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Mesoscopic light transport in nonlinear disordered media
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Nonlinear disordered media uniquely combine multiple scattering and second-harmonic generation. Here,
we investigate the statistical properties of the nonlinear light generated within such media. We report super-
Rayleigh statistics of the second-harmonic speckle intensity, and demonstrate that it is caused by the mesoscopic
correlations arising in extreme scattering conditions. The conductance measured is exceptionally low for an
isotropically scattering three-dimensional medium, enabling applications in broadband second-harmonic gener-
ation, wavefront shaping in nonlinear disordered media, and photonic computing.
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When a coherent wave interacts with a disordered medium,
it generates a complex interference phenomenon that results in
the formation of speckle patterns. These speckles, which are
randomly distributed diffraction-limited grains, are ubiquitous
across waves of various origins, including electromagnetic
[1], acoustic [2], and matter waves [3]. Despite their different
physical origins, speckles exhibit universal statistical proper-
ties that are referred to as Rayleigh statistics. This universality
is a consequence of the very general conditions under which
Rayleigh statistics emerge. Specifically, the only requirement
is that the field arises from the interference of a large number
of uncorrelated waves whose phases are uniformly distributed
over a 2π range [1,4]. Non-Rayleigh statistics can be achieved
by using a spatial light modulator to induce correlations be-
tween partial waves and redistribute the intensity among the
speckle pattern’s grains, while preserving ergodicity [5–7].

Conversely, observing deviations from Rayleigh statistics
in multiple-scattering media under conventional laser illu-
mination is significantly more challenging. Deviations occur
only when strong scattering introduces mesoscopic corre-
lations between partial waves, breaking ergodicity [8–12].
These correlations are associated with the existence of a fi-
nite number g of open transmission channels in disordered
media [13,14]. When g (also known as dimensionless conduc-
tance) is moderate, the central limit theorem does not apply,
causing the total intensity in the speckle pattern to fluctu-
ate significantly from one disorder configuration to another.
Consequently, the intensity of each speckle grain exhibits
super-Rayleigh statistics [9,15]. This peculiar regime has been
reported in three-dimensional (3D) systems only in nanowire
mats [16] and, more weakly, in isotropic ZnO scattering
media [17].
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While mesoscopic transport in linear scattering media
is well understood, the same cannot be said for nonlinear
disordered media, a class of materials that has garnered
significant interest recently. These materials are composed
of nanodomains with a noncentrosymmetric crystal struc-
ture that exhibit a nonzero second-order susceptibility tensor.
The nonlinear properties enable each nanodomain to ex-
hibit electro-optic effects and generate second-harmonic (SH)
waves when illuminated with a fundamental beam [18]. The
interference of the waves generated by the nanodomains re-
sults in efficient emission of nonlinear light without stringent
conditions on the polarization and wavelength of the funda-
mental light, contrary to bulk crystals [19]. This phenomenon
has been extensively studied in the framework of random
quasi-phase-matching [20,21], where the disorder is used to
achieve broadband SH generation [22–26]. Researchers in-
vestigated the fundamental properties of diffusion and weak
localization in this class of media [27–30], as well as the
effect of scatterer displacement [31,32]. Notably, nonlinear
disordered media are also emerging as a prominent platform
for photonics processing. The characterization of the scatter-
ing tensor that defines their nonlinear input-output response
allows the use of nonlinear disordered media for encryption
and as all-optical logic gates [33,34]. In addition, these media
enable the implementation of large-scale nonlinear optical
operators for photonic machine learning [35]. However, sim-
plifying the analysis by assuming Rayleigh statistics, these
applications might overlook the richer physics arising from
the interplay of nonlinear light generation and strong scatter-
ing effects.

In this paper, we examine the statistical properties of
SH light generated within a strongly scattering, nonlinear
disordered medium. Specifically, we measure the intensity
fluctuations of both the fundamental and SH light under
various illumination conditions. The histograms of speckle in-
tensity and total transmission show deviations from Rayleigh
statistics, particularly evident for SH light. Since SH light
can be generated throughout the medium and cannot be de-
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FIG. 1. Experimental setup and typical speckle patterns. (a) λF =
976 nm: pulsed laser; λSH = 488 nm; L: lens; NLDM: nonlinear
disordered medium; SF: spectral filter; CAM: camera. (b), (c) Cam-
era images of typical speckle patterns at λF when the sample is
illuminated with (b) out-of-focus and (c) in-focus fundamental light.
(d) Camera image of a typical speckle pattern from SH light gener-
ated within the medium with in-focus fundamental illumination.

scribed by a linear transmission matrix, an open question
is whether these observations can be interpreted in terms of
an effective number g of open channels for SH light. By
analyzing the spatial distribution of SH generation within the
medium, we motivate the application of mesoscopic transport
theory, which is in excellent agreement with our experi-
mental data, and is consistent with the reduced conductance
g due to the shorter transport mean free path at the SH
wavelength. This outcome has relevant applications in broad-
band SH generation, wavefront shaping [36,37], and photonic
computing [35,38].

Our experimental setup is shown in Fig. 1(a). A linearly po-
larized Ti:Sa pulsed laser (wavelength λF = 976 nm, 80 MHz
repetition rate, 100 fs pulse duration) is focused by an as-
pheric lens [numerical aperture (NA) = 0.5] into a nonlinear
disordered medium (disordered assembly of LiNbO3 nanopar-
ticles of thickness L ≈ 10 µm; see Supplemental Material
Sec. S1 for detailed information [39]). Both the lens and
the disordered sample are mounted on motorized translation
stages, to accurately control the position of the focal plane, as
well as the position of the sample in the plane perpendicular
to the beam propagation direction. By moving the focal plane,
we can control the size of the beam at the input facet of
the disordered medium, a crucial parameter for the analysis
of mesoscopic transport. Changing the position of the sam-
ple allows the light traveling through the medium to interact
with different realizations of disorder. The light scattered and
upconverted by the nonlinear disordered medium is collected
by an objective (NA = 0.75), and a tube lens (focal length
200 mm) is used to image the output facet of the medium
onto a scientific CMOS camera. Finally, we use a linear po-
larizer to select a single polarization state, and a spectral filter
(bandpass filter, central wavelength 488 nm, bandwidth 1 nm)
to remove the fundamental light when measuring the SH

signal (λSH = λF/2 = 488 nm). Typical speckle patterns for
different illumination conditions are shown in Figs. 1(b)–1(d).
Figure 1(b) displays a camera image of the fundamental light
when the focal plane is far from the input facet of the medium,
i.e., when the illuminating beam size is large. Figures 1(c) and
1(d) report typical speckle patterns for the fundamental light
[Fig. 1(c)] and the SH light generated within the nonlinear
disordered medium [Fig. 1(d)] when the focal plane of the
fundamental illumination coincides with the input facet of the
sample.

