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Diffusion-Reorganized Aggregates: Attractors in Diffusion Processes?
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A process based on particle evaporation, diffusion, and redeposition is applied iteratively to a two-
dimensional object of arbitrary shape. The evolution spontaneously transforms the object morphol-
ogy, converging to branched structures. Independently of initial geometry, the structures found after a
long time present fractal geometry with a fractal dimension around 1.75. The final morphology, which
constantly evolves in time, can be considered as the dynamic attractor of this evaporation-diffusion-
redeposition operator. The ensemble of these fractal shapes can be considered to be the dynamical equi-
librium geometry of a diffusion-controlled self-transformation process.

PACS numbers: 61.43.Hv, 05.40.–a, 64.60.Cn
This Letter reports the discovery of a diffusion-
mediated process which spontaneously builds a dynamic
fractal equilibrium structure, in contrast with fractal mor-
phologies linked to far-from-equilibrium processes [1–3].
The process is a surface to surface evaporation-diffusion-
condensation process which conserves the total mass of the
system. During the time evolution, one observes a progres-
sive transformation of the surface through bulk diffusion.
After a long relaxation period, the system reaches a dy-
namical fractal structure. This structure appears as the final
equilibrium state towards which any initial morphology
of M particles will converge after sufficient evaporation-
diffusion-condensation iterations. It can then be con-
sidered as a general statistical attractor for that specific
dynamic process.

The underlying ideas that have suggested this study
come from our knowledge of the basic mathematical
objects which govern the exchange of Laplacian driven
currents across irregular (or fractal) interfaces (as, for
example, in the study of irregular or fractal electrodes).
This problem can be mapped onto the study of the transfer
of Brownian particles across irregular membranes with
finite permeability [4]. In this process, Brownian particles
strike an irregular surface where they are absorbed with
finite probability. When reflected, the particles undergo
successive random paths, hitting and hitting again the
static surface, until they are finally absorbed. Halsey first
indicated that the response of such systems depends on
the probability that a particle starting on the interface
comes back to it [5]. Generalizing these ideas, it has been
recently shown that the Laplacian transfer across irregular
interfaces is controlled by a single linear operator Q̃
which maps the static surface onto itself through effective
“Brownian bridges” [6]. In this context, each surface has
an operator Q̃, which is symmetric and positive.

The question arises naturally of the link between the
Brownian bridges and a real diffusion process. This led us
to study a dynamical process in which the notion of a Q̃ op-
erator, which maps the surface onto itself through average
diffusion, is transformed into a real operation which trans-
forms the surface through discretized diffusion [7]. The
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evolution mechanism then proceeds in the following steps
(Fig. 1): (1) A particle is chosen at random on the surface
of an initial structure and is dissolved, occupying an empty
site next to its initial position. (2) The dissolved particle
may jump back to its original site or start a Brownian ran-
dom walk on a square lattice which represents the outer
medium. The time step for each jump is t � 1. This mo-
tion is stopped when the particle hits the structure again as
it sticks on first hit [8]. (3) The process, which conserves
the total mass, is then iterated. For practical reasons, the
system is enclosed in a large square window: whenever a
diffusing particle strikes the window boundary, this par-
ticle is reinitiated on another site of this external box, fol-
lowing a probability law that simulates the random walk in
the infinite outer medium. As the probability to return to
a starting site is equal to 1 in d � 2, this does not modify
the morphologies which are generated by the process. The
existence of the external box only perturbs the time scale
so that the number of computer steps is not proportional
to a real time. For this reason, the number of steps will be
called pseudotime t.

