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 A B S T R A C T

We study the scattering of elastic waves by a periodic array of cavities buried in an elastic half-
space. This configuration is relevant in seismology, where shallow voids can locally amplify 
ground motion. Building on homogenized interface models developed for infinite media, we 
extend the approach to account for the presence of a stress-free surface. The resulting model 
yields an analytical solution to the 2D elastodynamic problem for incident longitudinal L and 
transverse T waves. A semi-analytical multimodal solution is used for validation. The analysis 
reveals the conditions under which resonances occur in the soil layer between the cavity tops 
and the surface, with particular emphasis on the low-frequency resonance that dominates in 
seismic contexts. The model identifies the key parameters governing resonance and provides 
insights into the transition from infinite to finite cavity arrays. It offers a simplified yet accurate 
framework for assessing site-specific seismic amplification.

. Introduction

The study of imperfect interfaces in elastic media has long attracted attention, both for its theoretical interest and its 
ractical applications in nondestructive evaluation, seismology, and layered composite analysis [1–4]. Among the most emblematic 
onfigurations, periodic arrays of thin cracks or voids embedded in a homogeneous elastic solid have served as canonical models to 
evelop effective models in terms of transmission conditions capable of capturing complex scattering effects in a simplified form. A 
ajor step in this direction was achieved by Achenbach and co-workers, who investigated the scattering properties in many situations 
ncluding equally spaced collinear cracks [5,6], inclined cracks [7] and spherical cavities [8]; a review is presented in [9]. Beyond 
heir practical use in engineering, such models have proven essential for understanding the interaction between elastic waves and 
eriodic microstructures.
When such periodic structures are embedded in a half-space rather than in an unbounded medium, the presence of the free 

urface introduces new and significant physical phenomena. In particular, buried defects can interact with incident surface or body 
aves in ways that generate complex scattering patterns, amplification effects, and resonances. These effects are especially relevant 
n seismology, where the elastic wavefield is strongly influenced by the subsurface geometry. This configuration is of both theoretical 
nd practical importance, as it can lead to localized energy trapping and potentially strong surface amplifications. Such behavior was 
ocumented in a detailed historical study of the 1930 earthquake in southern Italy, specifically in the town of Rionero in Vulture, 
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A. Maurel et al. Wave Motion 141 (2026) 103666 
where highly nonuniform seismic damage was observed — damage that could not be explained by building typology alone [10,11]. 
A systematic correlation was found between the most severely affected areas and the presence of dense networks of man-made 
underground cavities, with resonance effects suspected when the soil cover above the voids was only a few meters thick. These 
observations highlight the need for simple yet accurate predictive models capable of capturing the key parameters that control 
such resonances, particularly in the low-frequency range relevant to urban seismic risk. However, most studies to date consider 
only the effect of a single buried cavity [12–16]. A noticeable exception is the study by [17], which compares the effects of one 
and two cavities, and shows that amplification nearly doubles when moving from a single cavity to a pair. This suggests that the 
single-cavity case is unlikely to be representative of a cavity network, and that collective effects in such periodic systems must be 
addressed specifically. These collective effects, arising from the periodic arrangement of subsurface heterogeneities, are now well 
recognized in the broader field of wave physics. In particular, the past decade has seen the emergence of seismic metamaterials, where 
artificially structured soils or periodic arrays of boreholes are designed to control the propagation of seismic waves through Bragg 
or local resonance mechanisms [18–21]. 

The present work aims to provide a physically grounded model for such buried cavity systems by adapting the homogenized 
imperfect interface approach developed in [22] for infinite media to the case of a periodic array of cavities buried in an elastic half-
space. We derive an analytical solution to the 2D elastodynamic scattering problem for both longitudinal and transverse incident 
waves, using a generalized transmission condition to represent the cavity layer. The proposed model allows us to identify the 
key geometric and mechanical parameters controlling the resonance frequencies and amplitudes, including not only the burial 
depth but also the density and cavity shape of the array. To assess the validity of this homogenized approach, we construct a 
reference numerical solution based on a semi-analytical multimodal formulation, detailed in Section 2 alongside the formulation 
of the effective model. Section 3 presents a systematic comparison between numerics and effective model and offers a broader 
discussion of the resonance mechanisms at play. In particular, we investigate the extent to which results obtained for an infinite 
periodic system can inform the understanding of more realistic configurations involving a finite number of cavities. Finally, Section 4 
focuses on the low-frequency resonance mode – of primary importance for seismic applications – providing explicit formulas and 
scaling laws for its frequency and amplitude, and illustrating the potential of the model for practical site response assessment in the 
presence of shallow subsurface heterogeneities.

2. Configuration of interest

The configuration of interest is shown in Fig.  1. We consider a two-dimensional homogeneous elastic medium characterized by 
its Lamé coefficients (𝜆, 𝜇) and mass density 𝜌, occupying the half-space 𝑧 ∈ (−∞, 0), except in a region 𝑧 ∈ (−𝑑 − 𝑎,−𝑑), which 
contains an array of cavities, or voids. This array is perfectly periodic with period ℎ, and the cavities have characteristic dimensions 
𝑒 and 𝑎. In the following, we denote 𝑑𝑎 = 𝑑 + 𝑎, and define the array density as 𝜑 = 𝑒∕ℎ. The study focuses on the scattering of 
incident longitudinal (L) and transverse (T) waves.

2.1. Governing equations for the direct and effective problems

We consider the two-dimensional plane strain equations of linear elastodynamics in the (𝑥, 𝑧) plane, within the lower half-space 
defined by 𝑥 ∈ (−∞,+∞) and 𝑧 ∈ (−∞, 0). The governing equations for the displacement vector field 𝐮 = (𝑢x, 𝑢z)𝑇  are given by: 

div𝝈 + 𝜌𝜔2𝐮 = 𝟎, 𝝈 = 2𝜇𝜺 + 𝜆tr(𝜺)I, 𝜺 = 1
2
(

∇𝐮 + (∇𝐮)𝑇
)

, (1)

where 𝝈 is the stress tensor, 𝜺 is the strain tensor, 𝜔 denotes the angular frequency, 𝜌 is the mass density, and (𝜆, 𝜇) are the Lamé 
parameters. The identity tensor is denoted by I, and tr(𝜺) denotes the trace of the strain tensor. The components of the stress tensor 
𝝈 and the displacement vector 𝐮 are written explicitly as:

𝝈 =
(

𝜎𝑥𝑥 𝜎𝑥𝑧
𝜎𝑥𝑧 𝜎𝑧𝑧

)

, 𝐮 =
(

𝑢x
𝑢z

)

.

These equations are subject to stress-free boundary conditions at the surface 𝑧 = 0, namely: 
𝝈𝑥𝑧(𝑥, 0) = 𝝈𝑧𝑧(𝑥, 0) = 0. (2)

2.1.1. The direct problem
In the absence of cavities – that is, in a homogeneous elastic half-space – the problem defined by Eqs. (1)–(2) admits an explicit 

solution. This is the case, for instance, when the source consists of an incident plane L- or T-wave; see, e.g., Chapter 5 in [23]. 
This solution is referred to as the free-field. When cavities are present, however, the direct problem must be solved in the region 
𝑧 ∈ (−𝑑𝑎,−𝑑), which contains the cavities. In this case, the boundary conditions read: 

𝝈 ⋅ 𝒏 = 0, on the boundaries of the cavities, (3)

where 𝒏 denotes the unit normal vector to the cavity boundaries. The direct problem defined by (1)–(3) does not admit closed 
form solution and must therefore be solved numerically. In Section 2.3, we present the multimodal method used to compute the 
reference, numerical, solutions.
2 
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Fig. 1.  Configuration of interest: Scattering of incident longitudinal (𝐴incL ) and transverse (𝐴incT ) waves by a periodic array of buried cavities 
in an elastic half-space in two dimensions. In the effective problem, the region of the cavity array is replaced by an imperfect interface with 
effective jump conditions (4).

