ defined with respect to the weight function W (t ) on
the interval t ∈ [0, 1], and wi is the corresponding Gaussian
weight. The number of points, Nμ, is chosen large enough so
that the sum converges. The nodes ti and weights wi can be
obtained numerically using, for instance, the Golub-Welsch
algorithm [69, Sec. 4.6.2]. The quadrature is more accurate
when the weight function W (t ) compensates for the possible
singularities of f (t ) at the end points. In the case of Eq. (126),
an appropriate choice is

W (t ) = (1 − t )
d−3

2 . (129)

This choice is well-suited for the evaluation of Q̃(x) for which
κ = 0. Using Eq. (128), the directional mean (126) can be
written as

〈g〉±κ =
∑Nμ

i=1 ciμ
κ−1
i g(±μi, x)∑Nμ

i=1 ciμ
κ−1
i

, (130)

with the weights

ci = wi

W (ti )
μ′

iμi
(
1 − μ2

i

) d−3
2 , (131)

where μi = μ(ti ) and μ′
i = d μ

dt (ti ). Equation (130) reproduces
the expression of the directional mean in the waveguide case

FIG. 4. Transmission eigenvalue distribution through a 2D infi-
nite slab, at different optical thicknesses L/�. The solid curves are
the predictions of the matrix transport equation (97) [68] using the
discrete ordinates method (130)–(131) to compute Q̃(x) and J̃x (x)
in Eq. (96). The dashed curves are the quasiballistic approximation
(D14)–(D16).

[see Eq. (E9)]. In this way, only the values of μi and ci

have to be adapted to the geometry. The weights ci must be
such that, in the continuum limit Nμ → ∞, they satisfy the
normalization

Nμ∑
i=1

ciμ
κ−1
i

Nμ→∞−−−−→
∫ 1

0
μκ (1 − μ2)

d−3
2 dμ = Vd+κ−2

Sd−1Vκ−1
.

(132)

This relation has been used to validate the numerical imple-
mentation.

The transmission eigenvalue density for the infinite slab is
computed numerically [68] using the same algorithm as for
the waveguide in Sec. IV A, except that the directional means
in Eq. (96) must rely on Eqs. (130) and (131). This algorithm
yields the solid curves in Fig. 4. The main difference with the
distributions for the waveguide in Fig. 3 is the absence of a
minimum cutoff. Transmission eigenvalues are thus allowed
to reach the point T = 0. It should be noted, however, that
the density in the region T = 0 is likely to be influenced
by strong localization effects because it comes from grazing
modes (which propagate in a direction almost parallel to the
slab). Given that the present theory does not take into account
strong localization (see Sec. II D), possible changes of the
density in the region T = 0 could be expected. The theoretical
predictions of Fig. 4 cannot be compared to numerical simu-
lations based on the wave equation (2) because the continuum
of modes cannot be discretized on complex angles in the
same way as in Eqs. (130)–(131). Nevertheless, as shown
in Fig. 5, it is possible to check that the distribution for the
finite-width waveguide studied in Sec. IV A converges, in the
infinite-width limit (W → ∞), to the infinite-slab distribution
based on Eqs. (130) and (131). We find that, when W is large
enough, the transmission eigenvalue density splits into several
lobes, which are attributed to the grazing modes, i.e., modes
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FIG. 5. Transmission eigenvalue distribution through a 2D disor-
dered medium of optical thickness L/� = 0.2 predicted by RFT [68].
The solid curves are the distributions for a waveguide of increasingly
large width based on Eqs. (E3), (E7), (E8), and (125), and the dotted
curve is the infinite-slab limit distribution based on Eqs. (97) and
(130)–(131).

with large transverse momentum (‖p⊥,n‖ � k). These modes
travel a longer path in the medium and are therefore more
strongly affected by scattering, leading to smaller T values. As
W increases, these lobes accumulate near T = 0, becoming
progressively smaller and thinner. This behavior seems to be
consistent with the limiting distribution for W → ∞ (dotted
line in Fig. 5).

V. CONCLUSIONS

In this paper, we formulated a field-theoretic framework,
which we called radiant field theory (RFT), to describe
the transmission eigenvalue distribution in disordered media.
Unlike previous approaches, RFT applies both in the quasi-
ballistic and diffusive regimes and accommodates arbitrary
open geometries, including the infinite slab. In Sec. II C, we
introduced a field-theoretic partition function Z , whose log-
arithmic derivative generates the sought distribution. Using
the replica method (Secs. II D and II E), we evaluated the
disorder-averaged 〈ln Z〉 and showed that in the nonlocal-
ized regime, the calculation reduces to a single replica. The
saddle-point of the resulting functional integral is given by
a self-consistent equation for a 2 × 2 complex matrix field
Q̃(r), as discussed in Sec. II F. Since Q̃(r) varies slowly on
the wavelength scale (Appendix B), we employed a semi-
classical approximation to derive a transport equation for
the matrix radiance g(�, r), structurally analogous to the
Eilenberger equation from type-II nonequilibrium supercon-
ductivity (Sec. III A). The boundary conditions for g, derived
in Sec. III B, are unusual in that they constrain only three of
its four components in every direction. The generality of the
derivation in Sec. II makes the RFT framework adaptable to a
wide range of geometries, as illustrated in Fig. 2.

In Appendix D, we solved the matrix transport equation an-
alytically in the quasiballistic regime, under the assumption

that Q̃(r) remains spatially uniform in the bulk. This assump-
tion can be viewed as the spatial counterpart of the isotropy
assumption used in the diffusive regime, where the radiance
g(�, r) is assumed to be weakly dependent on direction. Our
solution reveals that the transmission eigenvalue distribution
is influenced by the waveguide shape via the weights μn in the
directional mean (E9), indicating a lack of universality in the
quasiballistic regime.

In Sec. IV, we solved the RFT equations numerically
for two geometries: the waveguide and the infinite slab. For
waveguides (Sec. IV A), we adapted the transport equation to
account for transverse momentum quantization (Appendix E).
For the infinite slab (Sec. IV B), we evaluated the directional
integral by deforming the integration contour in the complex
plane. This method circumvents the limitations of standard
wave-equation solvers, which require boundary conditions.
The ability of our theory to access the continuum limit is a
direct consequence of the semiclassical formulation. Figure 5
shows how the transmission distribution for the infinite slab
emerges from wide waveguides, and highlights features such
as the lobe structure near T = 0 caused by grazing modes.
However, these modes may be sensitive to localization, so the
infinite-slab distribution should be interpreted with care.