In the following, we rigorously characterize the statisti-
cal properties of the transmitted light after the propagation
through the nonlinear disordered medium. In particular, we
measure the intensity fluctuations, which contain a strong
signature of mesoscopic transport, and are not affected by
absorption [40]. For a given realization of disorder, we use
the camera to record the intensity distribution at the output
facet of the disordered sample. From the measured speckle
pattern, we obtain the transmission coefficients Tab, which
relate a speckle spot b with an incoming wave a (kept fixed
for each statistical dataset). Summing over the output modes,
we obtain the total transmission as Ta = ∑

b Tab. To collect a
statistically meaningful set of measurements, we measure the
intensity distributions of 104 different realizations of disorder,
obtained by moving the sample in the plane perpendicular
to the propagation direction of the illuminating light. From
Tab and Ta, we then extract the most relevant quantities for
our analysis, which are the normalized speckle intensity sab =
Tab/〈Tab〉 and the normalized total transmission sa = Ta/〈Ta〉,
where the angle brackets denote the average over the ensemble
of random configurations (see Supplemental Material Secs. S3
and S4 for details about the data analysis [39]).

The results of the analysis for various illumination condi-
tions are reported in Figs. 2 and 3. We first examine the case
of fundamental light with out-of-focus illumination [Figs. 2(a)
and 2(c)]. The large size of the input beam ensures that we are
in a regime of large number of open channels. In this case, the
normalized speckle intensity obeys the Rayleigh law, meaning
that the probability distribution P(sab) is a negative exponen-
tial [gray solid line in Fig. 2(a)]. Conversely, the probability
distribution of the normalized total transmission P(sa) follows
a Gaussian distribution [Fig. 2(c)]. This is a consequence of
the central limit theorem, as the numerous scattering paths that
are summed to obtain the total transmission are uncorrelated.

Reducing the size of the illuminating beam by aligning the
focal plane with the input facet of the medium (referred to as
the in-focus condition) increases the probability of two paths
crossing during light propagation inside a disordered medium.
When two paths cross, there is a small but nonzero probability
that they will become correlated, giving rise to long-range
correlations between distant speckle grains [10,41]. This, in
turn, lowers the dimensionless conductance g, which quanti-
fies the number of open channels, i.e., the number of channels
that carry the majority of the light [13,14,42]. The introduced
correlations change the statistical properties of the scattered
light, enhancing in particular the intensity fluctuations [43].
Mesoscopic transport theory predicts modified probability
distributions, referred to as Pg(sab) and Pg(sa), containing
the dimensionless conductance g as a single parameter (see
Ref. [15] and Supplemental Material Sec. S6 [39]).
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FIG. 2. Intensity fluctuations statistics of fundamental light. (a),
(b) Histograms of normalized speckle intensity for (a) out-of-focus
(OF) and (b) in-focus (IF) illumination. Solid lines represent a neg-
ative exponential P(sab) = − exp(sab) (gray), and the mesoscopic
transport model for normalized speckle intensity Pg(sab) (red). (c),
(d) Histograms of normalized total transmission for (c) out-of-focus
(OF) and (d) in-focus (IF) illumination. Solid lines indicate a Gaus-
sian fit (gray), and the mesoscopic transport model for normalized
total transmission Pg(sa). The fitted conductance value in (b) and
(d) is g = 13.8.

FIG. 3. Intensity fluctuations statistics of SH light generated
within the nonlinear disordered medium for varying distance �z
between the focal plane of the input lens and the entry facet of
the nonlinear disordered medium (�z = {20 µm, 10 µm, 0}). (a)–(c)
Histograms of normalized speckle intensity. Solid lines represent a
negative exponential P(sab) = − exp(sab) (gray), and the mesoscopic
transport model Pg(sab) [(a) �z = 20 µm, violet, (b) �z = 10 µm,
blue, (c) �z = 0, green]. (d)–(f) Histograms of normalized total
transmission. Solid lines are the mesoscopic probability density
functions Pg(sa) [(d) �z = 20 µm, violet, (e) �z = 10 µm, blue, (f)
�z = 0, green]. The fitted conductance values are (a), (d) g = 13.1,
(b), (e) g = 10.2, and (c), (f) g = 7.1.

The normalized speckle intensity and total transmission
histograms for fundamental light with in-focus illumination
is shown in Figs. 2(b) and 2(d), respectively. Considering
the speckle intensity, the slight deviation from Rayleigh dis-
tribution at large sab values is consistent with previously
reported observations in isotropic scattering materials [17].
Conversely, the total transmission histogram shows a clear
deviation from the Gaussian distribution predicted by the un-
correlated wave model. Fitting the measured data with the
mesoscopic transport model of Ref. [15] demonstrates good
agreement [Figs. 2(b) and 2(d), solid red lines], resulting
in a conductance value g = 13.8 (see Supplemental Material
Secs. S2, S6, and S7 [39]).