2.1.2. The effective problem
The effective problem consists in solving (1) and (2), as in the direct problem, but with the key difference that the cavity layer 

𝑧 ∈ (−𝑑𝑎,−𝑑) is replaced by effective, imperfect interface. Indeed, as shown by [22], the effect of such an array can be rigorously 
encapsulated by a set of effective jump conditions, leading to the following homogenized interface model: 

[

𝑢x
]

= ℎ
⟨

𝜕𝑢x
𝜕𝑧

⟩

+ (ℎ − 𝑎)
𝜕 ⟨𝑢z⟩
𝜕𝑥

,
[

𝑢z
]

= ℎ𝑥
𝜕 ⟨𝑢x⟩
𝜕𝑥

+ ℎ𝑧

⟨

𝜕𝑢z
𝜕𝑧

⟩

,

[

𝝈𝑥𝑧
]

= (1 − 𝜑)𝑎
⟨

𝜕𝝈𝑥𝑧
𝜕𝑧

⟩

− 𝜇ℎ 𝜕
𝜕𝑥

(

𝑥
𝜕 ⟨𝑢x⟩
𝜕𝑥

+ 𝑧
⟨

𝜕𝑢z
𝜕𝑧

⟩)

,
[

𝝈𝑧𝑧
]

= (1 − 𝜑)𝑎
⟨

𝜕𝝈𝑧𝑧
𝜕𝑧

⟩

− 𝜑𝑎
𝜕 ⟨𝝈𝑥𝑧⟩
𝜕𝑥

.
(4)

where:

[𝑣] = 𝑣(−𝑑) − 𝑣(−𝑑𝑎), ⟨𝑣⟩ = 1
2
(

𝑣(−𝑑) + 𝑣(−𝑑𝑎)
)

,

denotes the jump of a field across the cavity layer and the average value and (,𝑥,𝑧,𝑥,𝑧
) are dimensionless effective coefficients 

obtained by solving elementary static problems (see Appendix  A). These depend only on the geometry of the cavities and the material 
properties of the surrounding soil, and are independent of frequency. In the limit where the cavities vanish – i.e., when 𝑎 = 𝑒 = 0 – 
all effective coefficients reduce to zero, and the classical continuity conditions for displacement and normal stresses are recovered.

2.2. Potential formulation of the solution

In the remainder of this section, we describe the numerical resolution of the direct problem using potential theory. We introduce 
Helmholtz potentials (𝜙,𝜓) defined such that: 

(𝜆 + 2𝜇), 𝛥𝜙 + 𝜌𝜔2𝜙 = 0, 𝜇, 𝛥𝜓 + 𝜌𝜔2𝜓 = 0. (5)

The displacement components are reconstructed from these potentials as: 

𝑢x =
𝜕𝜙
𝜕𝑥

−
𝜕𝜓
𝜕𝑧
, 𝑢z =

𝜕𝜙
𝜕𝑧

+
𝜕𝜓
𝜕𝑥
. (6)

The associated normal stress components 𝝈𝑥𝑧 = 𝜇
(

𝜕𝑥𝑢z + 𝜕𝑧𝑢x
) and 𝝈𝑧𝑧 = (𝜆 + 2𝜇)𝜕𝑧𝑢z + 𝜆𝜕𝑥𝑢x are given by: 

𝝈𝑥𝑧
𝜇

= 2
𝜕2𝜙
𝜕𝑥𝜕𝑧

+
𝜕2𝜓
𝜕𝑥2

−
𝜕2𝜓
𝜕𝑧2

,
𝝈𝑧𝑧
𝜇

= −𝑘2T𝜙 − 2
𝜕2𝜙
𝜕𝑥2

+ 2
𝜕2𝜓
𝜕𝑥𝜕𝑧

, (7)

Without loss of generality, we consider incident plane waves of the form: 
𝜙inc(𝒓) = 𝐴inc

L 𝑒
𝑖𝛼L𝑧𝑒𝑖𝛽𝑥, 𝜓 inc(𝒓) = 𝐴inc

T 𝑒
𝑖𝛼T𝑧𝑒𝑖𝛽𝑥, (8)

where 𝐴inc
L  and 𝐴inc

T  are the amplitudes of the incident longitudinal (L) and transverse (T) waves, respectively (Fig.  1). The 
wavenumbers are defined by: 

𝑘L =
√

𝜌
𝜆 + 2𝜇

𝜔, 𝑘T =
√

𝜌
𝜇
𝜔, 𝛼L = 𝑘L cos 𝜃L, 𝛼T = 𝑘T cos 𝜃T, 𝛽 = 𝑘L sin 𝜃L = 𝑘T sin 𝜃T. (9)

with 𝜃  and 𝜃  being the incidence angles for the longitudinal and transverse waves.
L T

3 
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2.3. Resolution of the direct problem: numerical method

To compute the reference solution to the full scattering problem, we employ a multimodal expansion technique directly inspired 
from [24]. This method leverages the periodicity of the cavity array to reduce the computation to a single elementary cell, repeated 
with horizontal periodicity ℎ.

Let us define the computational domain as the union of three subdomains: 
 = − ∪ L ∪ + (10)

where :
− =

{

𝑥 ∈
(

− ℎ
2 ,+

ℎ
2

)

, 𝑧 ∈ (−∞,−𝑑𝑎)
}

 corresponds to the semi-infinite soil layer beneath the cavities,
+ =

{

𝑥 ∈
(

− ℎ
2 ,+

ℎ
2

)

, 𝑧 ∈ (−𝑑, 0)
}

 corresponds to the soil layer above the cavities,
L =

{

𝑥 ∈
(

− ℎ−𝑒
2 ,+ ℎ−𝑒

2

)

, 𝑧 ∈ (−𝑑𝑎,−𝑑)
}

 corresponds to the vertical solid ligaments between two neighboring cavities, (see Fig. 
2(a)).

In the following, the potentials are expanded in suitable modal bases in each subdomain. In L, the basis consists of the Lamb 
modes of an elastic ligament of width (ℎ− 𝑒), which naturally satisfy the traction-free boundary conditions at 𝑥 = ±(ℎ− 𝑒)∕2. In the 
substrate −, the field representation given later in Eq. (11) involves the vertical wavenumbers associated with the longitudinal 
and transverse bulk modes, ensuring that the radiation condition as 𝑧→ −∞ is exactly satisfied for all incidence angles, since only 
the downward-propagating (or exponentially decaying) components are retained.
Modal expansions in the substrate – In both − and +, the solution is expanded as a superposition of incident, reflected, and 
transmitted modes. For a point 𝒓 = (𝑥, 𝑧), we write: 

𝒓 ∈ − ∶
(

𝜙(𝒓)
𝜓(𝒓)

)

=
(

𝜙inc(𝒓)
𝜓 inc(𝒓)

)

+
+∞
∑

𝑛=−∞

(

𝑅L𝑛𝑒−𝑖𝛼L𝑛𝑧

𝑅T𝑛𝑒−𝑖𝛼T𝑛𝑧

)

𝐹𝑛(𝑥),

𝒓 ∈ + ∶
(

𝜙(𝒓)
𝜓(𝒓)

)

=
+∞
∑

𝑛=−∞

(

𝑏+L𝑛𝑒
𝑖𝛼L𝑛𝑧 + 𝑏−L𝑛𝑒

−𝑖𝛼L𝑛𝑧

𝑏+T𝑛𝑒
𝑖𝛼T𝑛𝑧 + 𝑏−T𝑛𝑒

−𝑖𝛼T𝑛𝑧

)

𝐹𝑛(𝑥),
(11)

where the modal functions in 𝑥 are defined by: 
𝐹𝑛(𝑥) = 𝑒𝑖𝛽𝑛𝑥. (12)

The vertical wavenumbers are given by the dispersion relations: 
⎧

⎪

⎨

⎪

⎩

𝛼L𝑛 =
√

𝑘2L − 𝛽2𝑛 , 𝛼T𝑛 =
√

𝑘2T − 𝛽2𝑛 , 𝑛 = −∞,… ,+∞,

𝛽𝑛 = 𝛽 + 2𝑛𝜋
ℎ
.

(13)

The choice of square roots ensures upward or downward propagation depending on the sign of Im(𝛼𝐿,𝑛) or Im(𝛼𝑇 ,𝑛), and enforces 
radiation conditions. The periodic structure implies a pseudo-periodicity constraint on the solution 𝐹𝑛(−ℎ∕2) = 𝐹𝑛(ℎ∕2)𝑒𝑖𝛽𝑛ℎ.

Lamb modes in the solid ligaments – In the ligament region L separating two cavities, the solution is expanded in terms of symmetric 
and antisymmetric Lamb modes — i.e., the solutions of a traction-free elastic plate of finite width (ℎ − 𝑒). These modes inherently 
satisfy the stress-free conditions on the vertical boundaries of the cavity.

