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92220 BAGNEUX FRANCE 

Abstract 
Numerical simulation of the static semiconductor device equations using mixed finite 
element for the approximation and A.D.I. techniques (Douglas-Rachford with local time 
steps) for the solution is presented in this paper. The formulation with electrostatic 
potential φ and quasi-Fermi levels φn,φp is used. 

1 Introduction 
Numerical results related to the simulation of electrical behaviour of heterojunction semi­
conductor devices via mixed finite element arc presented. We start from the classical 
static equations governing this behaviour, written with the e l ec t ros t a t i c p o t e n t i a l φ 
and the quas i -Fermi levels φn,φp (for electrons and holes respectively), i.e. the follow­
ing nonlinear partial differential system of equations [l][2] 

These equations are completed with boundary conditions which are in general, non-
homogeneous Dirichlet conditions for φ, φn and φp on some parts of the boundary (ohmics 
contacts) and homogeneous Neumann conditions on the other parts. The system (1.1)-
(1.3) is then written in an equivalent way by introducing the flux var iab les as dependent 
variables so a new system with 6 unknowns is obtained. A weak for­
mulation of the last system is used for a finite clement approximation (Raviart-Thomas 
mixed finite elements [4]) It is well known that as particular case, (when no external 
potential is applied i.e. - equilibrium state-), the non linear Poisson equation (1.1) only 
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426 F. Hecht, A. Marrocco, E. Caquot and M. Filoche 

has to be considered; in this case φn and φp appear as constant parameters ( typically 
φn ≡ φp ≡ 0 ). A detailed implementation of such finite elements is given in that partic­
ular case; the resulting saddle point problem is solved by the use of an A.D.I, technique 
(Douglas-Rachford algorithm which may be considered as a variant of UZAWA algorithm 
within the context of augmented lagrangian [5][6][7][8], in which the use of a local time 
step (or homogenized penalization) leads to an efficient iterative procedure for the solution 
of such nonlinear problems. 
In (1.1)-(1.3), N ( φ , φ n ) , P(φ,φp) are respectively the electron and hole concentrations; 
typical models for these non-linear functions can be found in [1][2][3], as well as for the 
mobilities μn and μp and the generation/recombination term U ( φ , φ n , φ p ) . Extension of 
the numerical procedure to the set of equations (1.1)-(1.3) is considered and numerical 
results presented. 

2 Numerica l solution of non linear Poisson equat ion 
using mixed finite elements . 

2.1 Problem formulation and solution 
As in [9] let us describe the framework of mixed finite element approximation and solution 
by an A.D.I. technique of the non linear Poisson equation. We start from the problem: 
Find φ solution of 

with the boundary conditions 

Note that Γd = ∂Ω - Γn and that 

with φn ≡ φp ≡ 0. 
F(.) is an increasing function (see for example fig 1 for GaAs material). 
The problem (2.1)-(2.3) is written in an equivalent way by intoducing the flux variable 
as dependent variable: Find and φ such that 
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Modelling for heterojunctions with mixed finite elements 427 

Let us consider the following Sobolev spaces 

For sufficiently regular given data, we obtain an equivalent weak formulation of the prob­
lem (2.5)-(2.8) 
Find ∈ H (div) and φ ∈ L2(Ω) such that 

with the condition 

In general for the applications we have gn=0 , so we seek for 
The weak formulation (2.11)-(2.12) is used for finite element approximation; following [4] 
we define finite dimensional subspaces of L2(Ω) and H(div) constructed over a triangula-
tion Th of Ω (for example in 2D). 