Having established how the statistical properties of funda-
mental light depend on the illumination conditions, we now
turn to the central focus of our work: the intensity fluctua-
tions of SH light generated within the nonlinear disordered
medium. Specifically, we studied how these fluctuations vary
with the input lens position (L1 in Fig. 1), which controls
the fundamental spot size at the entrance of the nonlin-
ear medium. The results are shown in Fig. 3. We present
histograms for three illumination conditions, based on the
distance �z of the focal plane to the input facet of the medium:
�z = 20 µm, �z = 10 µm, �z = 0. As predicted by meso-
scopic transport theory [41], the deviation of the speckle
intensity histograms [Fig. 3(a)] from a negative exponential
(gray solid line) becomes more evident as the focal plane
of the illumination approaches the input facet of the sample.
Similarly, the histograms of the normalized total transmis-
sion [Fig. 2(b)] demonstrate increased variance for shorter
�z. This is particularly evident for large sa values, where
the data points closely follow a negative exponential of the
form P(sa) ∝ e−gsa . The fitted probability distributions (violet,
blue, and green solid lines in Fig. 3) show excellent agree-
ment for both the speckle intensity and the total transmission
histograms, using the same conductance values for the ex-
pressions of Pg(sab) and Pg(sa) (g = 13.1 for �z = 20 µm,
g = 10.2 for �z = 10 µm, and g = 7.1 for �z = 0; see Sup-
plemental Material Secs. S6 and S7 [39]).

The reduced conductance measured with the SH light is
explained by the shorter transport mean free path �t associated
to the SH wavelength (�t ≈ 147 nm at 450 nm, compared to
�t ≈ 674 nm at 950 nm; see Supplemental Material Sec. S8
for the experimental characterization of �t [39]). The transport
mean free path is relevant for the characterization of the meso-
scopic effects, because it limits the minimum conductance to
a value gmin(λ) ≈ (2π�t/λ)2 [41,44]. Considering the mea-
sured �t , we obtain gmin(950 nm) ≈ 10.5 and gmin(450 nm) ≈
2.2 [39]. Notably, by accounting for the beamwidth de-
pendence of g with a finite SH illumination width of
800 nm, consistent with our experimental parameters, we es-
timate a conductance of g = 7 (see Supplemental Material
Sec. S8 [39]).

The question remains on how the statistics can be so ac-
curately described with mesoscopic transport theory, given
that the generation of the SH light throughout the medium
prevents the definition of a linear transmission matrix [33].
The explanation could be that, due to the tight focusing, the
SH generation efficiency is maximized at the entrance of
the medium. Indeed, theoretical calculations show that the
SH signal is mostly generated at z < 500 nm [see Fig. 4(a),
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FIG. 4. Comparison of SH light generated within the nonlinear
disordered medium, or externally, via a BBO crystal. (a), (c) Calcu-
lated mean intensity profiles within the disordered medium of the
sources (left) and the resulting diffuse halos (right) for SH light
generated (a) within the nonlinear disordered medium or (c) with a
BBO crystal [39]. (b) Experimental setup. Light from a pulsed laser
is upconverted with a BBO crystal (λF = 976 nm, λSH = 488 nm).
A dichroic mirror (DM) filters out the fundamental light, while the
SH is focused by the lens L1 onto the nonlinear disordered medium
(NLDM). The scattered light is collected by an objective L2 and mea-
sured with a camera (CAM). (d) Histograms of normalized speckle
intensity P(sab) for SH light generated with a BBO crystal (cross,
yellow) or by the disordered medium (circles, blue).

on the left; theoretical and simulation details in Supplemen-
tal Material Sec. S9 [39]]. This means that, given that the
nanoparticles’ sizes are distributed between 100 and 400 nm
[39], the SH light is generated within the very first layers,
and then undergoes linear scattering for the rest of the thick-
ness L ≈ 10 µm of the material [Fig. 4(a), on the right].
Therefore, under tightly focused illumination, the transport
of SH light could be treated similarly to that in a linear
scattering medium, despite its generation occurring within the
disordered medium. To prove it, we compare the statistical
properties of SH light generated within the nonlinear medium,
and by an external 200-µm-thick BaB2O4 crystal [BBO, ex-
perimental setup depicted in Fig. 4(b)]. Although the light
generated within the nonlinear disordered medium [Fig. 4(a),
right] penetrates slightly deeper than the light generated by
the BBO [Fig. 4(c), right], the sources of both concentrate at
a depth z � L ≈ 10 µm [Figs. 4(a) and 4(c), left]. In addi-
tion, the measured histograms of sab for SH light from both
the nonlinear medium and the BBO [shown in Fig. 4(d) in
yellow and blue, respectively] closely match. The excellent
agreement between the two histograms demonstrates that the
conductance values measured for SH light generated in the
medium are primarily determined by the sample’s scattering
properties. Remarkably, they can be accurately described by
mesoscopic transport theory, despite both mesoscopic corre-
lations and SH light build up within the same ultrathin region.

In summary, we have experimentally measured the inten-
sity fluctuations of fundamental and SH light generated by
a nonlinear disordered medium. We observed distinct devia-

