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We demonstrate theoretically and experimentally that one-dimensional plasmons confined in doped wires
are either extended or longitudinally confined when the lateral width of the wires is periodically modulated.
Theoretical dispersion curves, calculated within a classical framework, reproduce well the experimental dis-
persion deduced from Raman scattering on deep etched modulated wires. Zone-edge gap openings, increasing
with the modulation amplitude, are exhibited. We show that deep etching allows good control of complex
geometries and provides quasiabrupt boundary conditions.@S0163-1829~96!50140-2#

Advances in the microfabrication techniques of
semiconductors1 have given access to devices with one-
dimensional~1D! confinement of electrons. Unique electrical
properties have been predicted such as high electron
mobility.2 Quantized conductances3 and improved transcon-
ductance in field effect transistors4 have been reported. The
plasmon dispersion is a very sensitive probe for important
physical parameters of these devices such as the electron
density distribution and the electrostatic confinement poten-
tial. A classical description of the plasmon dispersion in
wires has been proposed by Eliasson and co-workers.5 It ap-
plies when the lateral size is such that single electron quan-
tization is negligible~.30 nm typically!. The predicted dis-
persions have been successfully tested recently6,7 on deep
etched wires studied by Raman scattering. Experimental
plasmon frequencies for other fundamental geometries such
as circular dots8 and rings9 could likewise be explained
within the classical models.10,11For more complicated lateral
confinement geometries, the long-range character of the
electron-electron interaction renders the numerical problem
increasingly difficult. From the experimental side, the fabri-
cation of such devices on a nanometer scale necessitates in-
novative steps in semiconductor process technology. The
spectroscopy of such systems is thus very useful to further
analyze the physics of the low-dimensional electron gas, in
particular, to understand the influence of lateral boundaries
on its electronic and optical properties, and to contribute to
the assessment of their ultimate dimensions.

In this paper, we present an experimental and theoretical
determination of the plasmon dispersion in wires with a
strong periodic modulation of the lateral size along the wire
axis. We describe a numerical solution for the plasmon dis-
persion in laterally confined 2D electron systems. Its predic-
tions are in excellent agreement with the experimental dis-
persion, which we have measured by Raman scattering on
deep etched modulation-doped GaAs quantum wells. We
demonstrate the appearance of both extended and confined
1D plasmons and analyze the criteria for the existence of
these two behaviors. The dispersion of extended 1D plas-
mons displays energy gaps at zone center and zone edge,
reflecting the longitudinal modulation. The energies of con-

fined 1D plasmons are significantly modified due to the long-
range character of the Coulomb interaction.

We have fabricated modulated wires by deep reactive ion
etching of a GaAs/GaxAl12xAs modulation-doped single
quantum well, followed by an anodic oxidation to passivate
the damaged part on the lateral surfaces of the wires.12 The
initial sample and the process are identical to the one already
described in Ref. 6 for the fabrication of unmodulated wires.
We have realized arrays of 160 parallel, 160-mm-long peri-
odically modulated wires. The period of the array~1 mm!
prevents any significant electrostatic coupling between the
wires. Three different arrays have been realized in order to
investigate both a change in the modulation amplitude at
fixed period~samplesA andB! and a change in the modu-
lation period with close modulation amplitude~samplesA
and C!. Figure 1 shows a scanning electron microscopy
~SEM! photograph which illustrates the good definition of
the modulated profile. We give in Table I for each sample
the nominal parametersa,b,c,d according to the definitions
shown in Fig. 1. An accurate determination of these param-
eters from the SEM micrograph is difficult due to the com-
plexity of the profile. The oxidation rate, which appears to be
highly isotropic, has been previously calibrated on unmodu-
lated wires. We have thus determineda,b,c,d according to
the method developed in Ref. 6 for unmodulated wires: the
coded width, corrected from the oxide thickness~48 nm on
each surface!.