We suppose that Γn is obtained by union of boundary edges of the triangular mesh Th 

and that 

The formulation of the discrete problem is obvious from (2.11)-(2.15). 
The problem (2.11)-(2.12) (both in continuous and discrete case) is a saddle point problem 
and as in [5][6] for example, we can found that these equations are the stationary condi­
tions of a Lagrangian. Following the same techniques as in [5][6], Augmented Lagrangian 
can be associated and some variants of the UZAWA algorithm (named ALG2, ALG3) can 
be used to solve numerically such saddle point problems. As stated in [5][6][7], there is 
a close relation between the algorithms called ALG2 , ALG3 and the well known A.D.I. 
techniques (Douglas-Rachford and Peaceman-Rachford respectively) used for solving sta­
tionary elliptic problems as limit of an associated transient problem. 
Let us describe here the Douglas-Rachford A.D.I. technique and point out that we find 
again the main feature of the augmented lagrangian approach in the solution of a class of 
strongly non linear elliptic partial differential equations [5][8], that is to say, the separation 
(decoupling) between the non linearity and the differential character of the operator. 
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428 F. Hecht, A. Marrocco, E. Caquot and M. Filoche 

We suppose that φ° and are given, the Douglas-Rachford algorithm (k=0,l,2,3,.....), 
applied to our problem is explicitely given by 

The second step in the Douglas-Rachford algorithm (given by equations (2.17) and (2.18)) 
leads to two decoupled problems in and φk+1 respectively and finally a step in the 
Douglas-Rachford algorithm may be summarized by (Peaceman-Rachford technique and 
θ-scheme [6] lead to same decomposition procedures): 

• a set of nonlinear (independent) equations with the unknown (one equation 
for each triangle of the mesh Th) 

• a linear problem which gives 

• φk+1 is then obtained element by element with 
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Modelling for heterojunctions with mixed finite elements 429 

2.2 Some numerical aspects 
We can see on figure 1 the representation of the function F (2.4) for GaAs semiconductor 
material. The thick line represents the function for a doping value of +1017 (donnors), 
the other lines for values 1018,1019,1016 and 1015. The flat region of the curve (which is 
larger for GaAs than for Ge or Si -see figure 2 which gives for Si the representation of 
F with the same scaling-) directly induces numerical problems in the use of a Newton 
iterative process (for example) in the solution of an equation of type F(φ) = constant. 
The major numerical difficulties are concentrated in the choice of the time step Δt and 
consequently in the choice of an (efficient) algorithm for the solution of the nonlinear 
equation (2.19). We are in a context in which, convergence of Douglas-Rachford algorithm 
is, in theory, obtained for any At, but of course, the speed of convergence will depend of 
the choice of Δt values. 

Following [7] for the convergence behaviour of A.D.I. methods (or equivalently variants 
ALG2 or ALG3 of UZAWA methods [5][8]), it appears that a local time step (-a constant 
value by element seems a natural choice-) is appropriate and (in theory) a value given by 

where φT* is the value on triangle T of the potential φ*, solution of the problem (Poisson 
equation) would be optimal (-at least near the solution-). In fact (2.22) do not give an 
answer concerning the "good" choice for the time step Δt, but this formula (2.22) may 
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430 F. Hecht, A. Marrocco, E. Caquot and M. Filoche 

be used to update the time steps during the iterative process. It has to be noted that 
when we change the time step At, the matrix of the linear problem (2.20) is changed 
and a new factorization (costly operation in CPU time) has to be done. Other practical 
problems occur and are connected to the fact that on computers we work with flotting 
point arithmetics and some parameters cannot be choosen too large with respect to other 
ones. The values for the time steps given by (2.22) may be very large -see fig(l)- (with 
theoretically an infinite value when F(φ) tends to a constant, -as for the degenerate case 
or limiting case,i.e. the linear Poisson equation!-). It is easy to see that if At is too 
large, in such a way that numerically the mass term becomes negligible 
in comparison with the stiffness term then the resulting linear 
problem (2.20) is singular and ADI algorithm breaks down. Certainly upper bounds 
(derived from eq. (2.20)) have to be applied to At values given by (2.22); we add to 
relation (2.22) 

where S=area of triangle, a ~ 104,105 for double precision computations; this relation 
(2.23), derived from linear problem, seems to give satisfactory results. Stationary solutions 
(convergence for residuals values of type (2.24) for both φ and of order 10 - 1 2) are 
obtained within 50-70 Douglas-Rachford steps for any practical configurations (any usual 
materials and doping values). The time steps arc updated periodically (each 15-20 ADI 
steps), so only 3-4 matrix factorizations are needed during the iterative process. We can 