tions from the predictions of the uncorrelated wave model in
the histograms of SH speckle intensity and total transmission.
The measured deviations are well described by mesoscopic
transport model, providing clear evidence of mesoscopic
transport in a nonlinear disordered medium. Moreover, the
measured conductance of g = 7.1 is exceptionally low for
an isotropically scattering 3D medium. We motivated the de-
scription of the nonlinear input-output response in terms of
the effective number g of open channels by observing that
the SH light is mainly generated within the initial layers of
the nonlinear disordered medium. We validated this approach
by comparing the speckle intensity of SH light generated
within the nonlinear medium and externally with a BBO crys-
tal, obtaining similar fluctuation statistics. Nevertheless, it is
crucial to emphasize that our nonlinear disordered medium
differs fundamentally from a linear scattering material. Ran-
dom quasi-phase-matching, in fact, remains a critical feature
of the system. Although most of the SH generation occurs
within the first layers of the medium, the extreme scattering
conditions cause multiple scattering events to take place inside
this ultrathin region. Therefore, combining random quasi-
phase-matching with the low conductance values measured in
this work, we achieve efficient broadband SH generation in an
extremely thin medium, regardless of temperature, polariza-
tion, and wavelength. Indeed, our results show SH speckles
with intensities more than 20 times stronger than the aver-
age, occurring with a probability two orders of magnitude
higher than that of uncorrelated light. The increased prob-
ability of generating higher SH intensity condensed in few
speckles finds useful applications in broadband SH generation
from nonlinear disordered media. Additionally, achieving a
low number of open transmission modes has also significant
implications for nonlinear wavefront shaping, as the long-
range correlations enhance the achievable control [36,37]. The
deviations from the uncorrelated wave model indicate that,
when the fundamental light is strongly focused to achieve a
higher SH signal, the wave propagation through the complex
nonlinear medium cannot be described by a fully random non-
linear input-output response [33]. It is therefore essential to
consider this effect for photonic computing applications that
aim to exploit randomness to achieve large-scale nonlinear
operations [35].
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This document provides supplementary information for the article “Mesoscopic Light Transport in Nonlinear Dis-
ordered Media”. In Sec. S1, we present the procedure for fabricating the nonlinear disordered medium. In Sec. S2,
we show the fluctuations statistics of the fundamental light, varying the distance between the focal plane of the input
beam and the entry facet of the medium. Section S3 reports the detailed data analysis. In Secs. S4 and S5, we demon-
strate that our analysis is robust to sample inhomogeneities, power and temperature fluctuations, and that, thanks
to a narrowband spectral filter, the broad laser linewidth does not affect the intensity fluctuations. In Sec. S6, we
present the theoretical expressions for the probability density functions according to mesoscopic transport theory [1],
while in Sec. S7 we describe the procedure used to fit the experimental data. In Sec. S8 we report the measurements
of the sample transmittance, yielding the experimental values of the transport mean free path and the minimum con-
ductance. Finally, in Sec. S9, we derive the equations that govern the propagation of the linear and second-harmonic
(SH) mean intensities through the disordered slab.

S1. FABRICATION PROCEDURE

The nonlinear disordered medium used is a slab, assembled starting from crystalline LiNbO3 nanoparticles, pro-
duced by solvothermal synthesis [2]. The precursor oxides, Nb2O5 (HC Starck, 99.92%) and LiOH (Aldrich, 98%),
are dispersed in a mixture of ethylene glycol and distilled water. Following ultrasonication, the suspension is trans-
ferred into a polytetrafluoroethylene-coated stainless steel acid digestion bomb (model PA4748, volume 120ml, Parr
Instrument Company) and treated hydrothermally at 250◦C for 70 hours. The reaction product is then washed
with water via centrifugation. This chemical synthesis method allows precise control over the size distribution of
the nanoparticles, which range from 100 to 400 nm in size, have a linear refractive index of approximately 2.3, and
exhibit negligible absorption at visible wavelengths. These nanoparticles feature a non-centrosymmetric hexagonal
R3c crystal structure that enables second-harmonic generation. To form the slabs, we deposit the nanoparticles by
drop deposition and allow solvent evaporation. An aqueous suspension of the LiNbO3 nanoparticles is deposited onto
a glass substrate framed with hydrophilic tape. The sample is placed on a horizontal substrate holder and maintained
at 0 °C for 24 hours. An optical microscope image of the resulting slab is reported in Fig. S1a. The white opaque
color is typical of multiple scattering sample that have a thickness much larger than the transport mean free path.
The porous structure composed by randomly oriented nanoparticles and air gaps is shown in Fig. S1b, measured

1 μm 1 mm 

FIG. S1. Nonlinear disordered sample. (a) Optical image (in transmission configuration) of the disordered sample. (b) Scanning
electronic microscope image of the slab, showing a typical arrangement of the nanoparticles.
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FIG. S2. Thickness map of the sample, measured with a profilometer. (a) Thickness map of the entire sample. (b) Thickness
map of the area of 300× 300µm2, used for the mesoscopic transport analysis. (c) Thickness profile along the blue dashed line.

FIG. S3. Intensity fluctuations statistics of fundamental light (λ = 976 nm) generated within the nonlinear disordered medium
for varying distance ∆z = {20µm, 10µm, 0µm} between the focal plane of the input lens and the entry facet of the nonlinear
disordered medium. (a-c) Histograms of normalized speckle intensity at distance (a) ∆z = 20µm, (b) ∆z = 10µm, (c)
∆z = 0µm. Dashed lines represent a negative exponential P (sab) = − exp(sab) (gray). Solid lines report the mesoscopic
transport probability distribution Pg(sab), with conductance values (a) g = 16.9 (violet), (b) g = 14.8 and (c) g = 13.8. (d-f)
Histograms of normalized total transmission at distance (d) ∆z = 20µm, (e) ∆z = 10µm, (f) ∆z = 0µm. Solid lines are the
mesoscopic probability density functions Pg(sa) with the same conductance values (d) g = 16.9, (e) g = 14.8 and (f) g = 13.8.

via scanning electron microscopy (SEM). By controlling the amount of deposited nanoparticles solution, we can tune
the thickness of the slab. We measured the thickness of the sample used for the experiments in the main text by
profilometry. The resulting thickness map is shown in Fig. S2a.

S2. FUNDAMENTAL INTENSITY FLUCTUATIONS FOR DIFFERENT ∆z

In Fig. S3, we show the normalized speckle intensity and normalized total transmission histograms for varying
distance ∆z between the focal plane of the input lens and the entry facet of the nonlinear disordered medium. The
distances ∆z = {20µm, 10µm, 0µm} correspond to those used in the measurements of SH light generated within
the nonlinear disordered medium (Fig. 3 in the main text).
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FIG. S4. Total transmission fluctuations over different positions of the sample. The slow oscillations result from the thickness
gradient and fluctuations of the laser power and the room temperature. (a) Fluctuation over the entire dataset, and (b) close
up on 1000 steps. The orange line is the result of a moving average over 100 steps.