The dissolution-recondensation process rapidly creates
several branches. If particles of these branches were al-
lowed to dissolve, it would lead to a progressive splitting
of the structure into two, then many, disconnected parts. In
order to avoid this progressive disconnection, one imposes

FIG. 1. Schematic of the self-diffusion reorganization process.
Step (1): a particle on the boundary of the structure is randomly
chosen to be dissolved, according to the rule that it does not
break the connectivity of the structure. Step (2): it can go
back to its original position or starts a random walk on a square
lattice. If the walk brings the particle to a surface site, the
particle sticks to the structure under the condition that the new
position conserves the simple connectivity of the structure.
© 2000 The American Physical Society
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the structure to remain connected throughout the process.
The only particles allowed to evaporate are then the par-
ticles pertaining to the surface of the structure and that
are not “red particles”: the red particles are defined as the
particles which, if eliminated, would disconnect the struc-
ture in two or more distincts parts. The particles allowed
to evaporate are therefore called “blue particles.” We also
impose that an evaporated particle cannot stick on a site
where it would disconnect the outer medium. In fact, one
could release this last constraint since it does not modify
the long term evolution of the structure. It simply avoids
creating temporary “lakes” in which particles evaporating
and redeposited would greatly reduce the speed of evolu-
tion of the structure. Particles on the internal surface of
these lakes would spend most of the time going back and
forth until the lake opens spontaneously.

The results of the spontaneous evolution of structures
obtained with different initial morphologies are shown in
Fig. 2. The left column shows the initial shape and the
corresponding final morphologies are shown on the right.
In case (a), the initial morphology is a compact dense struc-

FIG. 2. Three examples of the spontaneous evolution of
morphologies towards statistical equilibrium shapes under the
diffusion limited reorganization process. Case (a): the initial
morphology is dense with dimensionality Df � 2, and contains
7800 particles. Case (b): initial morphology with dimensional-
ity Df � 1, 983 particles. Case (c): initial DLA morphology
with dimensionality Df � 1.65, 8000 particles. The final
morphologies look all the same and keep the same statistical
characteristics after being formed. The time for evolution
strongly depends on the initial shape.
ture described by a dimensionality equal to 2. In case (b),
the starting shape is a line with dimensionality 1. Finally,
in case (c), the initial morphology is an ordinary diffusion-
limited aggregate (DLA), first introduced by Witten and
Sander [9].

In all three cases (a), (b), and (c), the final morphologies
present branched structures, like DLA but less open. The
complete statistical study of the morphologies is difficult
because the process is very time consuming in the com-
puter. For instance, the time necessary to reach the mor-
phology shown in Fig. 2(a) is of the order of several weeks
of CPU time on a Hewlett-Packard C160 workstation. The
similarity in the final shapes, independent of initial geom-
etry, suggests that this class of morphologies is an attractor
for such self-reorganization processes. We call these struc-
tures “diffusion-reorganized aggregates” (DRA).

The fact that morphologies are “attracted” by the frac-
tal final form is also indicated in Fig. 3. The figure gives
the determination of the fractal dimension of the final
morphologies starting, respectively, with initial dimen-
sion Df � 2, Df � 1, and Df � 1.65 [Figs. 2(a), 2(b),
and 2(c)]. Although the initial dimensions are very dif-
ferent, the final plots are within reasonable uncertainty

10
0

10
1

10
2

10
0

10
2

10
4

10
6

radius

M
as

s

10
0

10
1

10
2

10
0

10
5

radius

M
as

s D = 1.75

FIG. 3. Evolution of the fractality. Top: mass to radius relation
for initial morphologies (a), (b), and (c) defined in Fig. 2 [(a)
! �, (b) ! 1, (c) ! �]. Bottom: mass to radius relation
for the corresponding stationary states. This plot indicates that,
independent of the initial dimension, the stationary dimensions
are very close.
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concentrated and compatible with Df � 1.740 6 0.02, a
value which is significantly different from the fractal di-
mension of lattice animals [10] and compatible with that
of the branched structures which are the results of a far-
from-equilibrium process [11].