FIG. 1. ~left! SEM micrograph of sampleA, ~right! schematic
representation of the discretization grid and definition of the model
parameters within the unit cell.
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Raman quasibackscattering experiments have been per-
formed in pumped liquid Helium with an incident laser en-
ergy ~;1.59 eV! in strong resonance with interband transi-
tions associated to the second conduction subband of the
GaAs single quantum well. The plasmon wave vector along
the wire is varied either by tilting the angle of incidence
along the wire axis or by rotating the sample around the
normal to the sample surface, according to the following
relation:
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wherel is the incident wavelength,u i andus the incidence
angle of the incoming and scattered light, respectively, andw
the angle between the plane of incidence and the wire axis.
Whenw50, the parity with respect to wire axis is preserved,
and even~respectively, odd! plasmons are observed in par-
allel and perpendicular polarization, respectively.13 For non-
vanishingw, all the modes are activated in both polariza-
tions. These selection rules remain valid in the modulated
wires due to the symmetry of the modulation. Polarized Ra-
man spectra, obtained on samplesA andC with w50, are
compared in Fig. 2 with the spectra obtained on a 100-nm-
wide unmodulated wire in the same conditions.6 In the pres-
ence of the modulation, the lowest-energy even plasmon,
allowed in this configuration, split into two components. The
wave vector, where this splitting is minimum increases with
decreasing longitudinal period and is given byq5p/d. From
Raman experiments in other configurations, we find that the
mode with the second-lowest energy~the lowest-energy odd
mode! displays almost no dispersion. We attribute both ob-
servations to the effect of the periodic modulation of the
lateral width.

In order to model these experimental results, we have
linearized the plasmon equations in the classical
approximation.5 The electron density fluctuationn1(x,y) at
frequencyv and the associated fluctuationf1(x,y,z) of the
electrostatic potential must satisfy the two following equa-
tions:
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wheren0(x,y) is the equilibrium density distribution in the
system. The electrons are assumed to be perfectly confined
in thez50 plane. The dielectric constant« and the effective
massm* are supposed to be constant over the whole system.
Upon elimination ofn1 between both equations, one finds
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The rootsv of this integrodifferential equation are the plas-
mon oscillations of the electron system. In absence of lateral
confinement,n0 becomes a constant andf1 can be Fourier
transformed in two dimensions. The integral in Eq.~1! can
be performed analytically and one recovers the usual 2D
plasmon dispersion. When lateral confinement is introduced,
numerical solutions of this eigenvalue equation must be con-
sidered, in particular because Eq.~1! is strongly nonlocal
with slowly decreasing long-range interactions. We have as-
sumed abrupt boundary conditions: the equilibrium density
n0 is taken as a constant within the wires and vanishes out-
side. We have used a finite differences technique to deter-
mine the plasmon dispersion in periodically modulated wires
and projected the integrodifferential equation~1! over a basis
of local functions constant on each rectanglei j of the grid as
shown schematically in Fig. 1. The geometrical parameters
of the model are shown in the figure and the resulting dis-
crete set of linear equations writes

TABLE I. Comparison between the nominal parameters of the
three different samples studied in this work, and the one deduced
from the fit of the plasmon dispersions to our classical model.

Dimensions~nm!

A B C

nominal electrical nominal electrical nominal electrical

d 250 250 250 250 300 300
a 184 172 184 160 200 200
c 84 96 44 50 100 127
b 34 50 34 50 90 90

Density ~1011 cm22!

5.9 5.3 4

FIG. 2. Raman spectra obtained in parallel polarization on
sampleA, sampleC, and a 100-nm-wide unmodulated wire, for
different values of the wave vector along the wire axis. This param-
eter is given inmm21 for each spectrum in the figure.
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whereda anddb are the lateral sizes of the unit rectangle.
The first factorC(q,i2k, j2 l ) of each term is the effec-

tive Coulomb interaction between sitei j and sitekl plus all
other sites equivalent tokl by a periodic translationnd along
the wire. q is the Bloch wave vector along this direction.
This factor writes

C~q,m,p!
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where the integral can be analytically determined.
The second factor results from the projection of

¹–(n0¹f! on the local functions. The expression given in
Eq. ~2! is valid for any internal point of the lattice wheren0
is constant. For boundary points,n0 is vanishing on one side
of the points~two sides for a corner point!. In this case, only
the internal part of the discretized second derivative is re-
tained and the corresponding term writes:f i2f i61 instead
of 2f i2f i112f i21, wherei is a line or column index and
only i11 or i21 is considered, depending on the location of
the point on the boundary.