S3. DATA ANALYSIS PROCEDURE

We collected the data by measuring the speckle patterns (T̃ab,i, where b are the output modes and a the fixed input
modes) at i = 1 . . . N = 100× 100 different sample positions. For each measurement, we moved the sample by 3µm
using a motorized stage. The thickness of the total scanned area of 300×300µm2, measured by profilometry, is shown
in Fig. S2b. The thickness along the blue dashed line in Fig. S2b is presented in Fig. S2c. Due to the inhomogeneous
thickness, fluctuations of the room temperature, and laser power instability, the total transmission (TTi, i.e., the sum
of all the intensities on the camera pixels) exhibited slow oscillations, as shown in Fig. S4. These oscillations have a
much longer length scale (periodicity of 200 steps, i.e., 600µm) compared to the sub-micrometer statistical variations
arising from mesoscopic effects. Thus, we applied a moving average with a window size of 100 steps to eliminate their
influence. This filtered total transmission TTfilt.

i is shown in orange in Fig. S4. We normalized each speckle pattern
by the corresponding value of filtered total transmission (similar approach to Ref. [3])

Tab,i = T̃ab,i
⟨TTi⟩
TTfilt.

i

, (S1)

where the angle brackets stands for the average over the N realizations of disorder. We then extracted the ensemble
average ⟨Tab⟩ of the speckle patterns, as

⟨Tab⟩ =
1

N

N∑
i=1

Tab,i . (S2)

For the rest of the analysis, we considered only the central area (average intensity larger than 75% of the maximum)
of the measured images to minimize the effect of the background. For each collected camera image, we subtracted
the background and normalized the speckle patterns by the average intensity:

sab,i =
Tab,i

⟨Tab⟩
. (S3)

We then collected all N realizations into a single vector, to obtain the histogram of sab. Finally, by summing all the
output modes, we derived the normalized total transmission

sa,i =
∑
b

sab,i (S4)

and collected the N realizations into the same vector sa.

S4. MOVING AVERAGE WINDOW

In Sec. S3 we showed that, in order to eliminate the oscillations caused by inhomogeneous thickness, fluctuations
of the room temperature, and laser power instability, we applied a moving average with a window size of 100 steps.
We selected this window to minimize its influence on the fluctuations of the total transmission caused by mesoscopic
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FIG. S5. Total transmission oscillations over different positions of the sample, resulting from the thicknesses gradient, fluctu-
ations of the laser power and of the room temperature. (a-e) Oscillations over the entire dataset, and (f-j) close up on 1000
steps. The blue lines are the result of a moving average over a different number of steps (i.e., moving average window : (a,f)
10, (b,g), 25, (c,h) 50, (d,i) 75, (e,j) 100). Note that in the manuscript we used a window size of 100.
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FIG. S6. Histograms of (a) normalized total transmission sa and (b) normalized speckle intensity sab for varying moving
average window sizes.

correlations. That said, the choice of the moving average window does not significantly influence the analysis of the
fluctuations. To validate this, we analyzed the data using different windows (window size = {10, 25, 50, 75, 100}).
The smoothed time traces are shown in Fig. S5, and the corresponding histograms are plotted in Fig. S6. As seen
in Fig. S6, the results remain largely independent of the window choice. Notably, the normalized speckle intensity
remains essentially unchanged, indicating that the moving average window only needs to be selected carefully to avoid
introducing any artificial disagreement between the conductance values derived from the analysis of total transmission
and speckle intensity.

S5. IMPACT OF BROAD SPECTRAL LINEWIDTH

A broad spectral linewidth results in the superposition of different speckle patterns, reducing the speckle contrast.
To avoid this effect, we introduce a narrowband spectral filter (Thorlabs FBH05488-1, 1 nm bandwidth), that allows
us to measure a single speckle pattern per sample position. In this section, to show the impact of the broad spectral
linewidth, we present measurements of the normalized speckle intensity for the SH light generated within the medium,
both with and without the spectral filter. For this purpose, we used an input lens with lower NA (NA = 0.1), ensuring
a Rayleigh distribution of the normalized speckle intensity. With the spectral filter—thus isolating a single speckle
pattern per position—we recover the Rayleigh distribution, as shown in Fig. S7a. Without the spectral filter, the
superposition of uncorrelated speckle patterns becomes evident. In this case, the probability distribution follows [4]

P (sab) =
NNsN−1

ab

Γ(N)
e−Nsab , (S5)

where N is the number of uncorrelated speckle patterns, and Γ is the gamma function, the extension of the factorial
function to complex numbers. Fitting the resulting histogram with this distribution, we estimate the number of
superposed speckles to be N = 1.36. The fitted normalized speckle intensity is shown in Fig. S7b.

S6. THEORETICAL EXPRESSIONS OF PROBABILITY DENSITY FUNCTIONS

For clarity, we present the expressions for Pg(sa) and Pg(sab) used to fit the histograms, as derived in Ref. [1]. The
probability density function Pg(sa) for the normalized total transmission is

Pg(sa) =

∫ i∞

−i∞

dx

2πi
exp [xsa −Ψ(x)] . (S6)

For broad Gaussian illumination (waist w larger than than the sample thickness L), it was proved that the function
Ψ(x) takes the form

Ψ(x) = g

∫ 1

0

dy

y

[
log

(√
1 +

xy

g
+

√
xy

g

)]2
, (S7)
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FIG. S7. Impact of broad linewidth on the normalized speckle statistics of SH light generated within the nonlinear disordered
medium. (a) When the generated light is filtered using a 1 nm bandpass spectral filter, we observe Rayleigh distribution. (b)
Without the spectral filter, a modified distribution (reported in the legend) emerges due to the superposition of uncorrelated
speckle patterns. In both the measurements, we focused the input light with a low NA = 0.1 lens.

where g = k2w2ℓt/3L. We note that this definition of g, specific for Gaussian beam, leads to the following relation
between the second moment of the normalized total transmission and the conductance g:

⟨s2a⟩ = 1 +
1

3g
. (S8)

For a Gaussian beam with a waist significantly smaller than the slab thickness, an analytical expression for Pg(sa) is not
available. However, as argued in Ref. [5], the first cumulants are expected to remain nearly unchanged, provided that
the parameter g is properly computed for this specific geometry. This is why we use Eq. (S7) to fit our experimental
data, with g as the only fitting parameter.