The companion Letter [31] extends RFT to include ex-
perimentally relevant effects such as absorption [34,35] and
incomplete channel control [25,26]. Overall, our work demon-
strates that it is possible to dispense with the restrictive
macroscopic assumptions of random matrix theories like
DMPK when modeling coherent wave transport in disordered
media. The microscopic nature of RFT offers a practical tool
to investigate unresolved issues in wavefront shaping, includ-
ing access to observables beyond transmission, such as energy
deposition statistics [22,61,62] and the spatial structure of
transmission eigenchannels [15,16,18]. Its microscopic foun-
dation also makes it well-suited to incorporate more complex
physical phenomena, such as anisotropic scattering in biolog-
ical tissues or correlated disorder [70]. These directions will
be explored in future work.
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APPENDIX A: REDUCTION TO A NONLINEAR
SIGMA MODEL

In this Appendix, we derive the Lagrangian of the matrix
nonlinear sigma model following an approach inspired by
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Lerner [55]. We start from the full Lagrangian (46)

L[Q] = Tr

(
α

2
Q̂2

)
− Tr ln(Ŵ0 + iαQ̂), (A1)

where Ŵ0 is the Hamiltonian defined in Eq. (36), and Q(r)
is the 2R × 2R matrix field, R being the number of replicas.
Note that the results of this Appendix are valid for arbitrary R,
including the special case R = 1.

The numerical simulations of the saddle-point equa-
tion (58) in Appendix B show that Q(r) behaves slowly in
space, especially in the multiple-scattering regime (L 	 �).
In addition, Q(r)2 appears to be approximately proportional to
the identity matrix. We aim to derive these properties of Q(r)
in the multiple-scattering regime. To do so, we momentarily
disregard the contact interaction terms γaK̂aΛ+ and γbK̂bΛ−,
and assume that Q(r) is constant in the bulk. When expressed
in the momentum basis, the saddle-point condition (58) reads

Q =
∫

dp
(2π)d

i

k2 − p2 + iεΛ3 + iαQ
. (A2)

To achieve the integral in Eq. (A2) on the momentum shell
(‖p‖ ∈ [k − δk, k + δk]), we exploit the result∫

dp
(2π)d

f (p2 − k2) =
∫ k+δk

k−δk
dp

Sd pd−1

(2π)d
f (p2 − k2),

=
∫ 2kδk

−2kδk
du

Sd (k2 + u)
d−2

2

2(2π)d
f (u),

� ν(k) −
∫

0
du f (u), (A3)

where u = p2 − k2, the dashed integral denotes the Cauchy
principal value defined in Eq. (89), and ν(k) is the density of
states (9). The result (A3) assumes that the interval is small
(δk � k), but nevertheless large enough to encompass most
of the contribution of f (u). Using Eq. (A3) and the notation
P = εΛ3 + αQ, Eq. (A2) becomes

Q = −iν −
∫

0

du

u − iP
. (A4)

The integral in Eq. (A4) is given by

−
∫

0

du

u − iP
= iπsgn(P), (A5)

where sgn(P) is the matrix sign function given by eigende-
composition, sgn(P) = Usgn(Π)U−1, Π being the diagonal-
ized matrix and U a unitary matrix. Therefore condition (A4)
reads

Q = πν sgn(P). (A6)

Since sgn(P)2 yields the identity matrix whatever the matrix
P, Eq. (A6) implies that

Q2 = (πν)212R, (A7)

where 12R is the 2R × 2R identity matrix. We stress that
Eq. (A7) is only an approximation valid in the multiple-
scattering regime (L 	 �). It is not valid in the more general
transport theory considered in Sec. III, for instance, because L
is then arbitrary.

Now, we restore the presence of the contact terms and relax
the assumption of constant Q. We let this field slowly vary in
space, but still under the constraint (A7). The field has thus
the form

Q(r) = πν U(r)ΛU(r)−1, (A8)

where Λ is an arbitrary constant matrix such that Λ2 = 12R but
excluding the identity itself (Λ �= 12R), for instance, Λ = Λ3.
It is also convenient to use the normalized matrix field Q̃(r)
defined by Eq. (90). To deal with the Lagrangian (A1), we first
define a Green’s operator based on the most significant terms
in the Lagrangian, namely k2, p̂2, and iαQ:

L̂ def= 1

k2 − p̂2 + iαQ(r̂)
. (A9)

With this operator, the Lagrangian (A1) can be expanded into

Tr ln(Ŵ0 + iαQ̂) = Tr ln L̂−1 + Tr ln(1 + L̂iεΛ3 + · · · ),

� Tr ln L̂−1 + iεTr(L̂Λ3) + · · · . (A10)

The trailing dots represent other terms in the Hamiltonian Ŵ0,
such as the contact interaction. In the following calculations,
we consider each of the terms of the last line of Eq. (A10).

a. Gradient expansion. We first deal with the first term
in the right-hand side of Eq. (A10). Applying the similarity
transformation Û−1 · · · Û defined in Eq. (A8) to the logarithm,
we get

Tr ln(L̂−1) = Tr ln
(
L̂−1

0 − Û−1[p̂2, Û]
)
, (A11)

where the Green’s operator L̂0 is defined by

L̂0
def= 1

k2 − p̂2 + iα̃Λ
, (A12)

and the imaginary shift is given by

α̃
def= πνα = k

�
. (A13)

Expression (A11) can be rewritten as

Tr ln(L̂−1) = Tr ln
(
L̂−1

0

) + Tr ln(1 − L̂0Û−1[p̂2, Û]).
(A14)

Since the commutator in Eq. (A14) can be understood as the
gradient of U(r), it is expected to be relatively small compared
to the other terms, the logarithm can be expanded in Taylor
series

Tr ln(L̂−1) = Tr ln
(
L̂−1

0

) − I1 − 1
2 I2 + · · · , (A15)

where Iβ is defined for all β ∈ {1, 2, . . .} by

Iβ
def= Tr

(
(L̂0Û−1[p̂2, Û])β

)
. (A16)

