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Interplay between Geometry and Flow Distribution in an Airway Tree
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1Centre de Mathématiques et de leurs Applications, CNRS, Ecole Normale Supérieure de Cachan, 94235 Cachan, France
2Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France

3Departamento de Fı́sica, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil
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Uniform flow distribution in a symmetric volume can be realized through a symmetric branched tree.
It is shown here, however, by 3D numerical simulation of the Navier-Stokes equations, that the flow
partitioning can be highly sensitive to deviations from exact symmetry if inertial effects are present.
The flow asymmetry is quantified and found to depend on the Reynolds number. Moreover, for a given
Reynolds number, we show that the flow distribution depends on the aspect ratio of the branching
elements as well as their angular arrangement. Our results indicate that physiological variability should
be severely restricted in order to ensure adequate fluid distribution through a tree.
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following collage argument, that this is ensured by a
symmetric tree. Suppose that an asymmetric tree feeds
a volume which has a plane of symmetry. If the tree is

tion [19] and choose the branching angle to be 45�.
The mathematical description for the detailed fluid

mechanics in the branched structure is based on the
The problem of fluid flow in a branching geometry
appears in many physical, geological, chemical, and bio-
logical systems. Examples include catalysis, flow through
porous media, blood circulation, and respiration. When
studying transport in any of these systems, a common
objective is to understand the mechanisms that govern the
flow partitioning at the interconnections level. Until re-
cently, it has been generally assumed that the use of
Darcy’s law should be sufficient to describe the propaga-
tion of flow through branched structures. Such a relation
corresponds to the linear dependence between flow and
pressure drop, Q / �P, which is strictly valid at small
Reynolds number. Regardless of this limitation, a large
number of studies have been based on this approximation.
In the context of porous media, for instance, a simple
paradigm to represent flow through the pore space is a
network of bifurcating and merging channels where the
transport of fluid is analogous to the distribution of
electrical currents in a resistor network. However, these
models can predict only a perfectly uniform and synchro-
nous flow distribution through airway bifurcations [1]. A
major problem in modeling of flow through trees arises
from the fact that, due to inertial effects, Darcy’s law
breaks down as a phenomenological description for large
Reynolds numbers. Even at moderate Reynolds, the in-
ertial nonlinearities become relevant as compared to
viscous effects.

Unambiguous experimental and numerical evidences
of inertial effects have been observed in several studies on
flow though branched structures, with a special emphasis
on the bronchial tree [2–14]. Such phenomena exist in real
lungs, but they are more simple to study in a symmetric
geometry [15,16]. In particular, in order to irrigate uni-
formly a symmetric volume it is easy to show, through the
0031-9007=03=90(14)=148101(4)$20.00 
asymmetric the flow will be different in the two parts of
the volume which are symmetrical. Then one can replace
the tree with a nonuniform flow by the symmetry image
of the more efficient region. The new tree, which is now
symmetric, is more efficient for flow distribution.

In the Poiseuille approximation, the only way to have
perfect symmetry is to work with an equivalent resistor
network that is symmetric. In other words, at each bifur-
cation the daughter branches should be exactly identical
irrespective of their real geometrical arrangement. This
might not be true if inertial effects are present. It should
be recalled that, as the lung is a succession of branch
bifurcations, the final flow distribution can be represented
by a multiplicative process. In consequence, even a rather
small asymmetry could lead to a strong inhomogeneity of
the flow distribution [17]. Because the geometrical ar-
rangement of the bronchial tree of mammals is always
subjected to some physiological variability [18], it ap-
pears natural to question whether a small modification of
the structure disturbs the distribution of fluid flow.