Furthermore, the probability density function Pg(sab) for the normalized speckle intensity is given by

Pg(sab) =

∫ ∞

0

dsaPg(sa)
e−sab/sa

sa
. (S9)

The latter expression reveals that the speckle intensity distribution differs from the Rayleigh law, P (sab) = e−sab ,
only if the normalized total transmission sa significantly deviates from its mean ⟨sa⟩ = 1.

S7. FIT PROCEDURE

In the main text, we used the probability distributions presented in Eqs. (S6, S7, S9) to fit the measured histograms
of normalized speckle intensity and normalized total transmission. Specifically, we adopted a method in which the two
histograms are fitted simultaneously. To implement this, we defined the cost function of the optimization algorithm
as the combined sum of squares error SSE of the two curves:

SSE =

N∑
n

[
P (sa)−m(sa)

]
+

N∑
n

[
P (sab)−m(sab)

]
, (S10)

where P (sa) and P (sab) are the analytical distributions, m(sa) and m(sab) are the measured probability distributions,
and N are the number of data values present in the histograms. We addressed the goodness of the fit with three
metrics: the sum of squares errors (sse), the R2, and the root mean square error (rmse). The metrics for the fit of the
fundamental intensity fluctuations (see Fig. S3) are reported in Table I. Those for the fit of the intensity fluctuations
of SH light generated within the disordered medium (see Fig. 3 in the main text) are reported in Table II.

S8. TRANSPORT MEAN FREE PATH

We characterized the transport mean free path ℓt by measuring the scaling of the total transmission with the
sample thickness. As a glass substrate is present at the output interface, it is necessary to consider different boundary
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Fit of fundamental normalized speckle intensity

∆z∆z∆z ggg ssessesse R2R2R2 rmsermsermse

20µm 16.9 4.94 0.97 0.33

10µm 14.8 3.81 0.96 0.32

0µm 13.8 7.49 0.95 0.43

Fit of fundamental normalized total transmission

∆z∆z∆z ggg ssessesse R2R2R2 rmsermsermse

20µm 16.9 3.86 0.90 0.39

10µm 14.8 1.40 0.93 0.25

0µm 13.8 1.00 0.95 0.20

TABLE I. Fundamental light: Tables reporting the conductance g and the figures of merit (sum of squares errors sse, R2,
and root mean square error rmse) obtained from the fit of the normalized total transmission and normalized speckle intensity
distributions for various distances ∆z of the focal plane from the input facet of the disordered medium.

Fit of SH normalized speckle intensity

∆z∆z∆z ggg ssessesse R2R2R2 rmsermsermse

20µm 13.1 6.05 0.97 0.38

10µm 10.2 12.87 0.92 0.53

0µm 7.1 4.48 0.96 0.34

Fit of SH normalized total transmission

∆z∆z∆z ggg ssessesse R2R2R2 rmsermsermse

20µm 13.1 1.32 0.94 0.23

10µm 10.2 0.80 0.93 0.19

0µm 7.1 3.05 0.90 0.41

TABLE II. SH light: Tables reporting the conductance g and the figures of merit (sum of squares errors sse, R2, and root mean
square error rmse) obtained from the fit of the normalized total transmission and normalized speckle intensity distributions
for various distances ∆z of the focal plane from the input facet of the disordered medium.

conditions for the two interfaces. In that case, the relation between thickness and transport mean free path in absence
of absorption follows [6]

T =
ℓt + z0,1

L+ z0,1 + z0,2
(S11)

where T is the transmittance, L is the local thickness of the sample, z0,1 the extrapolation length at the input interface
and z0,2 is the same quantity at the output interface. The expression of the extrapolation lengths are given by [7]

z0,i =
2

3

(
1 +Ri

1−Ri

)
ℓt ≡ βiℓt , (S12)

where R1 and R2 are the mean internal reflectivities at the input and output interfaces respectively given by

Ri =
3Bi + 2Ai

3Bi − 2Ai + 2
(S13)
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with

Ai =

∫ π
2

0

Ri(θ) sin θ cos θdθ, (S14)

Bi =

∫ π
2

0

Ri(θ) sin θ cos
2 θdθ. (S15)

Here, θ is the angle between the normal to the interface and the light direction in the disordered medium. The
coefficients Ri are the Fresnel power reflection coefficients averaged over the polarization and given by

Ri(θ) =
|ri,⊥(θ)|2 + |ri,∥(θ)|2

2
, (S16)

For the input interface, the reflection coefficients in amplitude for light polarized perpendicular and parallel to the
plane of incidence are respectively given by

r1,⊥ = reo,⊥ =
ne cos θ − no

√
1−

(
ne

no
sin θ

)2

ne cos θ + no

√
1−

(
ne

no
sin θ

)2
, (S17)

r1,∥ = reo,∥ =
ne

√
1−

(
ne

no
sin θ

)2

− no cos θ

ne

√
1−

(
ne

no
sin θ

)2

+ no cos θ

, (S18)

where no = 1 is the refractive index of the output medium (air) while ne is the real part of the effective refractive
index of the disordered medium, which will be characterized more precisely in the following.