D
ow

nl
oa

de
d 

by
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 A

t 0
1:

02
 2

8 
A

pr
il 

20
18

 (
PT

)



Modelling for heterojunctions with mixed finite elements 431 

see on fig 3 a typical result for a GaAs abrupt junction (L + = 0.5μ, L- = 2.μ, and width 
l = 0 . 2 μ ) , w i t h doping concentration values 1017 (for donnors) and 1015 (for acceptors). 
On figure 3 are represented: 

• a) all the iterates φ k + 1 (cut along the structure), 

• b) the final solution (i.e. after ADI convergence -56steps-), 

• c) the variation of residuals (of type (2.24)) for potential φ -thick line- and for 
-dotted line-. 

From numerical experiments, it seems that the number of iterations in ADI algorithm 
needed to reach convergence is not mesh dependent. 

D
ow

nl
oa

de
d 

by
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 A

t 0
1:

02
 2

8 
A

pr
il 

20
18

 (
PT

)



432 F. Hecht, A. Marrocco, E. Caquot and M. Filoche 

3 Numerical simulation including continuity equa­
tions. 

The same mixed finite elements framework is used for the continuity equations. Let us 
recall the continuity equation for electrons (1.2) (the following can be transposed for holes 
equation) 

As in the previous section, (3.1)-(3.3) is transformed on the following equivalent problem 
Find J n and φn such that 

A weak formulation is the obtained for problem (3.4)-(3.7), i.e. Find J n ∈ H(div) and 
φn ∈ L2(Ω) such that 

The discrete problem is obtained by the same way as in the previous section, and the 
Douglas-Rachford scheme applied to this problem leads to: 
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Modelling for heterojunctions with mixed finite elements 433 

Once again, problem (3.11)-(3.12) can be decomposed. φnk+1 value is extracted from (3.11) 
and then using relation (3.10), we obtain 

Putting this last value in (3.12), we obtain an equation for the variable Jnk+1 ∈ Voh only: 

Equation (3.14) (as well as the analogous one for holes) is non linear (the mass-matrix 
depends on the unknown J n

k + 1 ) and certainly will add numerical difficulties in practical 
implementations. 

As (2.16) or (2.19), (3.10) is a system of NT independent nonlinear equations (one equation 
by triangle), the function F(φ) is replaced by U(.,φn,.) for which a (partial) representation 
(corresponding to the classical Shockley-Read-Hall generation/recombination model) is 
given on figure 4. The thick line represents the function U with the two others parameters 
ieφ=0,φp=0, the others curves arc for different φp values. 
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434 F. Hecht, A. Marrocco, E. Caquot and M. Filoche 

Local time steps are estimated by similar techniques as for the Poisson equation, but due to 
the non linearity of the flux equations (like (3.14)), "good" estimations are more difficult to 
determine. Various numerical implementations can be considered, starting from sequential 
A.D.I. steps (2.19)-(2.21) , (3.10)-(3.12), .., for combined with fixed 
point algorithm for (3.14) (and analogous one for holes), to more implicit schemes by 
replacing, for example, sequential independant equations (2.19) (3.10) (and analogous 
one for the holes), by a coupled 3x3 nonlinear equations for variables 
and solving non linear problems of type (3.14) by more sophisticated techniques. 
Partial numerical results are presented in the following. We use (Douglas-Rachford) A.D.I. 
steps sequentially for Poisson, electron continuity, hole continuity equations. Newton type 
algorithm is used for the non linear equations with unknown. The 
non linear flux equations (type (3.14)) arc solved via fixed point algorithm. 
We consider the GaAs diode described previously with non zero applied potential at ohmic 
contacts. No generation-recombination term is considered in this numerical application 
( U = 0 ) . 

• Fo rward b ias 
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Modelling for heterojunctions with mixed finite elements 435 

We can see on figures (5, 6) the results obtained in the case of 0.2V and 0.6V 
forward bias. For both numerical simulations the initial state for the ADI algorithm 
is the equilibrium state (we can also proceed by continuation on applied voltage and 
taking as initial state, the solution at previous bias). 