The purpose of this work is to investigate how the tree
geometry influences the flow in order to shed some light
on the optimal aspect of the bronchial tree for distributing
air uniformly in the lung volume. The direct 3D numer-
ical solution of the Navier-Stokes equations is by far the
most practical way to elucidate this problem. The simpli-
fied tree model used here is shown in Fig. 1. It consists
of a three-dimensional cascade of cylinders branching
through two bifurcations. Each bifurcation ABC or
BDE or CFG is coplanar as found approximately in
real lungs. The bifurcation geometries are modeled in
such a way as to minimize geometrical singularities as
shown in Fig. 2. For simplicity, we assume that the radii
of the tubes decrease with a factor 2�1=3 at each bifurca-
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FIG. 1. Example of the tree geometry used in the simulations.
The aspect ratio is L=D � 3 and the rotation angle is � � 45�.
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steady-state form of the continuity and Navier-Stokes
equations for mass and momentum conservation [20]

r � u � 0; (1)

�u � ru � �rp��r2u; (2)

where u and p are the local velocity and pressure fields,
respectively. The diameter of the first tube is equal to
2 cm, corresponding approximately to the diameter of the
human trachea. The fluid is air with viscosity � �
1:785� 10�5 kgm�1 s�1 and density � � 1:18 kgm�3,
and the flow is considered to be incompressible. Nonslip
boundary conditions are imposed at the tube walls
(Dirichlet condition u � 0) and the velocity at the en-
trance A is parabolic. The outlets are free with the same
reference pressure and @u=@n � 0. Equations (1) and (2)
are solved using finite elements [21]. For all simulations,
the relative conservation error is smaller than 3%.

The parameters governing the flow are the bronchi
aspect ratio (length to diameter ratio of the tubes) L=D,
the rotation angle � between successive bifurcations, and
the Reynolds number, Re 	 �DV=�, where V is the mean
velocity at the entrance. The reference angle � � 0�
FIG. 2. Geometry and mesh of a typical bifurcation used in
the simulations.
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corresponds to a coplanar tree. The flow asymmetry is
defined as
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�; L=D� 	

�
�
�
�
�
�
�

q1 � q2
q1 � q2
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�

; (3)

where q1 and q2 are the outflows at (D;G) and (E;F)
branches, respectively.We perform simulations for several
values of �, L=D, and Re to find their influence on the
flow partitioning �. Note that the air velocity at the
entrance of human lungs ranges from 1 m=s at rest (Re �
1200) to 10 m=s for the condition of very hard exercise
(Re � 12 000) [19]. Because of the number of parameters
governing the flow and the computation time for each set
of parameters, we first discuss the dependence of the flow
asymmetry on the geometry for a fixed Reynolds value,
namely, Re � 1200. This corresponds to the human in-
spiration state at rest.

The results are shown in Fig. 3. The main result is that,
whatever the conditions, the behavior of � around the
minimum is not parabolic. Even a small departure from
geometrical symmetry can cause a non-negligible flow
disturbance. For a given value of L=D, the disturbance
increases with the deviation of the rotation angle from
90�. � is therefore maximum for a planar tree and, for a
fixed � value, it decreases with increasing aspect ratio.

There are then two facts to interpret: (i) why the flow is
influenced by breaking the symmetry only and (ii) why
this effect is attenuated for long branches or large aspect
ratios. The first fact can be understood by considering the
velocity distribution in a cut of the secondary branch B
shown in Fig. 4. The flow keeps the symmetry of the ABC
bifurcation plane but, due to inertia, the high velocity
regions are drifted vertically and an M-shape type of
distribution is observed [9]. This shape governs the flow
partitioning at the second bifurcation. Note that if the
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FIG. 3. Dependence of the flow asymmetry � on the branch-
ing angle � for a fixed Reynolds value, Re � 1200. The
observed nonmonotonous dependences are due to numerical
uncertainties. The values of � � 0� and 180� correspond to a
planar tree. � � 90� represents the average value for mamma-
lian lungs.
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FIG. 4 (color). The M-shape contour for L=D � 3 and � �
45�. The colours indicate the magnitude of the fluid velocity at
the mid-length cross-section of branch B. The velocity magni-
tude increases in the colour order of blue, green, yellow and
red. The ternary branches D and E are shown in blue. Note the
presence of a low velocity region at the center. At the plane of
the second bifurcation, the entering flow is larger at the bottom.
The branch E therefore captures a larger flow than D.
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branches B and C are long enough and for small Re, the
profile should tend to a parabolic type. As a consequence,
the distribution shown in Fig. 3 will progressively change
along the second generation branch. It is because the
branch length is too short that the granddaughter
branches can capture the asymmetry seen in Fig. 4.
This provides a qualitative answer for the second ques-
tion. The position of the intersection relative to the
M shape is then the key for asymmetry. For example, in
Fig. 4, branch E obviously receives more flow than
branch D. It is also clear that, if � � 90�, the flow
symmetry is restored for any value of L=D.