Since some operators in Eq. (A16) are diagonal in the mo-
mentum basis and others in the position basis, the trace does
not evaluate exactly. To overcome this issue, we switch to the
Wigner representation (77) in which the trace reads

TrÂ =
∫∫

dr dp
(2π)d

W (Â). (A17)
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Then, an excellent approximation of Eq. (A16) can be ob-
tained from

W (L̂0Û−1[p̂2, Û]) � W (L̂0)W (Û−1)W ([p̂2, Û]), (A18)

although this factorization holds only for commuting oper-
ators. The first two Wigner terms in the right-hand side of
Eq. (A18) are trivial, while the last one reads

W ([p̂2, Û]) = −2ip · ∇rU(r). (A19)

We notice that the first integral in Eqs. (A15)–(A16) vanishes,

I1 = 0, (A20)

since the average momentum is zero:
∫

p dp = 0. However,
this is not the case of the second integral I2, that is,

I2 = −4
d∑

i, j=1

∫∫
dr dp
(2π)d

pi p j tr(L0AiL0A j ), (A21)

where

Ai(r)
def= U(r)−1∂xi U(r). (A22)

The integral over the momentum in Eq. (A21) can be achieved
using a generalization of the property (A3) to dyadic tensors,
namely,∫

dp
(2π)d

pi p j f (p2 − k2) = k2ν
δi j

d
−
∫

0
du f (u). (A23)

Using Eq. (A23), Eq. (A21) can be written as

I2 = −4
∫

dr
k2ν

d

d∑
i=1

−
∫

0
du tr[L0(u)AiL0(u)Ai]. (A24)

The integral over the momentum shell u can be evaluated as
follows

−
∫

0
du tr

(
1

u − iα̃Λ
Ai

1

u − iα̃Λ
Ai

)

= −
∫

0
du tr

(
u + iα̃Λ

u2 + α̃2
Ai

u + iα̃Λ

u2 + α̃2
Ai

)

= −
∫

0
du

u2

(u2 + α̃2)2
tr
(
A2

i

) − α̃2

(u2 + α̃2)2
tr(ΛAiΛAi ).

(A25)

The two remaining integrals over u in the last line of Eq. (A25)
turns out to be equal:

−
∫

0

u2 du

(u2 + α̃2)2
= −

∫
0

α̃2 du

(u2 + α̃2)2
= π

2α̃
. (A26)

Therefore Eq. (A24) becomes

I2 = −4
∫

dr
k2ν

d

π

2α̃

d∑
i=1

[
tr
(
A2

i

) − tr(ΛAiΛAi )
]
. (A27)

We recognize that in the difference A2
i − ΛAiΛAi, the square

of a commutator due to the fact that Λ2 = 12R:

I2 =
∫

dr
k2πν

dα̃

d∑
i=1

tr([Λ, Ai]
2). (A28)

In addition, according to Eq. (A8), the commutator is directly
related to the gradient of the Q̃(r) field:

[Λ, Ai(r)] = −U(r)−1
(
∂xi Q̃(r)

)
U(r). (A29)

Therefore Eq. (A28) reduces to

I2 =
∫

dr πνD tr(∇rQ̃∇rQ̃), (A30)

where D is the diffusion constant defined by Eq. (49). The
sought approximation of Eq. (A15) in the multiple-scattering
regime thus reads

Tr ln(L̂−1) = Tr ln
(
L̂−1

0

) −
∫

dr
πνD

2
tr(∇rQ̃∇rQ̃). (A31)

b. Other terms and result. One still has to deal with the
other terms in Eq. (A10), especially the term Tr(L̂Λ3). Using
the Wigner representation (A17), we can write

Tr(L̂Λ3) =
∫

dr dp
(2π)d

tr

(
1

k2 − p2 + iαQ(r)
Λ3

)
, (A32)

which quickly evaluates from Eqs. (A2)–(A6), the result being

Tr(L̂Λ3) =
∫

dr (−iπν)tr(Q̃Λ3). (A33)

Other terms in the Hamiltonian can be obtained in a similar
way.

In the end, Eqs. (A31) and (A33) can be substituted into
Eq. (A10), and then back into the Lagrangian (A1). The result
is

L[Q] = Tr

(
α

2
Q̂2 + ln L̂0

)
+ M[Q̃], (A34)

where M[Q̃] is the famous nonlinear sigma model La-
grangian [47]

M[Q̃] =
∫

dr M, M = πν tr

(
D

2
(∇rQ̃)2 − εΛ3Q̃

)
.

(A35)

The first terms in the right-hand side of Eq. (A34) can be
ignored because they are responsible for the normalization
(A7) of Q(r) and are thus redundant under this constraint.

Due to the constraint Q̃(r)2 = 12R prescribed by Eq. (A7),
the saddle-point equation associated to the Lagrangian (A35)
is not given by the usual Euler-Lagrange equation for Q̃(r)
but instead by the commutator equation[

Q̃,∇r ·
(

∂M

∂∇rQ̃

)
− ∂M

∂Q̃

]
= 0, (A36)

which for the particular Lagrangian (A35) reduces to

[Q̃,∇r · (D∇rQ̃) + εΛ3] = 0, (A37)

or equivalently according to the anticommutation relation
Q̃∇rQ̃ + (∇rQ̃)Q̃ = 0 resulting from the constraint (A7),

∇r · (DQ̃∇rQ̃) = ε

2
[Λ3, Q̃]. (A38)

This matrix diffusion equation is reminiscent of the Usadel
equation in the superconductivity literature [51,53,54,56] and
can be obtained as the diffusive limit of the Eilenberger-type
transport equation (97).
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FIG. 6. Normalized field Q̃(x) = 1
πν

Q(x), satisfying the one-dimensional saddle-point equation (B2)–(B3), for thickness L = 20λ, optical
thickness L/� = 5, and parameters γa = γb = 1.2 + 10−5i. (a) Field for sharp edges (ς = 0) without obstacle (B = 0). (b) Field for smooth
edges (ς = L/50) without obstacle (B = 0). (c) Field for smooth edges (ς = L/50) and sharp obstacle (γ0 = 1, σx = 0). (d) Field for smooth
edges (ς = L/50) and smooth obstacle (γ0 = 1, σx = L/50).