We write: 

𝒓 ∈ L ∶
(

𝜙(𝒓)
𝜓(𝒓)

)

=
+∞
∑

𝑛=0

(

𝑐+S𝑛𝑒
𝑖𝛼S𝑛𝑧 + 𝑐−S𝑛𝑒

−𝑖𝛼S𝑛𝑧
)

(

𝜙S𝑛(𝑥)
𝜓S𝑛(𝑥)

)

+
+∞
∑

𝑛=0

(

𝑐+A𝑛𝑒
𝑖𝛼A𝑛𝑧 + 𝑐−A𝑛𝑒

−𝑖𝛼A𝑛𝑧
)

(

𝜙A𝑛(𝑥)
𝜓A𝑛(𝑥)

)

, (14)

where : (𝛼S𝑛, 𝛼A𝑛) are vertical wavenumbers associated with the symmetric and antisymmetric modes, respectively,
(𝜙S𝑛(𝑥), 𝜓S𝑛(𝑥)) and (𝜙A𝑛(𝑥), 𝜓A𝑛(𝑥)) are the corresponding horizontal modal functions, defined by: 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝜙S𝑛(𝑥)
𝜓S𝑛(𝑥)

)

=
(

cosh(𝛽S𝑛𝑥)
𝐵S𝑛 sinh(𝛽S𝑛𝑥)

)

, 𝐵S𝑛 = −
2𝑖𝛼S𝑛𝛽S𝑛
𝛽2S𝑛 + 𝛼

2
S𝑛

sinh
(

𝛽S𝑛ℎ
2

)

sinh
(

𝛽S𝑛ℎ
2

)
,

(

𝜙A𝑛(𝑥)
𝜓A𝑛(𝑥)

)

=
(

− sinh(𝛽A𝑛𝑥)
𝐵A𝑛 cosh(𝛽A𝑛𝑥)

)

, 𝐵A𝑛 =
2𝑖𝛼A𝑛𝛽A𝑛
𝛽2A𝑛 + 𝛼

2
A𝑛

cosh
(

𝛽A𝑛ℎ
2

)

cosh
(

𝛽A𝑛ℎ
2

)

(15)

Here, (𝛽S𝑛, 𝛽A𝑛) and their hats (𝛽S𝑛, 𝛽A𝑛) are horizontal wavenumbers associated with the respective modes. These quantities satisfy 
the coupled dispersion relations for symmetric and antisymmetric Lamb waves: 

⎧

⎪

⎪

⎨

⎪

⎪

𝛼X𝑛 =
√

𝑘2L + 𝛽
2
X𝑛, 𝛼X𝑛 =

√

𝑘2T + 𝛽
2
X𝑛, X=A,S, 𝑛 = 0,… ,+∞,

4𝛼2S𝑛𝛽S𝑛𝛽S𝑛 sinh
(

𝛽S𝑛ℎ
2

)

cosh
(

𝛽S𝑛ℎ
2

)

=
(

𝛼2S𝑛 + 𝛽
2
S𝑛
)2 cosh

(

𝛽S𝑛ℎ
2

)

sinh
(

𝛽S𝑛ℎ
2

)

,

4𝛼2 𝛽 𝛽 cosh
(

𝛽A𝑛ℎ
)

sinh
(

𝛽A𝑛ℎ
)

=
(

𝛼2 + 𝛽2
)2 sinh

(

𝛽A𝑛ℎ
)

cosh
(

𝛽A𝑛ℎ
)

.

(16)
⎩ A𝑛 A𝑛 A𝑛 2 2 A𝑛 A𝑛 2 2

4 
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Fig. 2.  Domains used for (a) the numerical (direct) solution, see Eqs. (11) and (14), and (b) the effective model, see Eq. (23). In the latter, the 
cavity region 𝑧 ∈ (−𝑑𝑎,−𝑑), 𝑑𝑎 = 𝑑 + 𝑎, is not explicitly modeled, as its effect is accounted for by the homogenized jump conditions (4).

Truncation and matching conditions To render the problem tractable numerically, we truncate the infinite series in Eqs. (11) and 
(14). Let:

1 = {−𝑛1,… , 𝑛1} with 𝑁1 = (2𝑛1 + 1) the number of modes in ±,
2 = {0,… , 𝑛2} with 𝑁2 = (𝑛2 + 1) the number of Lamb modes in L.
We impose the continuity of displacements and normal stresses at the two horizontal interfaces 𝑧 = −𝑑𝑎 and 𝑧 = −𝑑, and the 

stress-free condition at 𝑧 = 0. To do so, we project each continuity condition onto the truncated modal bases. We define the scalar 
products: 

(𝑓, 𝑔)1 = ∫

ℎ∕2

−ℎ∕2
𝑓 (𝑥)𝑔(𝑥)d𝑥, (𝑓, 𝑔)2 = ∫

𝑒∕2

−𝑒∕2
𝑓 (𝑥)𝑔(𝑥)d𝑥, (17)

where the overline denotes complex conjugation. These inner products are used to enforce the interface and boundary conditions 
in weak form 

at 𝑧 = −𝑑𝑎, 𝑚 ∈ 2,
{ (

𝑢x(𝑥,−𝑑𝑎−), 𝜙𝑚
)

2 =
(

𝑢x(𝑥,−𝑑𝑎+), 𝜙𝑚
)

2 , for 𝜙𝑚 = 𝜙A𝑚, 𝜙S𝑚,
(

𝑢z(𝑥,−𝑑𝑎−), 𝜓𝑚
)

2 =
(

𝑢z(𝑥,−𝑑𝑎+), 𝜓𝑚
)

2 , for 𝜓𝑚 = 𝜓A𝑚, 𝜓S𝑚,

𝑚 ∈ 1,
{ (

𝝈𝑥𝑧(𝑥,−𝑑𝑎−), 𝐹𝑚
)

1 =
(

𝝈𝑥𝑧(𝑥,−𝑑𝑎+), 𝐹𝑚
)

2 ,
(

𝝈𝑧𝑧(𝑥,−𝑑𝑎−), 𝐹𝑚
)

1 =
(

𝝈𝑧𝑧(𝑥,−𝑑𝑎+), 𝐹𝑚
)

2 ,

(18)

at 𝑧 = −𝑑, 𝑚 ∈ 2,
{ (

𝑢x(𝑥,−𝑑−), 𝜙𝑚
)

2 =
(

𝑢x(𝑥,−𝑑+), 𝜙𝑚
)

2 , for 𝜙𝑚 = 𝜙A𝑚, 𝜙S𝑚,
(

𝑢z(𝑥,−𝑑−), 𝜓𝑚
)

2 =
(

𝑢z(𝑥,−𝑑+), 𝜓𝑚
)

2 , for 𝜓𝑚 = 𝜓A𝑚, 𝜓S𝑚,

𝑚 ∈ 1,
{ (

𝝈𝑥𝑧(𝑥,−𝑑−), 𝐹𝑚
)

2 =
(

𝝈𝑥𝑧(𝑥,−𝑑+), 𝐹𝑚
)

1 ,
(

𝝈𝑧𝑧(𝑥,−𝑑−), 𝐹𝑚
)

2 =
(

𝝈𝑧𝑧(𝑥,−𝑑+), 𝐹𝑚
)

1 ,

(19)

at 𝑧 = 0, 𝑚 ∈ 1,
{ (

𝝈𝑥𝑧(𝑥, 0), 𝐹𝑚
)

1 = 0,
(

𝝈𝑧𝑧(𝑥, 0), 𝐹𝑚
)

1 = 0.
(20)

These projections provide (6𝑁1 + 8𝑁2) relations on the 6𝑁1 unknown coefficients 
(

𝑅L𝑛, 𝑅T𝑛, 𝑏
±
L𝑛, 𝑏

±
T𝑛
) in Eqs. (11) and 4𝑁2

coefficients (𝑐±S𝑛, 𝑐±A𝑛
) in Eqs. (14). As in [24], the system is overdetermined and solved in the least-squares sense using QR 

decomposition (as implemented in MATLAB’s backslash operator \. In the following, we denote 

𝑅L = 𝑅L0, 𝑅T = 𝑅T0, 𝑏±L = 𝑏±L0, 𝑏±T = 𝑏±T0, (21)

the scattering coefficients associated with the propagating modes.
The numerical convergence of the multimodal formulation was verified by varying the truncation orders 𝑁1 = 𝑁2 = 𝑁 . 