For the output interface, the Fresnel reflection coefficients in amplitude are given by

r2,⊥ = reg,⊥ +
teg,⊥tge,⊥rgo,⊥

1− rge,⊥rgo,⊥ exp(2iϕ)
, (S19)

r2,∥ = reg,∥ +
teg,∥tge,∥rgo,∥

1− rge,∥rgo,∥ exp(2iϕ)
, (S20)

with the subscripts e, g and o denoting the disordered medium, the glass and the output medium respectively. As an
example, reg,⊥ is the reflection coefficient in amplitude for light coming from the disordered medium and propagating
towards the glass substrate with perpendicular polarization. The dephasing within the substrate is ϕ = (ngk0d)/ cos θ

′,
where ng is the refractive index of the glass (set to 1.5 for the numerical application), θ′ is the angle to the normal

direction in the glass given by cos θ′ =
√

1− n2
e/n

2
g sin

2 θ, and d = 0.97mm is the thickness of the glass. In addition,

the transmission coefficients in amplitude are teg,⊥ = 1 + reg,⊥ and teg,∥ = (ne/ng)(1− reg,∥).
In order to estimate the values of β1 and β2, a missing parameter is ne. The Maxwell-Garnett and Bruggeman

models have been tested to estimate ne and both give similar results. For the sake of simplicity, we have opted for
the Maxwell-Garnett model which gives

n2
e = n2

h

n2
p + 2n2

h + 2f(n2
p − n2

h)

n2
p + 2n2

h − f(n2
p − n2

h)
, (S21)

where we remind that nh = 1 and np is the index of refraction of the lithium niobate particles. Since the latter is
a birefringent material, we have chosen an average value given by np = (2nord + next)/3. For the estimate of the
ordinary nord and extraordinary next indices, we have used the formula given in Ref. [8]. We calculate the filling
fraction f of the particles by comparing the mass m of the sample, and its volume V , estimated from the profilometer
map (Fig. S8a):

f =
m

V ρ
≈ 0.55 , (S22)

with ρ the density of lithium niobate. Note that the wavelengths available for the characterization of the transport
mean free path were slightly different from those used in the analysis of the intensity fluctuations. Nevertheless, the
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FIG. S8. Thickness and inverse transmittance maps of the sample used for the characterization of the transport mean free
path. (a) Thickness map measured with a profilometer. (b, c) Inverse transmittance measured at (b) 950 nm and (c) 450 nm.
The circles represent the area used for the analysis of ℓt.

FIG. S9. (a) Experimental setup for the characterization of the transmittance. The laser light is focused onto a nonlinear
disordered medium. Then, the scattered light is collected by an integrating sphere, and directed towards a detector. L: lens;
NLDM: nonlinear disordered medium; IS: integrating sphere; DET: detector. (b) Measured relation between thickness and
inverse transmittance at 450 nm and 950 nm. The dots and the errorbars represent the mean values and the standard deviation,
respectively. From the slope of the linear fit (solid lines), we extract the transport mean free paths ℓt according to Eq. (S25).

shifts are small enough to have no significant impact on transport mean free path estimates beyond a few percent.
We obtain

ne(λ = 950 nm) = 1.53 ; β1(λ = 950 nm) = 2.58 ; β2(λ = 950 nm) = 2.33, (S23)

ne(λ = 450 nm) = 1.57 ; β1(λ = 450 nm) = 2.79 ; β2(λ = 450 nm) = 2.41. (S24)

Given β1 and β2, we recast Eq. (S11) to highlight the linear relation between the inverse transmission and the
transport mean free path

1

T
=

L

ℓt(1 + β1)
+

β1 + β2

1 + β1
, (S25)

which has ℓt as the only free parameter. Therefore, we can derive ℓt from the slope of the relation between the local
thickness of the material L and the inverse transmittance. To this aim, we experimentally measured the thickness map
by profilometry (see Fig. S8a), and the transmittance of the disordered sample with the experimental setup sketched
in Fig. S9. The laser light at the designed wavelength is focused on the nonlinear disordered medium (Fig. S9a).
The scattered light is collected with an integrating sphere, and then guided with a multimode fiber to a powermeter.
We subtracted the background intensity (due to stray light reaching the integrating sphere), and we normalized the
measured transmittance values with the intensity transmitted through the bare glass coverslip. By moving the sample
in the plane orthogonal to the illuminating beam, we obtained the 2D map of the sample inverse transmittance at the
fundamental and SH wavelength (reported in Figs. S8b and c, respectively). By matching the profilometer and the
inverse transmittance map, we obtain the relation between the thickness of the sample and the inverse transmittance



10

(Fig. S9b). The areas evaluated for the fit are highlighted with circles in Figs. S8b, c. Note that, due to the lower
power available at the SH wavelength, the transmittance measurements at high thicknesses are strongly affected by
noise, thus we did not include them in the analysis of the transport mean free path.

We fit the measured data with Eq. (S25), resulting in the following values of transport mean free paths:

• ℓt = 674 nm at λ = 950 nm,

• ℓt = 147 nm at λ = 450 nm.

The transport mean free path is relevant for the characterization of the mesoscopic effects, because it limits the
minimum measurable conductance. In fact, the light incident on the slab does not contribute to the long-range
correlations before it is scattered at least once, linking the intensity fluctuations to the scattering mean free path [9].
Combining Eq. (S8), valid for Gaussian illumination, with the heuristic expression of the intensity fluctuation C2 =〈
s2a
〉
− 1 established in Ref. [10] for small beam diameter, we obtain the following expression of the conductance g:

g =
1

3

1

⟨s2a⟩ − 1
≈ 2

3

(
8

9

)2
[1 + (9/32)w/ℓt]

2

1 + (3/16)w/lt
(kℓt)

2, (S26)

where w is the input beam width. For w → 0 we then obtain the minimum measurable conductance gmin, which in
our case is

• gmin(950 nm) ≈ 10.5,

• gmin(450 nm) ≈ 2.22.

Assuming an input width resulting by the limited NA = 0.5 of our experimental setup (w = λ/2NA = λ) we obtain

• gw=λ(950 nm) ≈ 16.2,

• gw=λ(450 nm) ≈ 4.88.

which are closer to the values derived from the fluctuations analysis. It is noteworthy that, to obtain a conductance
value of g = 7.1 in Eq. (S26), we should consider an input width of w = 810 nm, which corresponds well to the
transverse width of the source intensity profile reported in the main text (Fig. 4a on the left).

S9. TRANSPORT MODELS IN THE DIFFUSIVE REGIME

To compare the linear propagation of light at frequency 2ω with the propagation of SH light generated within the
disordered medium at the same frequency, we compute the mean intensity for both cases, using radiative transport
models. The model for SH light, detailed in Ref. [11], has been shown to quantitatively match simulations of the
microscopic wave equation that incorporate the SH generation process. Here we solve both propagation models in the
diffusive limit where the transport mean free path is much smaller than the medium thickness, using focused beams
for illumination.