APPENDIX B: SMOOTHNESS OF THE Q FIELD

In order to approach Eqs. (60) and (61) semiclassically, we
have to assume that the saddle-point field Q(r) slowly varies
in space at the wavelength scale. However, this assumption is
anything but trivial. Indeed, as pointed out in Refs. [64,65],
the complete phase-envelope decomposition of the Green’s
function Γ(r, r′) in a waveguide reads

Γ(r, r′) =
∞∑

n=1

∑
σ=±
σ ′=±

C(n)
σσ ′ (x, x′) eikx,n (σx+σ ′x′ )χn(y)χ∗

n (y′), (B1)

where C++, C+−, C−+, C−− are the slowly varying envelopes
and n is the index of modes. We notice that the envelopes
C++ and C−− are responsible for fast oscillations of the field
Q(r) at the wavelength scale because of the behavior e±2ikx,nx

at the return point (r = r′). In contrast, the envelopes C+−
and C−+ lead to slow variations of Q(r). The point is that
the oscillations corresponding to C++ and C−− are typically
caused by the presence of obstacles such as interfaces or
boundaries [64], because these structures generally produce
interferences between the incident and the reflected waves. It
can be shown that these interferences exponentially decay in
space at the scale of the mean free path �.

Since the edges of the disordered region and the contact
interactions γaK̂a and γbK̂b are likely to cause oscillations
of Q(r), we think it necessary to carry out a numerical ver-
ification of the smoothness of the field Q(r). To this end,
we restrict the problem to one dimension (d = 1). The full
saddle-point equation we consider thus reads

(
∂2

x + k2 + iεΛ3 + iαQ(x) + γaK̂aΛ+ + γbK̂bΛ−

+ B(x)
)
Γ(x, x′) = i12δ(x − x′), (B2)

where B(x) is an additional obstacle which is not considered
for the moment (B = 0), and α(x) is given by

α(x) = k

πν�

tanh
(

x
ς

) − tanh
(

x−L
ς

)
2

, (B3)

ς being a smoothing length. From the numerical point of
view, the solution of Eqs. (B2)–(B3) can be obtained itera-
tively starting from the initial ansatz Q(x) = 0. The question
of the convergence of this iterative process is discussed in
Appendix C.

Numerical solutions of Eq. (B2) for the normalized field
Q̃(x) = 1

πν
Q(x) are shown in Fig. 6. The omitted matrix ele-

ment Q̃22 is given by Q̃22 = −Q̃11. This exact relation comes
from the traceless property of the field Q̃(x) which is proved
in Sec. III B. We notice in Fig. 6(a) that the sharp edges of
the disordered region are responsible for small oscillations of
the field. These oscillations disappear in Fig. 6(b) when the
smoothing length ς becomes comparable or larger than the
wavelength. Here, the reader may legitimately wonder why no
interference is visible in Fig. 6(b) although the contact inter-
actions γaK̂a and γbK̂b behave as Dirac deltas [see Eq. (22)]. In
fact, it can be shown by solving Eq. (60) in the representation
(B1) that these particular interactions do not cause reflection
of the incident wave because they are based on the current
operator (22). However, this calculation is relatively tedious
and is not presented here. The reader may also object that
the oscillations in Fig. 6(a) are very small compared to the
magnitude of the field. However, this is not trivial because if
we insert the Gaussian obstacle

B(x) = γ0k√
2πσx

e− 1
2 ( x−x0

σx )2

(B4)

in Eq. (B2), then the oscillations become significant in the
Dirac-delta limit (σx → 0) as shown in Fig. 6(c). These oscil-
lations can only be mitigated by smoothing out the obstacle at
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the wavelength scale as done in Fig. 6(d). This smoothing re-
moves the oscillations without significantly altering the mean
field.

In the following sections, we will assume that there is no
sharp obstacle in the waveguide so that the Q(r) field behaves
as a smooth function at the wavelength scale.

APPENDIX C: CONVERGENCE AND STABILITY
OF THE Q FIELD

Here, we demonstrate that the iterative solution of the
system made of the saddle-point equation (60) and the self-
consistent condition (61) actually converges if the initial
ansatz is close enough to the solution. To this end, we first
solve the saddle-point equation, and then show that, after a
perturbation, the field Q(r) converges back to the saddle point.
We will refer to the saddle-point field as Q(0) to distinguish it
from the fields at subsequent iterations. This approach proves
the convergence and the stability of the solution under the
iterations of the saddle-point equation.

The saddle-point equations (60)–(61) reads in the basis of
the transverse eigenmodes,(

∂2
x + k2

x + iαQ(0) + Ŷ
)
Γ(0)(p⊥, x, x′) = iδ(x − x′),

Q(0)(x) =
∫

‖p⊥‖<k

dp⊥
(2π)d−1

Γ(0)(p⊥, x, x), (C1)

where kx = (k2 − p2
⊥)

1
2 is the longitudinal wavenumber, p⊥

the transverse momentum, and Ŷ = γaK̂aΛ+ + γbK̂bΛ− con-
tains the contact interactions. In the absence of contact
interaction (Ŷ = 0), the solution of Eq. (C1) is a constant field
Q(0) satisfying the normalization condition (A6), i.e.,

Q(0) = πν sgn(Q(0) ), (C2)

sgn(·) being the matrix sign introduced in Eq. (A5). An impor-
tant consequence of this normalization condition is that the
two eigenvalues of Q(0) are +πν and −πν, which are real
numbers. The set of solutions for Q(0) is degenerate because
any global gauge transformation Q(0) → UQ(0)U−1 preserves
the validity of the solution. However, this gauge symmetry
is universally broken by the contact interactions γaK̂aΛ+ and
γbK̂bΛ−. These terms are responsible for the spatial variation
of the saddle-point field Q(0)(x).

