
Electrochimica Acta 46 (2000) 213–220

Shape-dependency of current through non-linear irregular
electrodes

M. Filoche *, B. Sapoval
Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Received 21 December 1999; received in revised form 21 February 2000

Abstract

We describe a simple way to understand the non-linear response of an irregular resistive electrode in d=2. It is
based on the concept of an active zone in the Laplacian transfer to and across irregular interfaces. It applies to
arbitrary electrode geometry and permits to compute the flux across an irregular electrode from its geometry without
solving the Laplace problem. The simplifying arguments that are used are tested numerically on prefractal models of
the geometrical irregularity. One finds that, for electrodes following a local Butler–Volmer response, the Tafel slope
depends on the geometry. It is shown that the measure of the cell impedance leads to the determination of the actual
active potential. It also gives the mean size of a part of the electrode with a surface impedance equal to the electrolyte
bulk resistivity. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The effective properties of rough electrodes play an
important role in the behavior of electrochemical cells
[1–5]. To understand how and why geometrical irregu-
larity influences the properties of electrodes, fractal
models of electrode geometries have been introduced
and studied. At first, the goal was to explain the very
frequent constant phase angle behavior found in
impedance spectroscopy. Even if it is now known that
this explanation is not general [6,7], this approach has
been fruitful because the understanding of fractal in-
terfaces has proven to give very simple tools to under-
stand impedance spectroscopy of irregular interfaces
whatever their geometry. This is a situation where the
electrode works in the linear regime when the local
current density flowing across the interface is

proportional to the local potential drop across the
interface [8–10]. However, in most practical uses, real
electrodes work under a non-linear current/potential
relation as soon as the local potential drop at the
interface is larger than tens of millivolts.

The purpose of this work is to extend and verify
numerically the concepts used for the linear regime,
namely the land surveyor method, to the non-linear
transfer across irregular interfaces. Here again, we will
use fractal models for the geometry, working under
the implicit assumption that if one understands the
basic physical features governing the behavior of non-
linear fractal electrodes, one has tools to understand
the behavior of any irregular non-linear system. The
interest of using fractal models lies in the possibility to
write analytical solution for the quantities which gov-
ern these phenomena. The analytical results are then
tested by comparison with direct finite elements com-
putations. These comparisons validate the approxima-
tions used in the theory.* Corresponding author.
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Fig. 1. (a) The irregular electrode of interest (the working electrode in electrochemistry) has an inner cut-off l and a size or
diameter L. In the particular case represented here, the fractal dimension is Df= log 4/log 3. This paper deals with the
electrochemical problem where the applied voltage on the cell is V0 on the planar counter electrode and 0 on the working
electrode. (b) Land surveyor method: the curvilinear distance between the ends of a grain is equal to L. In the non-linear case
that we consider, the rope length L depends on the local potential. It is smaller in the active zone of the electrode.
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2. Linear reformulation of the non-linear problem

2.1. Description of the problem

We consider a two-dimensional domain V of conduc-
tivity s, limited by an upper rough or irregular elec-
trode (V1, and a flat counter-electrode (V2 (Fig. 1a).
The electric current density is given by Jb = −sgrada V
and the electrostatic field V in the domain V obeys then
to a Laplace equation:

DV=0 (1)

(V1 is a flat metallic electrode on which a constant bias
V0 is applied. (V2 is a rough grounded electrode of
resistivity r. In general the local d.c. current density
across an electrode obeys the Butler–Volmer equation

j= j0{exp[(1−b)ZeV/kT ]−exp[−bZeV/kT ]} (2)

where Ze is the ionic charge, k is the Boltzmann
constant, T the temperature and b is a number smaller
than 1, called the cathodic transfer coefficient [11].
Note that for the linear regime (ZeV/kT�1) we have
j= j0ZeV/kT and consequently the Faradaı̈c surface
resistance is related to j0 by r0=Vj=kT/Zej0. If we
work with positive voltage, the Butler–Volmer equa-
tion simplifies to j= j0 · {exp[(1−b)ZeV/kT ]−1}.
This means that there exist locally on the electrode a
non-linear surface resistivity r(V) which is given by

r(V)=
V

j0
�

e
(1−b)ZeV

kT
−1� (3)