We consider a disordered slab translation-invariant in x and y directions and of thickness L in direction z. Scattering
is supposed to be isotropic such that the scattering and transport mean-free paths are equals (i.e., ℓs = ℓt and
anisotropy factor g = 0) and there is no absorption. When this slab is illuminated by a Gaussian beam from z < 0 at
a frequency ω, the mean ballistic intensity at depth z ≥ 0 and frequency ω takes the following expression:

Ib(R, z, ω) = I0 exp

[
−2R2

w2
− z

ℓs(ω)

]
, (S27)

where I0 is the intensity of the incident beam of waist w, and R = (x, y) is the transverse coordinate, with R =√
x2 + y2. This ballistic intensity is a source term for the diffuse intensity Id which obeys the stationary diffusion

equation

−ℓs(ω)
2

3
∇2Id(R, z, ω) = Ib(R, z, ω) (S28)
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with the boundary conditions

Id(R, z = 0, ω)− z0(ω)
∂Id
∂z

(R, z = 0, ω) = 0, (S29)

Id(R, z = L, ω) + z0(ω)
∂Id
∂z

(R, z = L, ω) = 0, (S30)

where z0(ω) = 2ℓs(ω)/3 is the extrapolation length. This set of equations can be easily solved applying a Fourier
transform with respect to R. In particular, the Green function, solution of

−
(

∂2

∂z2
− q2

)
Gd(q, z, z

′, ω) = δ(z − z′) (S31)

with

Gd(q, z = 0, z′, ω)− z0(ω)
∂Gd

∂z
(q, z = 0, z′, ω) = 0, (S32)

Gd(q, z = L, z′, ω) + z0(ω)
∂Gd

∂z
(q, z = L, z′, ω) = 0, (S33)

is given by

Gd(q, z, z
′, ω) =


1

q

[sinh(qz) + qz0(ω) cosh(qz)] [sinh{q(L− z′)}+ qz0(ω) cosh{q(L− z′)}]
[1 + q2z0(ω)2] sinh(qL) + 2qz0(ω) cosh(qL)

for z < z′,

1

q

[sinh(qz′) + qz0(ω) cosh(qz
′)] [sinh{q(L− z)}+ qz0(ω) cosh{q(L− z)}]

[1 + q2z0(ω)2] sinh(qL) + 2qz0(ω) cosh(qL)
for z > z′.

(S34)

From this expression, the diffuse intensity is given by

Id(q, z, ω) =
3

ℓs(ω)2

∫ L

0

dz′Gd(q, z, z
′, ω)Ib(q, z

′, ω), (S35)

where Ib(q, z
′, ω) is the Fourier transform of Ib(R, z′, ω). We can write it explicitly as

Id(q, z, ω) = I0
3πw2

2ℓs(ω)2
e−q2w2/8Ḡd(q, z, ω), (S36)

where the integrated Green’s function, Ḡd(q, z, ω) =
∫ L

0
dz′Gd(q, z, z

′, ω)e−z′/ℓs(ω), is given by

Ḡd(q, z, ω) =
ls(ω)

2

q2ls(ω)2 − 1

[
e−z/ls(ω)

−e−L/ls(ω)[2qls(ω) cosh(qz) + 3 sinh(qz)] + 10qls(ω) cosh{q(L− z)}+ 15 sinh{q(L− z)}
12qls(ω) cosh(qL) + [9 + 4q2ls(ω)2] sinh(qL)

]
. (S37)

Taking the inverse Fourier transform, we obtain

Id(R, z, ω) = I0
3w3

4ℓs(ω)2

∫ ∞

0

dqe−q2w2/8Ḡd(q, z, ω)qJ0(qR), (S38)

where J0 is the Bessel function of the first kind of order zero. Finally, the total mean intensity for linear propagation
at frequency ω reads

Ilin(R, z, ω) = Ib(R, z, ω) + Id(R, z, ω). (S39)

The source term represented in the left part of Fig. 4c of the main text corresponds to Ib(R, z, 2ω), while the total
intensity profile shown in the right part is Ilin(R, z, 2ω), evaluated at x = 0. Parameters of the calculation are chosen
close to the experimental values: the waist w ≃ 0.41µm of the incident beam is such that its FWHM,

√
2 ln(2)w, is

equal to (λF /2)/2NA with λF = 0.976µm and NA = 0.5; the mean free path is ℓs(2ω) = 0.2µm; the sample thickness
is L = 10µm.



12

Regarding SH light propagating at frequency 2ω, it is possible to show that the diffuse mean intensity still verifies a
diffusion equation, with a source term that involves the square of the mean intensity of light propagating at frequency
ω. For isotropic scattering, we have [11]

−ℓs(2ω)

3
∇2Id(R, z, 2ω) = M0(R, z, ω), (S40)

with

M0(R, z, ω) =
α

4π
Ilin(R, z, ω)2. (S41)

Here α is a parameter proportional in particular to the SH susceptibility χ(2), whose explicit value does not affect the
profile of the SH light propagation. With the same boundary conditions as in the fundamental case, the solution is
given by

Id(R, z, 2ω) =
3

ℓs(2ω)

∫ L

0

dz′
∫∫

dR′ Gd(R−R′, z, z′, 2ω)M0(R
′, z′, ω), (S42)

where Gd(R, z, z′, ω) is the inverse Fourier transform of the expression given in Eq. (S34). The source term shown
in the left part of Fig. 4a of the main text corresponds to Eq. (S41) evaluated at x = 0, with w ≃ 0.83µm and
ℓs(ω) = 0.7µm. On the other hand, the right part of Fig. 4a shows the diffusive SH intensity given by Eq. (S42),
computed with the values of the parameters mentioned above.
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[9] F. Scheffold, W. Härtl, G. Maret, and E. Matijević, Observation of long-range correlations in temporal intensity fluctuations

of light, Phys. Rev. B 56, 10942 (1997).
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