Now, we let the matrix field Q(0)(x) in the first line of
Eq. (C1) be modified by a spatially localized perturbation
called Δ(0)(x). This perturbation is assumed to be much
smaller than Q(0)(x),

‖Δ(0)(x)‖ � ‖Q(0)‖ = πν, (C3)

where ‖ · ‖ stands for the matrix spectral norm defined as the
largest eigenvalue in absolute value. In addition, we assume
that the field Δ(0)(x) is summable in norm, meaning that the
integral

∫
dx ‖Δ(0)(x)‖ should exist. The perturbation Δ(0)(x)

affects the Green’s function, denoted Γ(1), according to the first
line of Eq. (C1), which, in turn, alters the matrix field Q(1)(x).
This self-consistent scheme can be iterated ad infinitum, lead-

ing to the following set of equations for all t ∈ Z�0:[
∂2

x + k2
x + iα(Q(0) + Δ(t )(x)) + Ŷ

]
× Γ(t+1)(p⊥, x, x′) = iδ(x−x′)

Q(t+1)(x) =
∫

dp⊥
(2π)d−1

Γ(t+1)(p⊥, x, x). (C4)

The perturbation Δ(t )(x) at iteration t in the first line of
Eq. (C4) is defined by the following relation to the total matrix
Q(t )(x):

Q(t )(x) = Q(0) + Δ(t )(x) ∀t ∈ Z>0. (C5)

The first line of Eq. (C4) can be formally solved from pertur-
bation theory treating Δ(t )(x) as the small parameter:

Γ̂(t+1) � Γ̂(0) − αΓ̂(0)Δ(t )(x̂)Γ̂(0). (C6)

Projecting in position space with 〈x| · · · |x′〉, integrating over
the transverse modes with the second line of Eq. (C4), and
then using Eq. (C5), we get the iterative equation for the
perturbation:

Δ(t+1)(x) = − α

∫
dp⊥

(2π)d−1

∫
dx′ Γ(0)(p⊥, x, x′)

× Δ(t )(x′)Γ(0)(p⊥, x′, x). (C7)

The matrix Green’s function Γ(0) in Eq. (C7) is the solution of
Eq. (C1), i.e.,

Γ(0)(p⊥, x, x′) = sgn(Q(0) ) ei sgn(Q(0) )
√

k2
x +iαQ(0)|x−x′|

2
√

k2
x + iαQ(0)

. (C8)

This Green’s function exponentially vanishes at the scale of
the mean free path for |x − x′| → ∞. Although the solution
(C8) holds exactly only for a constant field Q(0) (in the case
Ŷ = 0), we assume that it also holds for a spatially varying
field in the diffusive regime (� � L). Indeed, in this regime,
the exponential decay of Γ(0) makes it insensitive to the pos-
sible obstacles that could be found beyond several mean free
paths. We thus expect that the solution (C8) holds in the bulk.

The linear map (C7) describes the evolution of the per-
turbation Δ(t )(x) under the iterations of the self-consistent
equations (C4). This equation is important because it shows
that, however localized the initial perturbation, the function
Δ(t )(x) will inevitably undergo spatial diffusion due to the
exponential decay of Γ(0) given by Eq. (C8). In fact, since
the Green’s function Γ(0) decreases at the scale of the mean
free path, Eq. (C7) can be physically interpreted as a kind of
evolution equation for Δ(t )(x) where the iteration index t plays
the role of time in the units of the mean intercollisional time.

In order to continue the demonstration of convergence, we
will show that the map (C7) is actually a contraction, that is
a map which sends any initial function Δ(0)(x) to zero after
enough iterations. Taking the matrix norm ‖ · ‖ on both sides
of Eq. (C7), using the triangle inequality to deal with the
integral and exploiting the submultiplicativity of the matrix
norm (‖AB‖ � ‖A‖‖B‖), we get the inequality:

‖Δ(t+1)(x)‖ � α

∫
dp⊥

(2π)d−1

∫
dx′

× ‖Γ(0)(p⊥, x, x′)‖2‖Δ(t )(x′)‖. (C9)
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Integrating both sides of Eq. (C9) over x and exploiting the
translational invariance of the Green’s function (C8) to change
the variable to ξ = x − x′, we find∫

dx ‖Δ(t+1)(x)‖ � α

∫
dp⊥

(2π)d−1

×
∫∫

dξ dx′ ‖Γ(0)(p⊥, ξ )‖2‖Δ(t )(x′)‖.
(C10)

Note that, although Γ(0)(p⊥, ξ ) also depends on x′ due to the
variation of Q(0)(x) in Eq. (C8), its norm does not because it
is fixed by the constant eigenvalues ±πν of Q(0)(x). In this
way, the ratio between the functions Δ(t+1)(x) and Δ(t )(x) can
be isolated, ∫

dx ‖Δ(t+1)(x)‖∫
dx ‖Δ(t )(x)‖ � R, (C11)

providing the upper bound R defined by

R
def= α

∫
dp⊥

(2π)d−1
I (p⊥), (C12)

where I (p⊥) is the following integral over x:

I (p⊥)
def=

∫
dx‖Γ(0)(p⊥, x)‖2. (C13)

The matrix norm in Eq. (C13) can be evaluated from Eq. (C8)
and the fact that the eigenvalues of Q(0) are just ±πν accord-
ing to Eq. (C2). Therefore we find

‖Γ(0)(p⊥, x)‖2 = e−2 Im
√

k2
x +iπνα|x|

4
∣∣k2

x + iπνα
∣∣ . (C14)

Integrating Eq. (C13) with Eq. (C14) yields

I (p⊥) = 1

4
∣∣k2

x + iπνα
∣∣ Im

√
k2

x + iπνα
. (C15)

The integral (C12) is not known in closed form for the inte-
grand (C15). To overcome this problem, we consider instead
the following upper bound

I (p⊥) <
1

2kxπνα
, (C16)

which turns out to be a good approximation of the function
(C15) in the weak disorder regime (k� 	 1). Substituting
Eq. (C16) into Eq. (C12), we get

R <
1

πν

∫
dp⊥

(2π)d−1

1

2kx
. (C17)

Finally, the integral over the transverse modes in Eq. (C17) is
elementary and leads to

R < 1. (C18)

The result (C18) shows that the ratio (C11) is strictly less
than one. Therefore we deduce that the map (C7) is indeed
a contraction. This implies that the perturbation Δ(t )(x) pro-
gressively vanishes for t → ∞ due to the iteration of the
self-consistent equations (C4),

Δ(t )(x)
t→∞−−−→ 0, (C19)

and that the field Q(t )(x) converges to the saddle-point field
Q(0)(x).