This resistivity depends on the local potential drop.
Calling s the curvilinear abscissa on the working elec-
trode, this can be written as a non-linear boundary
condition r(s, V(s))J(s)=V(s) between the local cur-
rent density and the value of the electrostatic potential
at the rough interface. The conservation of charge
implies that

Jb · n� =s
(V

(n
=

V

r(s, V)
(4)

This non-linear boundary condition makes this prob-
lem very difficult to solve in general, especially for
irregular electrodes. The following discussion presents
an approximate way to deal with this question. It is
based on the so-called land surveyor method that was
introduced to solve this problem for the linear case
[10,12].

2.2. The land sur6eyor method in the linear case

Let us consider the most simple description of an
irregular physical surface which is the ratio of the
perimeter Lp divided by its size L. Following Refs.
[13,14], we call this number S :

S=
Lp

L
(5)

This number S, which geometrical signification is
apparently trivial, has in fact a very important meaning
in characterizing the screening of the irregular structure
for ordinary Laplacian fields. One knows from
Makarov’s theorem [15] that, with the Dirichlet
boundary condition (V=0), the active zone, that is the
zone where the current accumulates, has a size L#Lact.

whatever the geometry. Then trivially,

Lact.#
Lp

S
(6)

and consequently 1/S can be considered as the ‘screen-
ing efficiency’ due to the irregularity of the geometry,
for the Dirichlet boundary condition.

It is shown in [12] that a coarse-graining technique
allows to transform the mixed boundary condition into
a purely Dirichlet condition (V=0) but on a new
geometry. This new geometry is made of macrosites of
perimeter L=sr. Because in the new coarse-grained
geometry, we are dealing with a purely Laplacian field,
we can use the screening factor 1/Scg of this object to
find the effective impedance

Z(r)=Zp(r)Scg (7)

where Zp(r) would be the surface impedance of a
‘stretched’ electrode with a length Lp. In this frame, the
number Scg of the coarse-grained object determines
directly how the impedance of the total surface is
multiplied due to screening.

This method applies to any irregular geometry pro-
vided that we have an image of the electrode. All what
we need is a rope of length L=sr [16] (Fig. 1b). If Np

is the total number of grains of perimeter L with
diameters L1, L2,…, LN p

, one has Zp(r)=r/bLNp=1/
sNpb, where b is simply the thickness of the cell in the
third dimension. The screening factor of the coarse-
grained electrode is equal to Np�Lg�L, so that the
electrode impedance is finally

�Z �= 1
sb

�Lg�
L

(8)

where �Lg� is the average of the grain diameter over
the coarse-grained electrode. This expression applies to
the case where the Faradaı̈c resistance is constant over
the electrode.

This result has been extended to the case where the
Faradaı̈c resistance varies along the electrode [9]. In
that case, the previous result has to be written

�Z �= 1
sb

�Lg�H
act.

L
(9)

where �Lg�H
act. represents the harmonic mean of the

grain diameter taken over the active zone of the
electrode.
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This is the result which can be transposed to the
non-linear case.

2.3. The non-linear case

If we call V* the potential satisfying the non-linear
system of Eqs. (1) and (4), we can define a fixed resistivity
distribution r*(s) as the resistivity distribution on the
rough electrode (V1 calculated with potential V*:

r*(s)=r(s, V*(s)) (10)

It is then straightforward that V* is also solution of
the following linear problem:

DV=0 in V

V=V0 on (V2

(V

(n
=

V

r*(s)
on (V1 (11)

In other words, the solution V* of the non-linear
problem is also solution of a linear problem with an
inhomogeneous resistivity distribution r*(s). One is back
in the situation of the preceding case of a distributed
Faradaı̈c resistance. The land surveyor method can then
be used to link the electrode impedance to this dis-
tributed resistivity r*(s).