The dynamics of the restructuring process has several
specific properties. To follow the dynamics, one can com-
pute two memory functions. First is a density-density
memory function. For this purpose, the structure is char-
acterized by a number si on each site i of the lattice, with
si � 1 if the site is occupied by the structure and 0 if not.
Calling M the mass of the initial structure, which is equal
to the number of occupied sites, this memory function can
be defined as

C�t� �
1
M

X

lattice sites i

si�0�si�t� . (1)

This first function does not discriminate between par-
ticles as si�0�si�t� is equal to 1 if a lattice site i is occu-
pied both at pseudotimes 0 and t (by any particle) and 0
otherwise. The pseudotime evolution of C�t� is shown in
Fig. 4. One observes a memory loss which does not go
to zero. There can be two reasons for incomplete decor-
relation. First, it could happen that a part of the object
is not restructured. Second, it could be that the density-
density memory does not vanish due to an average sta-
tistical overlap, even if the structure has completely for-
gotten its initial geometry. To clarify this point, one
can compute a particle-particle memory function which
characterizes the speed at which the particles of a given
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FIG. 4. Time evolution of the memory functions C�t� and P�t�
during the evolution of the disk towards DRA structure [Fig. 2a].
These functions are defined by Eqs. (1) and (2). Both functions
are reset 53 during the evolution (positions of the peaks). After
1 3 106 time steps, the correlation C�t� is less than 1�2, indi-
cating that more than half of the initial points have moved and
no more belong to the initial structure.
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structure finally move from their initial positions. This
second function is

P�t� �
1
M

X

particles j

d��� �rj�0� 2 �rj�t���� , (2)

where �rj�t� is the position of the particle j at time t.
The evolution of P�t� is also given in Fig. 4. One ob-

serves that the particle-particle memory is lost to zero very
rapidly. When it has reached very small values, one can
say that the structure has completely lost the memory of
its microscopic configuration. Apart from these two rapid
processes, one observes in Fig. 4 the very slow global evo-
lution. Note that the DRA geometry loses constantly its
memory whereas the DLA growth keeps the total memory
of its previous structure.

A more detailed characterization of the rapid regimes is
displayed in Fig. 5, where the decorrelations are found to
be exponential, an unusual time behavior in this context.

Those results, together with the fractality evolution of
Fig. 3, indicate that the final DRA morphologies behave
as stable fixed points. The constantly changing DRA can
then be viewed as a statistical equilibrium state. In that
sense, it is analogous to the homogeneous state of an ideal
gas, where the microscopic interactions between particles
lead to a statistical macroscopic equilibrium, although it is
constantly changing its microscopical structure.

One should also note that the transformation of the Q̃
operator, which maps the surface onto itself through av-
erage diffusion, into a real operation is analogous to the
dielectric breakdown model (DBM) of DLA [12]. In the
DBM model, the operator, that maps the source at infin-
ity onto the growing morphology through average Brown-
ian paths, is transformed into a real stochastic operation.
In the model presented herein, the source is the object
itself.

It is also interesting to return to the exact concept of
the self-transport operator attached to a given morphol-
ogy [6]. Extending the notion of diffusive self-transport in
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FIG. 5. Detailed behavior of the memory functions decays
C�t� 2 C�`� and P�t�. In both cases, the final decay is found
to be exponential, with characteristic times of tC � 1.1 108 and
tP � 5.106. This suggests a classical equilibrium situation.
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this context, it might be that DRA shapes could be con-
sidered as “eigenshapes” of these operators. By this, it is
suggested here that the self-transport operators attached to
these structures transform those structures into themselves,
of course in a statistical sense.

All these results should be confirmed in the future
through extensive numerical simulations and extension to
diffusive self-transport in d � 3. Some future extensions
of this work can be envisaged. First, one should verify
the universal character of this result. Second, if surface
energy was included, it would be interesting to study
how the equilibrium morphology would depend on its
value. Last, one should study whether the self-transport
operators Q̃ of these geometries possess some extremal
properties.

In summary, it has been shown that diffusive self-
transport statistically modifies an object morphology in
an irreversible manner. This irreversible process leads to
a class of branched structures, called DRA, with fractal
dimension around 1.75. This class of structures plays
the role of a statistical attractor. Moreover, its attraction
basin seems to be the whole configuration space in the
sense that, independent of the initial geometry of the
system, the dissolution-redeposition process always tends
to create the same category of geometries. The fractal
DRA can be seen as a statistical equilibrium for this
process, which would maximize a “geometrical entropy”
still to be defined.
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