Comparisons with a reference solution obtained for 𝑁 = 100 show that, over the frequency range considered (0–100) Hz, the 
scattering coefficients differ by less than 1% for 𝑁 = 5, and by less than 0.3% for 𝑁 = 20. All numerical results presented in this 
work were obtained with 𝑁 = 𝑁 = 20, which ensures a well-converged solution.
1 2
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2.4. Resolution of the effective problem

The solution of the effective problem is formulated in two homogeneous domains: 
 = − ∪+, − =

{

𝑥 ∈ (−∞,+∞), 𝑧 ∈ (−∞,−𝑑𝑎)
}

, + = {𝑥 ∈ (−∞,+∞), 𝑧 ∈ (−𝑑, 0)} , (22)

(see Fig.  2(b)). The intermediate layer 𝑧 ∈ (−𝑑𝑎,−𝑑) is not explicitly modeled, as the physical effect of the periodic cavities has 
been encapsulated into the jump conditions introduced in Eq. (4). This effective formulation restores translational invariance in 
the horizontal direction 𝑥 as the periodic structure is no longer present. Consequently, no evanescent (non-propagating) modes are 
included in the solution: their influence has been entirely accounted for through the effective interface model. Thus, the solution 
reads 

𝒓 ∈ − ∶
(

𝜙(𝒓)
𝜓(𝒓)

)

=
(

𝜙inc(𝒓)
𝜓 inc(𝒓)

)

+
(

𝑅L𝑒−𝑖𝛼L𝑧

𝑅T𝑒−𝑖𝛼T𝑧

)

𝑒𝑖𝛽𝑥,

𝒓 ∈ + ∶
(

𝜙(𝒓)
𝜓(𝒓)

)

=
(

𝑏+L 𝑒
𝑖𝛼L𝑧 + 𝑏−L 𝑒

−𝑖𝛼L𝑧

𝑏+T 𝑒
𝑖𝛼T𝑧 + 𝑏−T 𝑒

−𝑖𝛼T𝑧

)

𝑒𝑖𝛽𝑥,

(23)

where (𝛼L, 𝛼T, 𝛽) are defined in (9). The six scattering coefficients, being the reflection coefficients (𝑅L, 𝑅T) in − and amplitudes of 
the upward (𝑏+L , 𝑏+T ) and downward (𝑏−L , 𝑏−T ) propagating waves in + are determined by enforcing the two stress-free conditions at 
the free surface (2) and the four effective jump conditions (4). Inserting the expressions from (23) into these interface and boundary 
conditions yields a linear system of six equations for the six unknowns. This system can be written in compact form as: 

𝗆𝑪 = 𝑺, (24)

where 𝗆 is a 6 × 6 matrix, 𝑪 is the vector of the unknowns coefficients and 𝑺 contains the source terms arising from the incident 
wave. Specifically, denoting 𝑒L,T = 𝑒𝑖𝛼L,T𝑑 , 𝑒∗L,T = 𝑒𝑖𝛼L,T𝑑𝑎  and introducing 

𝜉 =
sin 𝜃L
sin 𝜃T

=
𝑘T
𝑘L

=

√

2(1 − 𝜈)
(1 − 2𝜈)

, (25)

they read 

𝗆 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚11 −𝑚11 𝑚11 𝑚14 𝑚14 −𝑚14
𝑚21 𝑚21 −𝑚21 𝑚24 −𝑚24 𝑚24
𝑚31 𝑚31 −𝑚31 𝑚34 −𝑚34 𝑚34
𝑚41 −𝑚41 𝑚41 𝑚44 𝑚44 −𝑚44
𝑚51 𝑚52 0 𝑚54 𝑚55 0
𝑚61 𝑚62 0 𝑚64 𝑚65 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑪 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑏+L ∕𝑒L
𝑏−L 𝑒L
𝑅L𝑒∗L
𝑏+T 𝑒

−1
T

𝑏−T 𝑒T
𝑅T𝑒∗T

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑺 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚11
𝑚21
𝑚31
𝑚41
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴inc
L ∕𝑒∗L +

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚14
𝑚24
𝑚34
𝑚44
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐴inc
T ∕𝑒∗T , (26)

where

𝑚11 = cos 𝜃L −
𝑖𝑘Lℎ
2

(

𝑧 cos2 𝜃L + 𝑥 sin
2 𝜃L

)

, 𝑚14 = sin 𝜃L
(

1 − 𝑖𝛼Tℎ
2 (𝑧 − 𝑥)

)

,

𝑚21 = sin 𝜃T
(

1 − 𝑖𝛼L
2 (2ℎ − 𝑎)

)

, 𝑚24 = −cos 𝜃T +
𝑖𝑘T
2

(

ℎ cos 2𝜃T + 𝑎 sin
2 𝜃T

)

𝑚31 = cos 2𝜃T
(

1 − 𝑖𝛼L𝑎
2

)

+ 𝑖𝜑𝛼L𝑎
2 , 𝑚34 = sin 2𝜃T

(

1 − 𝑖𝛼T𝑎
2

)

+ 𝑖𝜑𝛽𝑎
2 ,

𝑚41 = − sin 2𝜃L
(

1 − 𝑖(1−𝜑)𝛼L𝑎
2

)

− 𝑖𝛽ℎ
2

(

𝑧 cos2 𝜃L + 𝑥 sin2 𝜃L
)

, 𝑚44 = 𝜉2 cos 2𝜃T
(

1 − 𝑖(1−𝜑)𝛼T𝑎
2

)

− 𝑖𝛼Tℎ
2 (𝑧 − 𝑥) sin2 𝜃L,

𝑚51 = − sin 2𝜃L𝑒L, 𝑚52 = sin 2𝜃L∕𝑒L, 𝑚54 = 𝜉2 cos 2𝜃T𝑒T, 𝑚55 = 𝜉2 cos 2𝜃T∕𝑒T,
𝑚61 = cos 2𝜃T𝑒L, 𝑚62 = cos 2𝜃T∕𝑒L, 𝑚64 = sin 2𝜃T𝑒T, 𝑚65 = − sin 2𝜃L∕𝑒T.

This system is fully explicit, providing a closed-form solution for the effective problem.

2.5. The free-field solution in the absence of cavities

As previously mentioned, the free-field solution refers to the configuration without cavities — that is, the solution of the elastic 
wave problem posed in the homogeneous half-space  = {𝑥 ∈ (−∞,+∞), 𝑧 ∈ (−∞, 0)}, governed by (1) and (2). In this case, an 
explicit analytical solution is available, which describes the incident wave and its reflection from the free surface. The reflected 
field is expressed in terms of reflection coefficients that depend on the incidence angle and the type of incident wave (L or T), 
namely 

𝒓 ∈  ∶
(

𝜙free(𝒓)
𝜓 free(𝒓)

)

=
(

𝜙inc(𝒓)
𝜓 inc(𝒓)

)

+
(

𝑅L
free𝑒−𝑖𝛼L𝑧

𝑅T
free𝑒−𝑖𝛼T𝑧

)

𝑒𝑖𝛽𝑥, (27)

with 
𝑅L

free = 𝑟LL
free𝐴inc

L + 𝑟LTfree𝐴inc
T , 𝑅T

free = 𝑟TL
free𝐴inc

L + 𝑟TTfree𝐴inc
T , (28)

and 

𝑟LL
free = 𝑟TT

free =
sin 2𝜃L sin 2𝜃T − 𝜉2 cos2 2𝜃T , 𝑟TL

free =
2 sin 2𝜃L cos 2𝜃T , 𝑟LT

free = −
2𝜉2 sin 2𝜃T cos 2𝜃T ,
sin 2𝜃L sin 2𝜃T + 𝜉2 cos2 2𝜃T sin 2𝜃L sin 2𝜃T + 𝜉2 cos2 2𝜃T sin 2𝜃L sin 2𝜃T + 𝜉2 cos2 2𝜃T

6 
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Table 1
Values of the effective coefficients entering in (4) for arrays characterized by 𝑎∕ℎ = 3∕5 and increasing density 
𝜑 = 𝑒∕ℎ.
 𝑒∕ℎ 𝑧  𝑥 𝑧 𝑥  
 2/5 1.40 2.57 0.40 −0.16 −0.87 
 4/5 4.98 23.38 1.63 −0.03 −0.32 
 4.8/5 20.73 1500 6.91 −0.005 −0.06 

(29)

(Chapter 5 in [23]). This reference solution is naturally recovered from the effective model (24)–(26) by setting 𝑑 = 𝑑𝑎 (i.e., 𝑎 = 0), 
𝑒 = 0, and letting 𝑖 = 𝑖 = 0, 𝑖 = 𝑥, 𝑧,  = 0. This yields the free-field solution with 𝑏+L = 𝐴inc

L , 𝑏+T = 𝐴inc
T , 𝑏−L = 𝑅L

free and 𝑏−T = 𝑅T
free.

3. Validation of the homogenized model: Shielding effects and resonances

From now on, we consider a typical shale-like elastic material characterized by the following properties: 𝜆 = 𝜇 = 3.109 Pa, 
𝜌 = 2000 kg.m−3, where (𝜆, 𝜇) are the Lamé parameters, and 𝜌 is the density.

The dimensions of the cavities and their burial depths are on the order of a few meters, with potential applications to 
anthropogenic underground cavities in mind. In this section, we explore frequency ranges up to 100 Hz in order to gain a 
comprehensive understanding of the underlying phenomena. A more focused analysis in the seismic frequency band (0 − 10) Hz
is conducted in Section 4.

Throughout this section, the displacement fields (𝑢x, 𝑢z) are computed for incident waves of the form (8), with coefficients 
(

𝐴inc
L , 𝐴

inc
T

) chosen to produce a unit-amplitude displacement at the free surface (𝑧 = 0), namely: 

𝑢incx
2 + 𝑢incz

2 = 𝑘2L𝐴
inc
L

2 + 𝑘2T𝐴
inc
T

2 + 2𝐴inc
L 𝐴

inc
T (𝛼L − 𝛼T) = 1. (30)

3.1. A typical example

We begin by analyzing the wavefield response for cavity arrays with varying cavity density 𝑒 = 2, 4 and 4.8 m, within a fixed 
lattice period ℎ = 5 m and height 𝑎 = 3 m. The array is buried at depth 𝑑 = 40 m.