Because r*(s) depends on the potential through the
non-linear boundary condition, so will the electrode
impedance. As the real potential seen by the electrode
depends on this impedance, a self-consistent equation for
the potential can be written.

2.4. Self-consistent approach

2.4.1. Potential of the acti6e zone
It has been seen in Section 2.2 that, in the linear case,

the working electrode can be schematically separated
into two regions: a first region where most of the total
current crosses the electrode, called the active zone, and
a second region which is totally passive in first
approximation.

In the non-linear case, the largest current densities
correspond to the largest values of the local potential.
These potential values are also those for which the local
resistivity r varies very rapidly (exponentially) with the
local potential. In other words, a small change in the
local potential would induce a dramatic change in the
current crossing the interface. Because the active zone is
defined as the part of the coarse-grained electrode where
the grains receive the major part of the current, the
potential on the active zone has to be quasi-uniform.
This potential is called Vact. in the following,

2.4.2. Di6iding the cell into two subsystems
From the observation of the topography of the iso-

curves of the potential shown in Fig. 2a, one can see that

the electrochemical cell can be divided into two subsys-
tems as indicated in Fig. 2b. The first subsystem corre-
sponds to the access bulk between the flat
counter-electrode and an almost flat iso-curve of the
potential taken very near the rough electrode. This
subsystem has an impedance Zbulk. One can define an
equivalent height of the cell as h= (bsLZbulk). This
parameter, homogeneous to a length, can be understood
as the height of the domain of width L that would have
the same impedance as the first susbsystem. It is very
close to the actual height of the cell and can be accessed
through impedance spectroscopy at high frequency.

The second subsystem is comprised of the rough
electrode plus the small volume between it and the flat
iso-curve of potential. The distance between this iso-
curve and the electrode is typically of the order of
magnitude of the macroscopic roughness of the elec-
trode. Its impedance is dominated by the electrode
impedance [10]. Therefore, the potential on the nearby
iso-curve is very close to the active potential Vact.. This
subsystem has an impedance Zode.

The current flowing through the system can be ex-
pressed in two ways. First, it is the response of the whole
system, including the rough resistive electrode (V1 to an
applied bias V0. The total current flowing through the
cell can then be expressed as:

Itot=
V0

Zbulk+Zode

(12)

According to Eq. (9), the electrode impedance is:

Zode= (bs)−1�Lg(r(s, Vact.))�H
act.

L

=Zbulk

�Lg(r(s, Vact.))�H
act.

h
(13)

Secondly, it is also the current flowing through the first
subsystem with an applied bias equal to (V0−Vact.):

Itot=
V0−Vact.

Zbulk

(14)

One can then see that the experimental measurements
of V0 and Itot, together with the knowledge of L and h,
give access independently to Vact.=V0− (h/sbL)Itot and
to �Lg�H

act.(sbL)Zode= (sbL)Itot/Vact..

2.4.3. Self-consistent formulation
From Eqs. (12)–(14), one can deduce a relation

linking the value Vact. of the potential in the active region
of the electrode with the harmonic mean of the chord
length in the same region:� V0

Vact.

−1
�−1

=
�Lg(r(s, Vact.))�Hact.

h
(15)

This equation, although approximate, can be applied
whatever the geometry. In order to use it practically, it
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Fig. 2. Distribution of the electrostatic potential in the electrochemical cell: (a) iso-curves of the potential. One can see that an
almost flat iso-curve (of potential V#Vact.) can be found very near the working electrode. (b) schematic division of the system into
two subsystems.

is necessary to first compute the d.c. non-linear re-
sponse from which the distribution of the active resis-
tance can be found and then iterate this process
through this self-consistent equation. In the particular
case of a homogeneous roughness, like that of a self-
similar electrode, the equation simplifies to a directly
soluble problem.