The following numerical results are reported on fig.(5, 6): 

— a) evolution of electrostatic potential and Fermi levels during ADI steps. 

— b) the final solution (together with initial solution -dotted lines-). 

—c) the decrease of residuals (log. scale) for all variables φ , φ n , φ p -thick lines-, 
-dotted lines-. 

— d) carriers concentrations (n and p, log scale) along the structure (dotted lines 
represents the initial states i.e. concentrations at equilibrium). 

Currents for electrons and holes have been computed through different sections 
along the structure (including extremities, i.e. ohmics contacts) -these currents are 
very easy to compute in the context of mixed finite elements when the section is 
composed of triangle edges-. As expected constant values are found (see table 1 
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436 F. Hecht, A. Marrocco, E. Caquot and M. Filoche 

Forward bias 

BIAS 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 

In 
-3.55 * 10-17 

-6.96 * 10-14 

—1.27 * 10-10 

-1.19 * 1 0 - 7 

-3.64 * 1 0 - 5 

-4.87 * 1 0 - 3 

-4.36 * 10-1 

-1.54 * 10+1 

Max deviation 
0.25 % 

2. * 1 0 - 3 % 
4. * 10 -6 % 
7. * 1 0 - 6 % 
2. * 10-10 % 
7. * 10-11 % 
1. * 10-11 % 
1. * 1 0 - 7 % 

IP 
-7.06 * 10-20 

-1.53 * 10-16 

-1.99 * 10 -13 

-7.50 * 10-11 

-1.72 * 1 0 - 8 

-3.57 * 1 0 - 6 

-5.16 * 1 0 - 4 

-5.81 * 1 0 - 2 

Max deviation 
0.31 % 

2. * 1 0 - 3 % 
5. * 1 0 - 6 % 
7. * 1 0 - 9 % 
5. * 10-11 % 
5. * 10-11 % 
8. * 10-11 % 
5. * 1 0 - 8 % 

Table 1: Electron and Hole currents. 

where I n or (Ip) is the mean value of the current through the differents sections, we 
give also the maximun deviation (percentage) of the computed currents with respect 
to this mean value). It appears that with the mixed finite element approximation 
described in this paper, currents can be computed without loss of precision, by 
direct integration along ohmic contacts. 

• R e v e r s e bias 

We proceed in this case by continuation on applied voltages (increments 0.2V), start­
ing from the equilibrium state. Figure 7 gives the result obtained for the electrostatic 
potential, Fermi levels and carriers concentration, for the step (—0.2V → —0.4V) 
and for (—1.4V → —1.6V). Results concerning currents arc reported on table 2. 
As expected the variation of the currents with respect to the applied bias is ex­
tremely much slower than in forward bias. In the case of reverse bias, convergence 
of ADI algorithm is much slower than for forward bias and it seems -presently- that 
the determination of distributed time steps is more crucial; as the currents flowing 
along the structure are extremely low, compatibility problems (problems due to lim­
ited machine precision of real numbers) between primal and dual variables for the 
continuity equations are always present. 
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Modelling for heterojunctions with mixed finite elements 437 

Reverse bias 

BIAS 
0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 

In 
1.87 * 10-20 

2.04 * 10-20 

2.43 * 10-20 

2.94 * 10-20 

3.61 * 10-20 

4.53 * 10-20 

5.80 * 10-20 

7.54 * 10-20 

Max deviation 
0.23 % 
0.24 % 
0.26 % 
0.27 % 
0.28 % 
0.29 % 
0.27 % 
0.29 % 

IP 
3.05 * 10 -23 

3.12 * 10-23 

3.13 * 10 -23 

3.13 *10 - 2 3 

3.14 * 10 -23 

3.14 * l0 - 2 3 

3.15 * 10 -23 

3.16 * 10 -23 

Max deviation 
0.22 % 
0.25 % 
0.32 % 
0.33% 
0.27 % 
0.34 % 
0.33 % 
0.29 % 

Table 2: Electron and Hole currents. 
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