Fig.  3 shows displacement fields 𝑢x(𝑥, 𝑧) and 𝑢z(𝑥, 𝑧) at a frequency of 30 Hz for an incident wave at angle 𝜃L = 40◦ (corresponding 
to 𝜃T = 21.8◦), with 𝐴inc

L = 𝐴, 𝐴inc
T = 2𝐴, where 𝐴 is a normalization factor ensuring unit surface amplitude (30). Both numerical 

simulations and the analytical effective model are shown. Let us recall that, in the actual (full) problem, the near field in the vicinity 
of the cavities consists of a multitude of evanescent modes, whereas in the homogenized model, their effect has been captured 
through the jump conditions. In this latter case, the displacements are given by 

𝑧 ∈ (−∞,−𝑑𝑎),
{

𝑢x(𝑥, 𝑧) = 𝑖
[

𝛽
(

𝐴inc
L 𝑒

𝑖𝛼L𝑧 + 𝑅L𝑒
−𝑖𝛼L𝑧

)

− 𝛼T
(

𝐴inc
T 𝑒

𝑖𝛼T𝑧 − 𝑅T𝑒
−𝑖𝛼T𝑧

)]

𝑒𝑖𝛽𝑥,
𝑢z(𝑥, 𝑧) = 𝑖

[

𝛼L
(

𝐴inc
L 𝑒

𝑖𝛼L𝑧 − 𝑅L𝑒
−𝑖𝛼L𝑧

)

+ 𝛽
(

𝐴inc
T 𝑒

𝑖𝛼T𝑧 + 𝑅T𝑒
−𝑖𝛼T𝑧

)]

𝑒𝑖𝛽𝑥,

𝑧 ∈ (−∞,−𝑑𝑎),
{

𝑢x(𝑥, 𝑧) = 𝑖
[

𝛽
(

𝑏+L 𝑒
𝑖𝛼L𝑧 + 𝑏−L 𝑒

−𝑖𝛼L𝑧
)

− 𝛼T
(

𝑏+T 𝑒
𝑖𝛼T𝑧 − 𝑏−T 𝑒

−𝑖𝛼T𝑧
)]

𝑒𝑖𝛽𝑥,
𝑢z(𝑥, 𝑧) = 𝑖

[

𝛼L
(

𝑏+L 𝑒
𝑖𝛼L𝑧 − 𝑏−L 𝑒

−𝑖𝛼L𝑧
)

+ 𝛽
(

𝑏+T 𝑒
𝑖𝛼T𝑧 + 𝑏−T 𝑒

−𝑖𝛼T𝑧
)]

𝑒𝑖𝛽𝑥,

(31)

where the coefficients (𝑅L, 𝑅T) and (𝑏±L , 𝑏±T ) are given by (24)–(26) and in the present case, the values of effective parameters are 
given in Table  1.

The comparison shows excellent qualitative agreement between the numerical and effective solutions. Additionally, the effect 
of the cavity array is illustrated by comparing with the free-field solution (no cavities) (𝑢xfree, 𝑢zfree). It is observed that the density 
of the cavity array, expressed by the ratio 𝜑 = 𝑒∕ℎ, significantly affects the soil response. Increasing it enhances wave reflection by 
the array and thus, reduces displacements in the top layer — defined as the region between the surface and the top of the cavities. 
This indicates a shielding effect, where the cavity array acts as a seismic shield by partially blocking wave energy propagation into 
the soil beneath.

Going further, Fig.  4 presents a more quantitative analysis of the reflection coefficients (𝑅L, 𝑅T) and the upward and downward 
propagating wave amplitudes (𝑏±L , 𝑏±T ) within the top layer, across frequencies and for the three values of 𝑒. At zero frequency, all 
configurations recover the free-field values, which remain constant across frequencies, since the cavity array is transparent to long 
wavelengths. These reference values are shown with yellow dashed lines for (𝑅L, 𝑅T).

The curves show both the numerical results (solid lines) and the effective model predictions (black dashed lines). The agreement 
is excellent overall, although a slight decrease in accuracy is noted at higher frequencies. This is expected because the model has 
a range of validity in the low frequency regime, measured by low values of 𝑘Lℎ, 𝑘Tℎ. In the reported curves, with 𝑓 up to 60 Hz, 
these parameters reach values up to 0.9 and 1.5.

Importantly, the previous qualitative trend (denser arrays yield more shielding) is now nuanced: resonance peaks are clearly 
visible. These resonances are more pronounced with increasing cavity density. Yet between resonances, the amplitudes (𝑏±L , 𝑏±T ) in 
the top layer remain well below the free-field case, further confirming the shielding effect.

We conclude with two remarks of different nature:
7 



A. Maurel et al. Wave Motion 141 (2026) 103666 
Fig. 3.  Real parts of the displacement fields 𝑢x(𝑥, 𝑧) and 𝑢z(𝑥, 𝑧) — Left panels show the free-fields (no cavities); the other panels show the fields 
for a periodic array buried at depth 𝑑 = 40 m with 𝑎 = 3 m, ℎ = 5, and increasing cavity densities (a) 𝑒 = 2 m, (a) 𝑒 = 4 m, and (a) 𝑒 = 4.8 m. 
Results are shown for frequency 𝑓 = 30 Hz over the domain {𝑥 ∈ (0, 140) m, 𝑧 ∈ (−120, 0) m}. A shielding effect is visible, reducing displacement 
amplitudes in the top layer.

– First, we note in Fig.  4(c) the presence of a resonance (marked with yellow arrows) for 𝑒 = 4.8 m at 𝑓 = 40 Hz, which is not 
predicted by the model. This resonance corresponds to the flexural resonance of the thin elastic ligament, with slenderness 𝑑∕(ℎ−𝑒). 
Accounting for such resonances can be done, see [25,26]. However, it lies beyond the scope of this study and would make the model 
less tractable. Hence in the present study, it has not been done.

– Next, in the plots of Fig.  3, the observed resonances have been identified as resonances of the top layer. These correspond 
to a class of resonances whose limiting case occurs when 𝑒 = ℎ, i.e., when the top layer is completely isolated from the half-space 
beneath, subject to stress-free boundary conditions at 𝑧 = 0 and 𝑧 = −𝑑. For arrays with 𝑒 < ℎ, leakage occurs and the top layer is 
not perfectly isolated; resonances are excited, increasingly resembling perfect resonances as the cavity density grows. However, the 
associated resonance frequencies remain significantly shifted from the nominal values, expected at 

𝛼L𝑑 ≃ 𝑛𝜋, 𝛼T𝑑 ≃ 𝑛𝜋, (32)

with 𝑛 being an integer. Indeed, in addition to the resonance expected close to zero frequency, these estimates give a longitudinal 
resonance at 𝑓 = 37 Hz and three transverse resonances at 𝑓 = 17.8, 35.6 and 53.5 Hz, which is quite far from the resonance 
frequencies observed in Fig.  4. This is analyzed in the forthcoming section.
8 
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Fig. 4. Scattering coefficients against frequency 𝑓 for the same configurations as in Fig.  3. Solid lines: direct numerical results, (21); dashed 
black lines: effective model predictions using (24)–(26), see also (31).

3.2. Analysis of the resonances

We now turn to a more detailed analysis of the resonances associated with the top layer. In this subsection, we consider a fixed 
cavity configuration with 𝑒 = 4 m, periodicity ℎ = 5 m and cavity height 𝑎 = 3 m, as in Figs.  3(b) and 4(b). However, we now 
reduce the burial depth to 𝑑 = 20 m and extend the frequency range up to 100 Hz. This configuration preserves the five resonances 
previously observed and allows us to test the robustness of the effective model beyond its strict asymptotic regime: the dimensionless 
frequencies reach values up to 𝑘Tℎ = 1.5 and 𝑘Lℎ = 2.6, thus probing the limits of validity of the homogenized model.

Figs.  5 and 6 show the amplitudes of the surface displacements 𝑢x(𝑥, 0) and 𝑢z(𝑥, 0) as functions of frequency and angle of 
incidence, revealing the trajectories of the top-layer resonances. For clarity, we distinguish between the cases of purely longitudinal 
and purely transverse incident waves, characterized by angles of incidence 𝜃L and 𝜃T, respectively and frequencies are made 
dimensionless with respect to the corresponding wavenumbers 𝑘L and 𝑘T. In the absence of cavities, the amplitudes of surface 
displacement are independent of frequency and depend only on the angle of incidence. On the color maps shown in Figs.  5 and
6 (with cavities present), the free-field displacement values correspond to the zero-frequency limit and serve as a baseline for 
comparison.