APPENDIX D: SOLUTION IN THE
QUASIBALLISTIC REGIME

It is possible to obtain an approximate analytical result for
the transmission eigenvalue distribution by solving the matrix
transport equation (97) in the quasiballistic regime (L � �).
Since this equation is translationally invariant in the transverse
direction, the radiance g only depends on x and the direction
cosine, which we rename μ (instead of �x) for the occasion.
The key simplification in the quasiballistic regime is the fact
that the matrix field Q̃(x) is almost uniform in the bulk of
the disordered region (x ∈ [0, L]). Indeed, in the quasiballistic
regime, the radiance varies at the scale of the mean free path,
in contrast to the diffusive regime where it is governed by the
system size. Therefore we can write

Q̃(x) � Q̃0 ∀x ∈ [0, L]. (D1)

As a consequence of this assumption, the matrix transport
equation (97) can be solved without resorting to path-ordered
exponential. One way to obtain a closed equation for the
generating function (76) is to relate the radiances g(μ, x) at
the two contact points xa and xb. According to the matrix
transport equation (97), these two points are related by

g(μ, x+
b ) = M g(μ, x−

a ) M−1, (D2)

where M is a transfer matrix given in the approximation (D1)
by

M = eiγbΛ− e−βQ̃0 eiγaΛ+ (D3)

and

β
def= L

2�μ
. (D4)

Nothing prevents β from being negative for backward-
propagating modes (those for which μ < 0). Furthermore, the
boundary conditions (116)–(117) constrain the expression of
g(μ, x+

b ) and g(μ, x−
a ) in Eq. (D2):(

1 g+
12

0 −1

)
︸ ︷︷ ︸

g(μ>0,x+
b )

= M
(

1 0
g+

21 −1

)
︸ ︷︷ ︸

g(μ>0,x−
a )

M−1,

(
1 0

g−
21 −1

)
︸ ︷︷ ︸

g(μ<0,x+
b )

= M
(

1 g−
12

0 −1

)
︸ ︷︷ ︸

g(μ<0,x−
a )

M−1. (D5)

In the following equations, the arguments of g±
12 and g±

21 are
implied. The two lines of Eq. (D5) can be solved indepen-
dently for g±

12 and g±
21, leading to

g+
12 = −2M12

M22
, g−

12 = 2M12

M11
,

g+
21 = −2M21

M22
, g−

21 = 2M21

M11
. (D6)

In order to close the equations for the matrix elements of
g(μ, x−

a ), we need to express M and thus Q̃0 in terms of these
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matrix elements only. To this end, we use Eq. (96) and the
boundary conditions (116)–(117) at x−

a :

Q̃a = Q̃(x−
a ) =

(
1 1

2 〈g−
12〉−0

1
2 〈g+

21〉+0 −1

)
. (D7)

Note that this field does not satisfy the normalization con-
dition of the nonlinear sigma model (Q̃2

a �= 1) due to the
quasiballistic regime. Since Q̃a and Q̃0 are related by Q̃0 =
eiγaΛ+Q̃a e−iγaΛ+ [see Eq. (99)], the transfer matrix (D3) can
be written directly in terms of Q̃a:

M = eiγbΛ− eiγaΛ+ e−βQ̃a . (D8)

The transfer matrix (D8) can now be evaluated explicitly from
the matrix exponential of Eq. (D7). The result is

M11 = cosh(βσ ) −
(

1 + iγa

2
〈g+

21〉+0
)

sinh(βσ )

σ
,

M12 =
(

iγa − 1

2
〈g−

12〉−0
)

sinh(βσ )

σ
+ iγa cosh(βσ ),

M21 =
(

1

2
〈g+

21〉+0 (γaγb − 1) − iγb

)
sinh(βσ )

σ

+ iγb cosh(βσ ),

M22 = (1 − γaγb) cosh(βσ )

−
(

γaγb + iγb

2
〈g−

12〉−0 − 1

)
sinh(βσ )

σ
, (D9)

where σ is defined as

σ
def=

√
− det Q̃a =

√
1 + 1

4 〈g+
21〉+0 〈g−

12〉−0 . (D10)

Inserting Eq. (D9) into Eq. (D6), we get a self-consistent
system of equations closed for g+

21 and g−
12. In order to shorten

the expressions, it is appropriate to redefine the unknowns:

g+
21(μ) = −2iγb

1 − γaγb
f (μ), g−

12(μ) = 2iγag(μ). (D11)

Using in addition the relation (31), the system becomes

g(μ) = 1 + (1 − 〈g〉−0 ) tanh(βσ )
σ

1 − (
1 + γ

1−γ
〈 f 〉+0

) tanh(βσ )
σ

,

f (μ) = 1 − (1 − 〈 f 〉+0 ) tanh(βσ )
σ

1 + (
1 + γ

1−γ
〈g〉−0

) tanh(βσ )
σ

. (D12)

This system can be simplified further. Indeed, we notice that
the two lines of Eq. (D12) are equivalent if we flip the sign of
μ (and then of β) in the first one. This implies that g(−μ) =
f (μ) and thus

〈g〉−0 = 〈 f 〉+0 (D13)

satisfy the system of equations. Therefore system (D12) re-
duces to a single self-consistent equation closed for f :

f (μ) = 1 − (1 − 〈 f 〉+0 ) tanh(βσ )
σ

1 + (
1 + γ

1−γ
〈 f 〉+0

) tanh(βσ )
σ

, (D14)

where σ now reads

σ =
√

1 + γ

1 − γ
(〈 f 〉+0 )2. (D15)

Finally, according to Eqs. (76), (96), and (D11), the sought
generating function is given by

F (γ ) = i

γb
J̃21

x (xa ) = i

2γb
〈g+

21〉+1 = 〈 f 〉+1
1 − γ

. (D16)

Note that in Eq. (D16), we used the convention (γa, γb) =
(γ , 1) mentioned earlier below Eq. (68). As shown in
Secs. IV A and IV B, Eqs. (D14)–(D16) provide a relevant
approximation of the transmission eigenvalue distribution in
the quasiballistic regime.