2.4.4. Homogeneous roughness
We already saw that the impedance electrode has a

very simple expression that uses the harmonic mean of
the size grain along the rough electrode. Because the
potential on the active zone Vact. is constant and the
geometry the same everywhere, the local resistivity is
then ract.=r(Vact.) and the parameter L :
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L(Vact.)=sr(Vact.) (16)

The electrode impedance now depends only on the
value of the potential in the active region, and Eq. (15)
can be written in the form of a self-consistent equation:� V0

Vact.

−1
�−1

=
Lg(L(Vact.))

h
(17)

Now Vact. is the only unknown variable. This self-
consistent equation can also be rewritten as:

Vact.

�
1+

h

Lg(sr(Vact.))
�−1

=V0 (18)

3. Application to the non-linear response of a fractal
electrode

3.1. Analytical expression of the response

In that case, the roughness of the electrode can be
modelized by a fractal geometry with dimension Df. In
this modelization, the geometry is characterized by a
smaller cut-off l, which represents the scale of the
smallest features of the electrode, and an upper cut-off
L which is the typical size (or diameter) of the macro-
scopic system. Calling Lp the perimeter of the rough
electrode, the value of the grain size follows then a
monotonic dependency on the parameter L :

Lg=L if LB1

Lg= l
�L

l
� 1

Df

if lBLBLp

Lg=
L

Lp

L if L\Lp (19)

Hence, the potential Vact. on the active region on this
prefractal electrode satisfies one of the following
equations:

Vact.+h
Vact.

L(Vact.)
=V0 if L(Vact.)B1

Vact.+
h

l
1−

1

Df

Vact.L(Vact.)
−

1

Df=V0 if lBL(Vact.)BLp

Vact.+h
Lp

L

Vact.

L(Vact.)
=V0 if L(Vact.)\Lp (20)

The value of the electrode impedance is thus ob-
tained by replacing the solution Vact. of these equations
into Eq. (15). For example, in the fractal intermediate
regime, the potential Vact. is solution of:

Vact.+B

�
exp

�(1−b)ZeVact.

kT
�

−1
� 1

Df�(1−b)ZeVact.

kT
� 1

Df
−1

=V0 (21)

with

B=
kT

(1−b)Ze

h

l
� l

sr0

� 1

Df

The solution Vact. of this equation, that can be solved
in general only numerically, is then injected into the
equation

Zode
theor.= (bs)−1

Lg

: sVact.

j0
!

e
(1−b)ZeVact.

kT
−1";

L
(22)

This value will be compared later with values of the
electrode impedance directly obtained from finite ele-
ments numerical simulation of the non-linear 2D
problem.

3.2. Tafel beha6ior on a fractal electrode

One can also compute from Eq. (21) the current Itot

flowing through the electrode in the fractal intermediate
regime:

Itot=
V0−Vact.

Zbulk

=
kT

(1−b)Ze

L

l
bs
� l

sr0

� 1

Df

�
e

(1−b)ZeVact.

kT −1
� 1

Df

�(1−b)ZeVact.

kT
� 1

Df
−1

(23)

When the applied potential on the rough electrode is
much larger than kT/Ze, one finds back a Tafel’s law
[11]:

Itot= ( j0Lb)
�sVact.

lj0

�1−
1

Df

exp
�1−b

Df

ZeVact.

kT
�

(24)