We now comment on the resonance features visible in the color plots. For a longitudinal incident wave at normal incidence 
(𝜃L = 0), the displacements are purely vertical (i.e., 𝑢x = 0). In this case, two clear longitudinal resonances appear in the vertical 
displacement component 𝑢 , corresponding to the conditions 𝑘 𝑑 ≃ 𝑛𝜋, with 𝑛 = 0 and 1, as in (32). Conversely, for a transverse 
z L
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Fig. 5.  Surface displacement amplitudes |𝑢x(𝑥, 0)| and |𝑢z(𝑥, 0)| for an incident longitudinal (L) wave (𝐴incT = 0), as functions of the angle of 
incidence 𝜃L and of the dimensionless frequency 𝑘L𝑑∕𝜋. (a) Numerical solution of the full problem. (b) Prediction from the effective model (31), 
using coefficients from (24)–(26).

Fig. 6.  Surface displacement amplitudes |𝑢x(𝑥, 0)| and |𝑢z(𝑥, 0)| for an incident transverse (T) wave (𝐴incL = 0), as functions of the angle of 
incidence 𝜃T and of the dimensionless frequency 𝑘T𝑑∕𝜋. Same representation as in Fig.  5. The range 𝜃T ∈ (0, 𝜃cT = 35◦) corresponds to 𝜃L ∈ (0, 90◦).

incident wave at normal incidence (𝜃T = 0), the displacements are purely horizontal (i.e., 𝑢z = 0), and four transverse resonances 
are observed, following the conditions 𝑘T𝑑 ≃ 𝑛𝜋 for 𝑛 = 0,1,2,3. As the incidence becomes oblique in either case, mode conversion 
between longitudinal and transverse waves occurs, causing both types of resonances to appear, regardless of the nature of the 
incident wave. In the case of a T-incident wave, one clearly observes the critical angle for T-L conversion at 𝜃cT = 35◦ (corresponding 
to 𝜃L = 90◦), beyond which longitudinal waves cannot propagate. Consequently, the associated L-wave resonance disappear.

It can be seen that the resonance trajectories observed in the full numerical simulations do not simply follow the 1∕ cos 𝜃 scaling 
predicted by the half-wavelength resonance criterion in (32), for 𝜃 = 𝜃L or 𝜃T. Instead, they exhibit complex interactions that are 
generally well captured by the effective model. As in previous comparisons, the accuracy gradually decreases at higher frequencies, 
10 
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Fig. 7. Finite size effect — Real part (a) and absolute value (b) of the vertical displacement field 𝑢z(𝑥, 𝑧), normalized by 𝑢zfree(0, 0), obtained 
in the absence of any array under the same source conditions, at frequency 𝑓 = 14 Hz. The left three panels show the results from Comsol for 
𝑁 = 1, 5 and 11 cavities with a point-source at 𝑧 = −80 m; the rightmost panels show the wavefields obtained for an infinite array. The domain 
is {𝑥 ∈ (−40, 40) m, 𝑧 ∈ (−100, 0) m}.

consistent with the asymptotic nature of the homogenized formulation. Moreover, the effective model does not accurately reproduce 
the regions of avoided crossing, as these result from subtle coupling mechanisms that would only be captured by higher-order 
corrections in the homogenized model, see [27].

3.3. Finite size effects: From single to multiple cavities

We now turn to the question of finite-size effects. Thus far, our effective model has been validated for an infinite periodic 
array of cavities. This configuration has the advantage of being amenable to an explicit, analytical treatment, which is both 
computationally efficient and insightful, especially when compared to full numerical simulations that can become computationally 
expensive. However, in real-world-applications – particularly in seismic contexts – arrays of underground cavities are always of 
finite extent, even though many practical configurations, such as mining galleries, may have a large extend with a large number 
of cavities. It is therefore important to assess whether the effects predicted for an infinite array persist in finite configurations, a 
question that we address in this section by considering cavity arrays with 𝑁 1, 5 and 11 cavities.

The corresponding configurations are illustrated in Figs.  7 and 8, for two representative frequencies: the lowest resonance at 
14 Hz (relevant for seismic applications) and a higher resonance at 55 Hz. These simulations use the same network geometry as 
in the previous sections, with 𝑎 = 3 m, 𝑒 = 4 m, ℎ = 5 m, and 𝑑 = 20 m. We report the vertical displacement fields, both in real 
part and in magnitude. For the infinite array (right panels), the wavefields are computed using the modal method with a normally 
incident L plane wave. For the finite-size arrays, the fields are computed with Comsol, using a quasi-point source located 60 m 
below the array (i.e., at 𝑧 = −80 m), centered at 𝑥 = 0 and emitting isotropically. Perfectly Matched Layers (PMLs) are applied on 
the vertical and bottom boundaries of the computational domain, placed sufficiently far from both the array and the source. To 
allow meaningful comparisons, all displacements are normalized by the free-field vertical surface displacement 𝑢zfree(0, 0), computed 
in the absence of any cavities, under the same source conditions. (Note that for a plane wave, the free-field amplitude at 𝑧 = 0 is 
constant along 𝑥, whereas for a point-source it depends on 𝑥 and is maximum at 𝑥 = 0).

Qualitatively, the results show that the amplification effect within the top layer is already visible for as few as 𝑁 = 5 cavities, 
with amplitudes comparable to those observed in the infinite case. This suggests that the essential features of amplification and 
shielding observed in finite cavity arrays are well described by the infinite-array model.
11 
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Fig. 8. Finite size effect — same representation as in Fig.  7 for frequency 𝑓 = 55 Hz.

Fig. 9. Finite size effect — Amplification profiles at (a) 𝑓 = 14 Hz and (b) 𝑓 = 55 Hz for 𝑁 = 0 (free-field) and 𝑁 = 1, 5 and 11 cavities, from 
Figs.  7 and 8. Panel (c) shows the amplification at 𝑥 = 0 against frequency for the finite size arrays (𝑁 = 1, 5, 11 and for reference, the case of 
an infinite array (blue line from numerics and dashed black line from the model).  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

These observations are further supported by Fig.  9. Panel (c) shows the vertical amplification at the center point (𝑥 = 𝑧 = 0) as 
a function of frequency for the different configurations: 𝑁 = 1, 5, 11, and the infinite array. Panels (a) and (b) show the profile 
along 𝑥 of the surface amplification at the first two resonances, which help illustrate the influence of wavefront curvature caused by 
the point source and diffraction effects at the array edges — effects that are absent in the plane wave configuration. The free-field 
responses, shown in gray, provide a baseline for comparison. In Panel (c), the variation of amplification with frequency is smoother 
in the infinite case but remains very similar in terms of both resonance peaks and amplitude levels for 𝑁 = 5 and 𝑁 = 11 (note that, 
for 𝑁 = 11, a small additional peak appears around 90 Hz, corresponding to a transverse resonance arising from mode conversion 
between L- and T-waves; this conversion becomes non-negligible at high frequencies).
12 
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Fig. 10. Horizontal amplification factor 𝑈𝑥, Eq. (33), against frequency 𝑓 for different incidence angles: (a) incident L wave and (b) incident 𝑇
wave. In panel (b), the T-wave incidence angles 𝜃T are chosen such that the corresponding 𝜃L = angles match those in (a): 0, 15◦, 30◦ and 45◦.

Finally, we note that the lowest resonance remains especially stable across configurations, both in terms of resonance frequency 
and associated, maximum, amplitude. This makes it a particularly promising feature for applications in seismic shielding or vibration 
mitigation. This lowest resonance will be examined more closely in the following section.

4. Earthquake engineering: Focus on first resonance

We now turn to the study of the first resonance, located in the low-frequency range (0-10) Hz, which is particularly relevant for 
earthquake engineering applications. As observed in Fig.  9, this resonance exhibits remarkably stable features when transitioning 
from an infinite to a finite cavity array. In this section, we analyze the sensitivity of its key characteristics – namely the resonant 
frequency and associated maximum amplification – with respect to the geometry of the cavities (parameters 𝑎 and 𝑒), while keeping 
the period ℎ = 5 m constant. We also examine the influence of the burial depth 𝑑. Since horizontal ground motion plays a major 
role in evaluating potential structural damage, we focus our attention on the horizontal displacement component 𝑢x. Throughout 
this section, we refer to the horizontal amplification factor, 𝑈𝑥, defined as the ratio between the displacement amplitude in the 
presence of cavities and the free-field amplitude, at the free surface: 

𝑈𝑥 =
|𝑢x(𝑥, 0)|

|𝑢xfree(𝑥, 0)|
. (33)

We begin by fixing the parameters 𝑎 = 3 m, 𝑒 = 4 m, and 𝑑 = 20 m, and explore the influence of the angle of incidence for both 
longitudinal (L) and transverse (T) incident waves. The horizontal displacement amplification is shown in Fig.  10. For incidence 
angles up to 45◦, the maximum amplification remains nearly constant, around 2.5 in this configuration. The resonance frequency 
shifts only slightly – from 4 Hz to 5 Hz – with the most notable variations observed above 30◦.