The above theory quantitatively reproduces the dispersion
of the three lowest branches on all three samples investi-
gated. This is illustrated in Figs. 3~b! and 3~c! where we
show the results for samplesA andB. In Fig. 3~a!, we show
for comparison the dispersion of the lowest even (n50) and
the lowest odd (n51) modes in unmodulated wires with
widths of 60, 100, and 180 nm, which approximately corre-
spond to the different widths entering the geometry of the
modulated wires. Owing to the simplification of the unit cell
with respect to the real one, we expect to obtain the best
description for the lowest plasmon branches, which are

mostly sensitive to the lowest Fourier components of the
profile. Indeed, we have obtained an excellent fit of the dis-
persion curves, using model parameters~see Table I! close to
the nominal ones. The modes in the modulated wires are
labelled with two indicesn/m, the first of which corresponds
to the lateral confinement perpendicular to the wire axis, and
the second of which is connected to umklapp processes due
to the longitudinal modulation. The gap opening at zone
edge, due to the anticrossing between mode 0/0 and 0/21,
strongly increases when the modulation is deepened. On the
other hand, the relative positions of mode 0/21 and 1/0, as
well as their dispersion, are very sensitive to the exact width
of the wide part of the wire, in which mode 1/0 is confined
~see below!. As shown in Table I, we have slightly adjusted
a, b, and c with respect to the nominal values in order to
improve the agreement with experiment. These variations are
attributed to uncertainties in the oxidation depth with respect
to its determination on unmodulated wires, and to the sim-
plification of the model geometry with respect to the real
profiles. A solution of the plasmon dispersion in confined
electron systems with arbitrary geometries, based on finite
elements technique, using a triangular mesh, is presently un-
der development. Results for realistic profiles will be pre-
sented elsewhere.

In order to better understand the impact of the lateral
modulation on the plasmon dispersion curves, we will now
discuss the calculated electrostatic potential associated to the
observed branches. They are shown in Fig. 4 at the longitu-
dinal zone edge for branchn/m50/0 and 1/0 in the unit cells
corresponding to samplesA andB. The potential associated
to mode 0/0 is fully delocalized within the whole unit cell.
We attribute this property to the overlap between the energy
bands of moden50 in the unmodulated wires with lateral
widths a and c, respectively. The corresponding dispersion
curve displays a folding behavior with gap openings at zone
center and zone edge. On the contrary, mode 1/0 is confined
in the widest part of the unit cell. The lowest energy of the
odd plasmonn51 indeed is smaller in the wide constituting
wire than in the narrow one. As plasmon 1 is not coupled to

FIG. 3. Comparison between experimental and theoretical plas-
mon dispersions along the wire axis for mode 0~open symbols! and
mode 1~closed symbols! in ~a! three unmodulated wires with dif-
ferent widths: 60~down triangles!, 100 ~up triangles!, and 180 nm
~squares! and in two different modulated wires:~b! sampleA and
~c! sampleB.

FIG. 4. Fluctuations of the electrostatic potential associated with
the folded plasmon mode 0/0 and the confined one 1/0, calculated at
zone edge for samplesA andB, respectively. The arrows indicate
the wire axis.
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plasmon 0 at the same energy, due to their opposite parities,
an energy range appears where no allowed modes are avail-
able in the narrow section. Plasmon confinement thus takes
place. Mode 1/0 exhibits this behavior in the two considered
samples. The corresponding dispersions are very flat. The
existence of higher confined plasmons associated to branch 1
depends on the ratio of lateral sizesa andc. Moreover, the
analysis of higher branches becomes more intricate because
of the strong interbranch coupling, for instance between
modes 0 and 2, due to the longitudinal modulation.

The coexistence of folded and confined excitations has
been previously discussed for other collective excitations
such as for instance phonons in superlattices.14 There, how-
ever, the modulation of the sound velocity, leading to the
folding effect is limited in amplitude. The modulation of the
lateral width which is employed here can be arbitrary large.
It should also allow the continuous transition towards con-
fined plasmons in boxes to be studied. Moreover, the long-
range character of the Coulomb interaction produces some
specific behavior in the quantitative description of the ener-
gies of the modulated plasmons. For instance, in some cases,
the energy of the confined mode 1/0 is not increasing but
decreasing when the width of the constriction is reduced
though this reduction induces an increasing confinement as
can be seen in Fig. 4. The energy of mode 1/0 can be even
smaller than the one of mode 1 in the wire without constric-
tion. This behavior indeed is in contradiction to the usual
trend for excitations with increasing dispersion curves, that a
stronger confinement induces increasing energy. We have
understood that this behavior results from the associated re-
duction of the average number of ‘‘neighbors’’ interacting
with any site inside the wide part. This implies a significant
decrease of the total Coulomb force on the site and thereby,

of the plasmon energies. This effect overcompensates the
increase due to the confinement. The same explanation ap-
plies to the decrease of the energy of the lowest 1D plasmon
(n50) in unmodulated wires, contrary to the higher ones
(n>1), when the lateral width is reduced.6