APPENDIX E: MATRIX TRANSPORT EQUATION
FOR A WAVEGUIDE

A key implication of the semiclassical approximation used
in Sec. III A is that it assumes an infinite number of trans-
verse modes (Np → ∞), effectively extending the transverse
boundaries of the waveguide to infinity. This assumption is
beneficial in that it validates the matrix transport equation in
Eq. (97) for broader geometries beyond waveguides. How-
ever, it does not accurately describe waveguides of finite
width, so the matrix transport equation (97) must be modified
accordingly to account for a finite number of modes. To this
end, we project the saddle-point equation (60) on the basis of
transverse modes before performing the Wigner transform in
the variable x. We introduce for this purpose the modal Wigner
transform

Γn(px, x) =
∫
R

ds
〈
χn, x + s

2

∣∣∣Γ̂∣∣∣χn, x − s

2

〉
e−ipxs, (E1)

where χn(y) are the transverse modes initially defined in
Eq. (12). Note that Γ̂ is diagonal in the modal space due to
the translational symmetry of the saddle-point Hamiltonian
(60) in the transverse direction. By analogy with Eq. (88), we
define the modal radiance

g±
n (x)

def= 2kx,n

π
−
∫

±kx,n

dpx Γn(px, x). (E2)

The g+
n (x) radiance propagates in the direction of increasing

x and the g−
n (x) radiance in the direction of decreasing x. The

definition (E2) ensures the normalization property g±
n (x)2 =

12 equivalent to Eq. (119) but for the modes. It is thus dif-
ferent from the previous definition (88). In the representation
(E1) and (E2), the saddle-point equation (60) reduces to a
matrix transport equation very similar to Eq. (97), that is,

μn∂xg±
n = ∓ 1

2�
[Q̃(x), g±

n ] ∓ ε

2k
[Λ3, g±

n ]

+ iγaμnδ(x − xa )[Λ+, g±
n ]

+ iγbμnδ(x − xb)[Λ−, g±
n ], (E3)

where μn = kx,n/k is the direction cosine of mode n (defined
as positive). Of course, Eq. (E3) must be supplemented by the
boundary conditions (116) and (117) which remain the same
in the modal basis. However, it also needs the self-consistent
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condition (91), which possesses a noticeably different ex-
pression in this basis. In order to derive this expression, we
consider the modal expansion

Γ(p, r) =
Np∑

n=1

Γn(px, x)Wχn (p⊥, y), (E4)

where Wχn is the transverse Wigner transform of the modes
given by Wχn (p⊥, y) = W (|χn〉〈χn|)p⊥,y. We will assume that
this function is approximately independent of the transverse
coordinate y so that

∫
dp⊥ Wχn (p⊥, y) � (2π)d−1/S⊥. This

independence property is exact only when the transverse
boundary conditions are periodic. Furthermore, it is worth
noting that the restriction of the sum in Eq. (E4) to the prop-
agating modes is an approximation. In principle, this sum
should cover all the transverse modes including the evanes-
cent modes for which ‖p⊥,n‖ > k. However, these evanescent
modes cannot be described semiclassically, because of the
absence of a carrier wave, and must therefore be neglected
in this theory.

Substituting Eq. (E4) into Eq. (85) and using Eq. (E2), we
get

Q(x) = 1

2S⊥

Np∑
n=1

g+
n (x) + g−

n (x)

2kx,n
. (E5)

However, in the matrix transport equation (E3) we need the
normalized field Q̃ defined by Eq. (90) and not Q. Therefore
a division by the density of states is required. In a finite-width
waveguide, it is given by

ν = 1

2πS⊥

Np∑
n=1

1

kx,n
. (E6)

In the semiclassical limit (Np → ∞), one can verify that the
density of states (E6) tends indeed to the free-space result
(10). The normalized field thus reads

Q̃(x) = 1∑Np

n=1
1
μn

Np∑
n=1

g+
n (x) + g−

n (x)

2μn
. (E7)

Following the same procedure for the normalized matrix cur-
rent given by Eqs. (92) and (75) yields

J̃x(x) = 1

Np

Np∑
n=1

g+
n (x) − g−

n (x)

2
. (E8)

Equations (E7) and (E8) are compatible with the general ex-
pressions (96) up to a redefinition of the directional mean 〈·〉±κ
by

〈A〉±κ =
∑Np

n=1 μκ−1
n A±

n∑Np

n=1 μκ−1
n

. (E9)

Note that the exponent in Eq. (E9) is not κ as in the continuous
definition (94) but κ − 1. This difference arises from the dis-
tinct definitions used for the modal and continuous radiances
in Eqs. (E2) and (88), respectively.

APPENDIX F: NUMERICAL INTEGRATION
OF THE MATRIX TRANSPORT EQUATION

In this Appendix, we detail the numerical integration
method of the matrix transport equation (97) implemented
in EBSOLVE [68]. We assume that, at one single step of the
iterative procedure, the matrix field Q̃(r) is fixed, so that the
problem reduces to an integration over space. This spatial
integration is far from trivial for at least two reasons: First,
because of the peculiar boundary conditions (116) and (117),
and second, because of the well-known numerical instability
of the Eilenberger equation in the superconductivity literature
[71–74].

The first source of numerical instability in Eq. (97) comes
from the existence of constraints imposed by Eqs. (118) and
(119), which reduce the number of degrees of freedom of
the matrix radiance g(�, r) from four complex numbers to
only two. If precautions are not taken, the naive integration
of Eq. (97) may result in a violation of these constraints due
to the accumulation of roundoff errors. This problem can be
avoided by an appropriate parametrization of the matrix radi-
ance. Of course, there are many different ways to parametrize
g(�, r) with two parameters such that the constraints (118)
and (119) are automatically satisfied. We first consider a
well-known parametrization in the superconductivity litera-
ture, namely the Schopohl parametrization [71,72],

g(�, r) = 1

1 + αβ

(
1 − αβ 2α

2β −1 + αβ

)
, (F1)

where α(�, r) and β(�, r) are two complex functions of
the direction and the position. In the following calculations,
we will establish the equations of propagation for α and β

in the waveguide geometry so that these functions only de-
pend on the longitudinal coordinate x. Although not perfect
as we will see, the special parametrization (F1) offers many
computational advantages, in particular the expressions of the
boundary conditions at infinity, Eqs. (116) and (117), reduce
to simple cancellations of the Schopohl parameters in a sym-
metrical fashion:

α+
x→−∞ = 0, α−

x→+∞ = 0,

β−
x→−∞ = 0, β+

x→+∞ = 0, (F2)

where the superscripts refer to the sign of �x, i.e., the direc-
tion. These boundary conditions are schematically depicted
in Fig. 7. The boundary conditions (F2) strongly suggest
to integrate the functions α(�, x) and β(�, x) starting from
the points where they are zero. This approach is not only
the most convenient, it is also the most numerically stable
because the functions are expected to increase in absolute
value. Integrating in the decreasing direction is often numer-
ically unstable due to the accumulation of roundoff errors,
which prevent reaching the true zero. The consequence of this
approach is that α(�, x) must be integrated in the same direc-
tion as �, while β(�, x) must be integrated in the opposite
direction [72].