This observation is key, as it suggests that a simple estimate of the resonance frequency and the associated amplification can be 
obtained under the assumption of normal incidence. We therefore focus on a normally incident T wave, for which the horizontal 
displacement in the top layer can be approximated by: 

𝑢x(𝒓) ≃
1 − 𝑖𝑘T𝑑

1 − 𝑖𝑘T𝑑 − 𝑘2T𝑑ℎ
, 𝑢x

free(𝒓) = 2 cos 𝑘T𝑧. (34)

From this approximation, we derive the following explicit expressions for the resonance frequency 𝑓R and the associated maximum 
amplification 𝑈R: 

𝑓R = 𝑐
2𝜋

1
√

ℎ 𝑑
, 𝑈R =

√

ℎ
𝑑
. (35)

These formulas reveal that both 𝑓R and 𝑈R decrease proportionally to 1∕
√

𝑑, highlighting the impact of burial depth. The influence 
of cavity geometry enters through the term ℎ, which increases with the periodicity ℎ and both the cavity aspect ratios 𝑒∕ℎ and 
𝑎∕ℎ. Hence, in simple terms: the larger the void volume, the lower the resonance frequency and the stronger the amplification.

These trends are confirmed in Fig.  11, which reports the amplification factor 𝑈𝑥 as a function of frequency while varying 𝑎 and 
𝑒 separately, and then varying 𝑑. In all the reported cases, the model accurately reproduces these variations (the corresponding 
effective coefficients are listed in Tables  2 and 3). While the agreement between the effective model and full numerics is excellent 
in Fig.  11, the model used here is the full homogenized model (from (24)–(26)), not the simplified approximation in (35). To test 
the validity of the latter – which is intended for rapid estimates – we report in Fig.  12 the variations of 𝑓R and 𝑈R computed via 
direct numerical simulations (solid blue lines) and the simplified analytical prediction in (35) (black lines). The predictions of (35) 
13 
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Fig. 11.  Sensitivity of the horizontal amplification factor 𝑈𝑥, Eq. (33), to geometric parameters: (a) cavity height 𝑎, (b) array density 𝑒 and (c) 
burial depth 𝑑. Colored lines: direct numerical simulations; dashed black lines: predictions from the effective model.

Fig. 12.  Variations of the resonance frequency 𝑓R (top rows) and the corresponding horizontal amplification 𝑈R (bottom rows) as a functions 
of: (a) cavity height 𝑎, (b) array density 𝑒 and (c) burial depth 𝑑. Blue lines: results from direct numerics using profiles as reported in Fig.  11. 
Black lines: simplified estimates from (35).  (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Table 2
Values of the effective coefficients entering in (4) for arrays characterized by 𝑒∕ℎ = 3∕5 and increasing 𝑎∕ℎ.
 𝑎∕ℎ 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5 9/5  
 𝑧 1.29 1.84 2.41 2.97 3.53 4.09 4.66 5.22 5.78  
  1.25 2.91 5.57 9.51 15.01 22.34 31.79 43.66 58.20 
 𝑥 0.38 0.56 0.75 0.94 1.13 1.31 1.50 1.69 1.88  
 𝑧 0.06 −0.007 −0.09 −0.17 −0.25 −0.33 −0.41 −0.49 −0.57 
 𝑥 −0.13 −0.37 −0.61 −0.85 −1.09 −1.33 −1.57 −1.81 −2.05 

are reasonably accurate as long as the resonance remains in the low-frequency regime, which is consistent with the assumptions 
𝑘T𝑑 ≪ 1 used to derive them (this condition is more restrictive than 𝑘Tℎ ≪ 1, which governs the validity of the effective model 
itself). Nonetheless, these simplified formulas remain useful for quickly estimating the impact of geometric parameters on resonance 
characteristics, especially in early-stage seismic design or assessment.

5. Conclusion

In this work, we have investigated the seismic response of a shallow subsurface layer containing a periodic array of voids, 
focusing on the development and validation of an effective model based on homogenized jump conditions. Starting from a reference 
full-space elasticity problem, we showed that regularly spaced cavities can significantly affect wave propagation, notably through 
14 
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Table 3
Values of the effective coefficients entering in (4) for arrays characterized by 𝑎∕ℎ = 3∕5 and increasing density 𝜑 = 𝑒∕ℎ.
 𝑒∕ℎ 1/5 1.5/5 2/5 2.5/5 3/5 3.5/5 4/5 4.5/5 4.8/5  
 𝑧 0.89 1.10 1.40 1.81 2.41 3.23 4.98 9.32 20.73  
  1.45 1.90 2.57 3.64 5.57 9.84 23.38 124.48 1500  
 𝑥 0.23 0.30 0.40 0.54 0.75 1.07 1.63 3.09 6.91  
 𝑧 −0.27 −0.21 −0.16 −0.12 −0.09 −0.06 −0.03 −0.01 −0.005 
 𝑥 −1.09 −0.99 −0.87 −0.74 −0.61 −0.47 −0.32 −0.16 −0.06  

partial reflection and the emergence of resonance phenomena in the soil layer between the surface and the top of the cavity network. 
The proposed effective model, derived through asymptotic homogenization, was validated against full numerical simulations and 
shown to accurately reproduce both the near-field displacement fields and far-field scattering behavior over a broad frequency 
range. Despite being developed under low-frequency assumptions (long-wavelength excitation), the model remains robust up to 
moderate dimensionless frequencies (𝑘𝑇 ℎ ≃ 1.5, 𝑘𝐿ℎ ≃ 2.6), providing a substantial computational advantage compared to direct
simulations.

Particular attention was devoted to the first resonance, which lies within the seismic frequency range and was found to be 
especially robust and predictable, even when transitioning from infinite to finite-size cavity arrays. A simple formula was proposed 
to estimate both the resonance frequency and the associated amplification, with explicit dependence on burial depth and cavity 
geometry. This provides a practical tool for assessing the impact of shallow subsurface cavity networks, particularly in contexts 
involving seismic site effects or anthropogenic voids such as abandoned mines.

The present formulation, however, relies on several simplifying assumptions that delimit its range of validity. The jump conditions 
are derived for an infinite and perfectly periodic array and under long-wavelength conditions (𝑘𝑇 ℎ ≪ 1, 𝑘𝐿ℎ ≪ 1) within the 
framework of linear elasticity, neglecting soil damping, stratification, and potential nonlinear effects. Moreover, the analysis is 
restricted to a two-dimensional geometry. Numerical comparisons with finite arrays show that the main amplification and resonance 
features persist for realistic configurations, but a full theoretical treatment of finite-size and disorder effects remains to be developed.

Beyond these assumptions, several natural extensions can be envisioned. The present study focused on in-plane body waves, 
whereas a source located at the free surface would also generate Rayleigh waves that interact with the cavity network, in analogy 
with the interaction of surface waves with arrays of cylindrical inclusions in soft soils [18,28]. Future work will also aim to extend the 
present framework to configurations more representative of engineering practice, where cavities are lined or reinforced to prevent 
collapse. In a three-dimensional setting (e.g., tunnels, galleries, or interconnected voids), the homogenized interface approach can 
be enriched to include thin elastic linings, compliant interphases, or partially filled cavities, thereby accounting for the additional 
stiffness and damping introduced by support systems. Such developments will not only improve the realism of the model but also 
contribute to the broader field of seismic-wave control through engineered subsurface structures, at the interface between seismic 
metamaterials and earthquake engineering.
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Appendix A. Elementary problems

The jump conditions presented in Eq.  (4) are derived from the asymptotic homogenization framework developed in [22], with 
simplifications arising from the fact that the cavities considered here are rectangular and thus symmetric with respect to both the 
𝑥− and 𝑧− axes. For completeness, we recall the notation introduced in (4), namely (,𝑥,𝑧,𝑥,𝑧), and we detail below the 
elementary problems from which these effective coefficients are computed. The elementary problems are formulated in rescaled 
coordinates 𝒓m = 𝒓∕ℎ, over the domain:

 = {𝒓 = (𝑥 , 𝑧 ), 𝑥 ∈ (−1∕2, 1∕2), 𝑧 ∈ (−∞,+∞) },
𝑃 m m m m m
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Fig. 13. Effective coefficients as functions of the filling ratio 𝜑 for 𝑎∕ℎ = 3∕5, see also Table  3. (a) Diverging coefficients (,𝑥,𝑧) plotted 
in logarithmic scale versus (1 − 𝜑); dashed lines indicate the fitted power-law trends  ∼ (1 − 𝜑)−2.5 and 𝑥 = 𝜆𝑧∕(𝜆 + 2𝜇) ∼ (1 − 𝜑)−1, in 
agreement with (41) for 𝜑 → 1. (b) Vanishing coefficients (𝑥,𝑧) as functions of (1 − 𝜑); dashed lines show the fitted dependences 𝑥 ∼ (1 − 𝜑)
and 𝑧 ∼ (1 − 𝜑).