In conclusion, we have reported in this paper a quantita-
tive determination of plasmons in doped wires, the lateral
width of which is periodically modulated. The results pre-
sented here demonstrate the coexistence of longitudinally
confined and extended plasmons in 1D systems with modu-
lated boundary conditions. Within a classical frame, we have
reproduced well the experimental dispersions, including gap
openings at zone edge, deduced from Raman scattering on
deep etched wires. The excellent ability of our theoretical
approach, assuming a constant equilibrium density over the
whole wire, to reproduce the dispersion of electronic excita-
tions in unmodulated6 and strongly modulated wires suggests
that nearly abrupt boundary conditions apply to oxidized
GaAs lateral surfaces, at least at low temperature under illu-
mination. The latter and the observation of large gaps in
one-dimensional plasmon dispersion show that our deep RIE
process is a suitable method to define complex geometries on
a very low scale~10 nm! while preserving the high quality of
the initial 2D electron gas. This offers a powerful tool to
investigate new physical problems in low-dimensional sys-
tems with almost arbitrary geometries, for instance the con-
tinuous transition from quantum wires to quantum boxes.

It is a pleasure for us to thank C. Mayeux, D. Arquey, and
C. Dupuy for expert technical assistance and J. M. Gerard
and J. Y. Marzin for useful discussions and a critical reading
of the manuscript. We gratefully acknowledge financial sup-
port from the European Union~Human Capability and Mo-
bility program!.

*Present address: Siemens AG, Semiconductor Division, Otto-
Hahn-Ring 6, 81739 Munich, Germany.

1For a review, see theProceedings of the Sixth International Con-
ference on Modulated Semiconductor Structures@Solid-State
Electron.37, 523–1344~1994!# andProceedings of the Seventh
International Conference on Modulated Structures~Solid-State
Electron.! ~to be published!.

2H. Sakaki, Jpn. J. Appl. Phys.19, L735 ~1980!.
3D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H.
Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacok, D. A. Ritchie,
and G. A. C. Jones, J. Phys. C21, L209 ~1988!; B. J. van Wees,
H. van Houten, C. W. J. Beenaker, J. G. Williamson, L. P.
Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev.
Lett. 60, 848 ~1988!.

4S. Bollaert, P. Legris, E. Delos, A. Cappy, P. Debray, and J.
Blanchet, IEEE Electron Device Lett.41, 1716~1994!.

5G. Eliasson, J. W. Wu, P. Hawrylak, and J. J. Quinn, Solid State
Commun.60, 41 ~1986!.

6C. Dahl, B. Jusserand, and B. Etienne, Solid-State Electron.40,
261 ~1996!.

7T. Egeler, G. Abstreiter, G. Weimann, T. Demel, D. Heitmann, P.
Grambow, and W. Schlapp, Phys. Rev. Lett.65, 1804~1990!.

8S. J. Allen, Jr., H. L. Sto¨rmer, and J. C. Hwang, Phys. Rev. B28,
4875 ~1983!.

9C. Dahl, J. P. Kotthaus, H. Nickel, and W. Schlapp, Phys. Rev. B
48, 15 480~1993!.

10A. L. Fetter, Phys. Rev. B33, 5221~1986!.
11H. L. Cui, V. Fessatidis, and O. Ku¨hn, Superlattices Microstruct.

17, 173 ~1995!.
12J. Y. Marzin, A. Izrael, and L. Birotheau, Solid-State Electron.

37, 1091~1994!.
13C. Dahl, B. Jusserand, and B. Etienne, Phys. Rev. B51, 17 211

~1995!.
14B. Jusserand and M. Cardona, inLight Scattering in Solids V,

edited by M. Cardona and G. Gu¨ntherodt ~Springer, Berlin,
1989!.

54 R11 101FOLDED AND CONFINED ONE-DIMENSIONAL . . .