We have to determine the equations of propagation for α

and β. It can be shown by substituting Eq. (F1) into the matrix
transport equation (97) that, along the longitudinal axis of
the waveguide, the Schopohl parameters a and b obey two
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FIG. 7. Behavior of the Schopohl parameters α(�, x) and
β(�, x) in the waveguide geometry, with a disordered region de-
picted in blue. The circles highlight the boundary conditions (F2),
and the arrows the direction of numerically stable integration. The
values α± and β± self-consistently depend on the Q̃(x) field in the
disordered region so that they are not known in general.

apparently uncoupled Riccati equations [71–74],

∂xα = +P21α
2 + 2P11α − P12,

∂xβ = −P12β
2 − 2P11β + P21, (F3)

where the matrix P is defined by

P(�, x)
def= − 1

2��x
Q̃(x) − ε

2k�x
Λ3

+ iγaδ(x − xa )Λ+ + iγbδ(x − xb)Λ−. (F4)

In fact, the two equations (F3) are coupled under the hood by
the Q̃(x) field according to the self-consistent condition (91)
and the parametrization (F1). The issue with the Riccati equa-
tions (F3) is that they cannot be integrated using traditional
integrators (such as the Runge-Kutta methods) because they
are intrinsically unstable due to the presence of singularities
in the solution for det(P) ∈ R+. Indeed, the solution of the
simple Riccati equation ∂x f (x) = f (x)2 is f (x) = 1

x0−x which
has a distinct pole at x0 (the integration constant). Fortunately,
the instability of Eq. (F3) can be overcome through a specific
integration method that we now present.

As proposed by Schopohl [72,74], a more appropriate way
to integrate the matrix transport equation in the parametriza-
tion (F1) is to introduce vector parameters

a(�, r)
def=

(
a1

a2

)
, b(�, r)

def=
(

b1

b2

)
, (F5)

such that

α = −a1

a2
, β = b2

b1
. (F6)

The interest of a and b is that they obey much simpler equa-
tions than α and β. Indeed, if we substitute Eq. (F6) into the
Riccati equations (F3), we get

∂xa(�, r) = P(�, r)a(�, r),

∂xb(�, r) = P(�, r)b(�, r), (F7)

The reappearance of the matrix P in Eq. (F7) is not due to
chance. In fact, the Schopohl parametrization (F1) can be con-
structed by considering an arbitrary similarity transformation
of the vacuum state Λ3:

g = MΛ3M−1, M =
(

b1 a1

b2 a2

)
. (F8)

The expression of g in Eq. (F8) can be substituted into the
matrix transport equation (97) to obtain the system (F7). The
important point with the system (F7) is that, in contrast to the
Riccati equations (F3), it is linear (if we forget about the self-
consistency of the Q field) in such way that this differential
problem is numerically stable as far as we respect the direction
of integration imposed by the boundary conditions (F2). The
latter now read

a+
x→−∞ =

(
0
1

)
, a−

x→+∞ =
(

0
1

)
,

b−
x→−∞ =

(
1
0

)
, b+

x→+∞ =
(

1
0

)
. (F9)

According to these boundary conditions, a+ and b− must
be integrated in the forward direction and a+ and b− in the
backward direction to ensure numerical stability.

Regarding the numerical integration of Eq. (F7), many
methods may prove satisfactory, including the Runge-Kutta
methods. However, the structure of the equation encourages
the use of an exponential integrator, which is a method based
on the exact solution for constant P between two consecutive
points on the regular mesh {xi = x1 + (i − 1)�x}i=1,...,Nx ,

v(�, xi+1) = ePi�xv(�, xi ), (F10)

whether v is equal to a or b. Furthermore, we known that the
exponential of the traceless 2 × 2 matrix P�x is given by

eP�x = cosh(σ )12 + sinh(σ )

σ
P�x, (F11)

where σ reads

σ =
√

− det(P)�x =
√

P2
11 + P12P21�x. (F12)

In addition, it is interesting to note that, in numerical calcu-
lations, the vectors a and b can be integrated up to a global
factor since the latter disappears anyway in the calculation of
α and β by Eq. (F6). Therefore it is possible to reduce the
number of hyperbolic functions in Eqs. (F10) and (F11):

v(�, xi+1) =
(

12 + tanh(σ )

σ
Pi�x

)
v(�, xi ). (F13)

In practice, it is convenient to separate the contribution of the
contact interactions from the rest of the bulk integration due
to the singular nature of the Dirac deltas in Eq. (F4). This
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contribution is given by Eq. (98):

v(�, x+
a ) = eiγaΛ+v(�, x−

a ),

v(�, x+
b ) = eiγbΛ−v(�, x−

b ). (F14)

Equations (F13) and (F14) lie at the core of EBSOLVE’s inte-
grator [68].

We end this Appendix with two comments. First, the in-
tegration method of the Riccati equation (F3) for α and β

based on Eqs. (F5)–(F7) is equivalent to the integrator based
on Möbius transformations proposed by Ref. [75] to solve nu-

merically Riccati-type equations. Indeed, it can be shown that
the exact solution of Eq. (F3) for piecewise-constant P can
be expressed as a succession of Möbius transformations for α

and β. The matrix representation of these transformations is
precisely given by Eq. (F10).

Second, we stress that all the equations of this
Appendix are more general than what we have suggested
and are not restricted to the waveguide geometry. In fact,
they can be interpreted more generally as the equations along
individual rays (of fixed direction �) if we replace x/�x by
the traveled path s [72,74].
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