where  is the region of the cavity. For each pair of directions 𝑖, 𝑗 ∈ {𝑥, 𝑧}, we introduce the fields (𝑽 𝑖𝑗 ,𝜮𝑖,𝑗 ), which are periodic in 
𝑥m and satisfy the following static problem: 

⎧

⎪

⎨

⎪

⎩

div𝜮𝑖𝑗 = 𝟎, 𝜮𝑖𝑗 = 𝑨
(

𝜺
(

𝑽 𝑖𝑗) + 𝒆𝑖𝑗
)

, in 𝑃 ,
𝜮𝑖𝑗 𝒏 = 𝟎  on the cavity boundaries,
lim

𝑧m→±∞
𝜺
(

𝑽 𝑖𝑗) = 𝟎,
(36)

where 𝑨(𝜺) = 𝜆tr(𝜺) + 2𝜇𝜺 and 𝒆𝑖𝑗 = 𝒆𝑖 ⊗ 𝒆𝑗 . We thus need to solve three problems: 𝑽 𝑥𝑥, 𝑽 𝑦𝑦 and 𝑽 𝑥𝑦 (avec 𝑽 𝑦𝑥 = 𝑽 𝑥𝑦). The fields 
𝑽 𝑖𝑗 are defined up to constant which can be fixed to 

lim
𝑧m→±∞

𝑽 𝑖𝑗 = ±𝒃𝑖𝑗
2
. (37)

We also introduce the vectors : 

𝒄𝑖𝑗 = ∫𝑃
𝑨
(

𝜺
(

𝑽 𝑖𝑗)) 𝒆𝑥 d𝑥m. (38)

Due to the symmetry of the cavity geometry, the following relations hold: 𝑏𝑥𝑥𝑥 = 𝑏𝑥𝑧𝑧 = 𝑏𝑧𝑧𝑥 = 0 and we define 

𝑧 = 𝑏𝑧𝑧𝑧 + 𝑎∕ℎ, 𝑥 = 𝑏𝑥𝑥𝑧 ,  = 𝑏𝑥𝑧𝑥 + 𝑎∕ℎ. (39)

We also have 𝑐𝑧𝑧𝑧 = 𝑐𝑥𝑥𝑧 = 0, 𝑐𝑥𝑧𝑧 = 𝜇𝜑𝑎∕ℎ and for symmetric cavities, 𝑐𝑥𝑧𝑥 = 0, and we define 

𝑧 =
𝑐𝑧𝑧𝑥
𝜇
, 𝑥 =

𝑐𝑥𝑥𝑥
𝜇
, (40)

These coefficients satisfy the relation (corresponding to Eq. (3.23) in [22]): 

𝜆𝑧 − 𝜇𝑧 = (𝜆 + 2𝜇)𝑥 + 𝜆(1 − 𝜑)𝑎∕ℎ. (41)

By applying this effective behavior to the asymptotic analysis of Eq. (2.2) in [22] (after accounting for changes in notation), we 
recover the jump conditions given in Eq.  (4).

Appendix B. The near-clogging and clogging cases

The near-clogging regime corresponds to 𝜑 → 1, with 𝜑 = 1 representing the limiting configuration of a homogeneous air layer 
of thickness 𝑎 that fully separates the top layer from the underlying elastic half-space. A natural question is whether our effective 
jump conditions (4) correctly recover this limiting case, for which the boundary conditions must be stress-free at both interfaces 
𝑧 = −𝑑 and 𝑧 = −𝑑𝑎.

To address this point, Fig.  13 shows the variations of the effective coefficients (,𝑧,𝑥,𝑧,𝑥) with respect to the filling ratio 𝜑. 
As already visible in Table  3, the parameters (,𝑧,𝑥) increase with 𝜑, whereas (𝑧,𝑥) tend to zero. More specifically, we observe 
that in the limit 𝜑 → 1, the effective parameters are well described by the following power-law fits 𝑥 = 𝑐𝑥(1 − 𝜑), 𝑧 = 𝑐𝑧(1 − 𝜑), 
𝑥 = 𝑏𝑥(1−𝜑)−1, and  = 𝑏(1−𝜑)−2.5, where (𝑐𝑥, 𝑐𝑧, 𝑏𝑥, 𝑏) are independent of 𝜑 (they depend on 𝑎; in particular 𝑐𝑥 = 𝑐𝑧 = 0 for 𝑎 = 0, 
i.e., for cracks, while 𝑏𝑥 and 𝑏 remain nonzero). These trends are consistent with the expected transition, as 𝜑 approaches 1, from 
jump-type interface conditions to stress-free boundary conditions.
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To make this transition explicit, we reorganize the set of jump conditions (4) as 

⟨𝝈𝑥𝑧⟩ =
𝜆
ℎ

(

[

𝑢x
]

+ 𝑎
𝜕 ⟨𝑢z⟩
𝜕𝑥

)

, ⟨𝝈𝑧𝑧⟩ =
𝜆
ℎ𝑥

(

[

𝑢z
]

−
(

ℎ𝜇
𝜆

𝑧 + (1 − 𝜑)𝑎
)⟨

𝜕𝑢z
𝜕𝑧

⟩)

,

[

𝝈𝑥𝑧
]

= (1 − 𝜑)𝑎
⟨

𝜕𝝈𝑥𝑧
𝜕𝑧

⟩

− 𝜇ℎ 𝜕
𝜕𝑥

(

𝑥
𝜕 ⟨𝑢x⟩
𝜕𝑥

+ 𝑧
⟨

𝜕𝑢z
𝜕𝑧

⟩)

,
[

𝝈𝑧𝑧
]

= (1 − 𝜑)𝑎
⟨

𝜕𝝈𝑧𝑧
𝜕𝑧

⟩

− 𝜑𝑎
𝜕 ⟨𝝈𝑥𝑧⟩
𝜕𝑥

.
(42)

(using relation (41) to eliminate 𝑧).
In the limit 𝜑→ 1, these expressions reduce to 

⟨𝝈𝑥𝑧⟩ = (1 − 𝜑)2.5 𝜆
ℎ𝑏

(

[

𝑢x
]

+ 𝑎
𝜕 ⟨𝑢z⟩
𝜕𝑥

)

,
[

𝝈𝑥𝑧
]

= (1 − 𝜑)
[

𝑎
⟨

𝜕𝝈𝑥𝑧
𝜕𝑧

⟩

− 𝜇ℎ 𝜕
𝜕𝑥

(

𝑐𝑥
𝜕 ⟨𝑢x⟩
𝜕𝑥

+ 𝑐𝑧

⟨

𝜕𝑢z
𝜕𝑧

⟩)]

, (43)

which shows that, as 𝜑→ 1, 𝝈𝑥𝑧 vanishes at both interfaces 𝑧 = −𝑑 and 𝑧 = −𝑑𝑎, with no singular behavior at 𝜑 = 1. Similarly, 

⟨𝝈𝑧𝑧⟩ =
(1 − 𝜑)
ℎ𝑏𝑥

(

[

𝑢z
]

− (1 − 𝜑)
(

ℎ𝜇
𝜆
𝑐𝑧 + 𝑎

)⟨

𝜕𝑢z
𝜕𝑧

⟩)

,
[

𝝈𝑧𝑧
]

= (1 − 𝜑)𝑎
⟨

𝜕𝝈𝑧𝑧
𝜕𝑧

⟩

− 𝜑𝑎
𝜕 ⟨𝝈𝑥𝑧⟩
𝜕𝑥

. (44)

Since ⟨𝝈𝑥𝑧⟩ = 0 for all 𝑥, we also have 𝜕⟨𝝈𝑥𝑧⟩𝜕𝑥 = 0, and hence 𝝈𝑧𝑧 = 0 at both 𝑧 = −𝑑 and 𝑧 = −𝑑𝑎.
Consequently, in the near-clogging limit, the jump conditions continuously evolve toward the physically expected stress-free 

boundary conditions at both interfaces, confirming the internal consistency of the effective model. A similar behavior is found 
in acoustics, where – mutatis mutandis (the cavities are sound-hard inclusions and the elastic medium is replaced by a fluid) – 
the interface is characterized by a single ‘‘blockage coefficient’’ . There too, one observes a smooth transition from continuity of 
pressure and normal velocity for 𝜑→ 0 to vanishing normal velocity for 𝜑→ 1, without any singular limit [29]. 

Data availability

The results presented in this article are generated by numerical codes developed by the authors, as described in Section 2.3 and in 
[24]. External datasets were not used. The numerical data supporting the findings of this study are available from the corresponding 
author upon reasonable request.
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