For Df=1, one recovers the usual law for planar
electrodes under the same condition ZeV/kT�1. For
fractal electrodes, there exists a strong modification of
the response due to the fractal geometry because the
fractal dimension enters the argument of the exponen-
tial. One usually study in electrochemistry the so-called
Tafel plots which are plots of log(I) as a function of V
[11]. For an ordinary case (Df=1) one finds a straight
line and the slope of this line gives a measure of the
quantity (1−b). Here, apart from the slight dis-
crepancy due to the V(Df−1)/Df factor, one will also find
a straight line but now the slope will involve (1−b)/Df

instead of (1−b). The effective Tafel slope is then
divided by the fractal dimension [17]. This fact has
already been indicated by Nyikos and Pajkossy [18] for
specific self-affine model electrodes for which specific
computations can be made and discussed for self-simi-
lar electrodes by Mulder et al. [19]. What we add here
is a very simple geometrical interpretation which relates
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the size of the coarse-graining to the applied potential
and permits to find directly the size of the active zone.

3.3. Numerical simulations

In order to test the validity of the coupled Eqs. (21)
and (22), numerical simulations were carried out. The
2D non-linear PDE problem was solved by means of
finite elements using a P1-interpolation of the electric
potential, an automatic triangular meshing through De-
launay–Voronoı̈ tesselation [20] and a Newton–Raph-
son resolution scheme. The geometry of the electrode is

a random quadratic Koch curve (Fig. 1a) of dimension
Df= log(4)/log(3).

We have studied the current and potential distribu-
tions along the electrode for several applied bias V0.
The results are shown in Fig. 3. One observes that the
value of the peak potential in the active zone is approx-
imately constant. On the other hand, for large applied
bias, the small variations of the local potential induce
much stronger variations of the current distribution.
Note that the strong non-linearity of the resistivity of
the electrode creates a very high spatial selectivity of
the active zone.

Fig. 3. Current and potential distribution. Top: current distribution along the electrode in Fig. 1 for applied bias ranging from 5
mV up to 1 V by steps of 100 mV. Bottom: corresponding potential distribution.
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Fig. 4. Impedance curve for a Butler–Volmer response of the
electrode surface. Comparison between finite element numeri-
cal simulations and solution of the self-consistent equation
based on the land surveyor method. The numerical simulations
were carried out with the following parameter values: b=1,
s=1, b=0, r0=1000, kT/Ze=0.025. Impedances are mea-
sured in units of (sb)−1. The dashed line corresponds to the
resolution of the self-consistent equation in the low voltage
regime where L is larger than the perimeter of the electrode Lp

The continuous line corresponds to the intermediate fractal
regime.

In the particular case of a known prefractal geometry,
this equation can be explicitly solved. It predicts that the
slope of the Tafel plot depends on the electrode geome-
try. The quality of the approximations has been verified
numerically through a comparison with a finite element
computation of the non-linear response. One should
note that the physical model can be applied as such as
long as diffusion currents can be neglected, especially in
solid electrolytes.

The same method should also apply to irregular
electrodes in d=3. In the same spirit, it could be used
in the study of active transfer across irregular mem-
branes, in heterogeneous catalysis on porous catalysts
[8]. It also could play a role in the properties of
semiconductor p–n junctions with irregular geometries.
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Fig. 4 presents the electrode impedances obtained first
by finite elements numerical computation of the current
distribution, and second by use of Eqs. (21) and (22).
One finds a good agreement, which validates the use of
the land surveyor method approximation.

4. Conclusion

In summary, we have briefly recalled the concept of
active zone in electrodics. This idea consists in splitting
the current distribution on an irregular electrode in two
zones, one uniformly active, and the second totally
passive. This concept permits to model simply the
behavior of a non-linear electrochemical cell through an
approximation called the land surveyor method first
introduced to explain impedance spectroscopy of irregu-
lar electrodes. This leads to a simple and general method
to find the response of irregular electrodes in the non-
linear response regime from their images only. This
method yields to a simple self-consistent formulation of
the problem.

It has been shown that a simple measurement of the
global impedance of a cell in the non-linear regime
permits the determination of the active potential and of
the average size of an active grain that works uniformly.
It is striking that such a complex behavior (as displayed
in Fig. 3) is finally described by a simple equation.