The dependence of the flow asymmetry as a function of
the Reynolds number is shown in Fig. 5. A strong increase
of � is observed up to Re � 250 followed by a region of
weaker dependence. This type of behavior has been pre-
viously reported for 2D flow in trees comprising more
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FIG. 5. Dependence of the flow asymmetry � on the
Reynolds number Re for L=D � 3. The circles correspond to
� � 60� and the squares to � � 75�.
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than two generations of branches [9,10]. It is remarkable
that the onset at Re � 250 is approximately the same
whatever the angle �. This is a clear indication that, at
the entrance of the second bifurcation, the velocity profile
reaches the same pattern for a given Re value. Again, the
final asymmetry of the distribution of flow is a result of
the inertial effects originated from the first bifurcation.
All these arguments are illustrated in Fig. 6, where
the contour plots of the velocity fields are shown at the
entrance of the second bifurcation. At large Re, the
M shape is revealed and, as expected, the lower the Re,
the closer the profile is to parabolic flow. The smaller
variation of � for Re > 250 can be explained by the
presence of a secondary flow [13].

Some implications of our results are noteworthy. If the
inertial effects observed here are present in a larger tree,
the relative flows delivered to the outlets of this structure
may become strongly nonuniform. This broadness in the
flow distribution is a typical signature of a multiplicative
process [22], where an observable can be viewed as a
‘‘grand process’’ depending on the successful completion
of a number n of independent ‘‘subprocesses.’’ It is then
possible to associate the flow at each branch with a
probability pi, so that the flow at a given outlet k is qk /
p1p2 � � �pn, where i � 1; 2; 3; . . . ; n corresponds to the
set of branches constituting the pathway going from the
entrance to the exit k. It can be easily demonstrated that,
if the pi’s are independent variables and n is large, the
distribution of qk should be approximately log-normal.
Furthermore, this distribution might mimic a power law
if its dispersion is sufficiently large [22]. Note that this
situation is that of the human bronchial tree (where L=D
is close to 3) even at rest. In this case Re � 1200 and the
multiplicative process due to inertia can propagate farther
down in the tree. If we consider that these effects
disappear only for Re less than 100 and that the local
FIG. 6 (color). Contour plot of the velocity magnitude at the
cross section of the second bifurcation for different values of
Re (L=D � 3 and � � 60�). As Re increases, the profiles
gradually change from parabolic to M shape.

148101-3



P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2003VOLUME 90, NUMBER 14
Reynolds decreases by a factor of 22=3 at each generation,
we obtain that the flow asymmetry can be significant up
to the sixth generation of the bronchial tree under rest
conditions [23].

In conclusion, we have investigated the effect of inertia
on fluid flow through three-dimensional rigid branched
structures by direct numerical simulation of the Navier-
Stokes equations. It has been found that for trees with
three generations of cylindrical conduits, the flow distri-
bution at the outlets strongly depends on the Reynolds
number and on the geometry of the ramified structure.
Moreover, our simulations indicate that the flow imbal-
ance throughout the tree is highly sensitive to the aspect
ratio L=D of its cylindrical units and to the variation of
the rotation angle � between successive bifurcations.
While a uniform distribution of flows at the outlets of
the third generation branches is always obtained for � �
90�, our calculations show that a small deviation from
this geometrical configuration is capable to induce a large
asymmetry on the flow. Note that the presence of long
branches would lead to purely axisymmetric parabolic
profiles and flow symmetry. However, long tubes exhibit
large hydrodynamic resistance (proportional to L=D4).
It is therefore not surprising that in real lungs L=D � 3
and � � 90�.

Finally, our results suggest that small deviations from
the ‘‘best’’ structure should have the same type of con-
sequences in the real (asymmetric) lung, namely, strong
dependence on geometry and Reynolds number. In par-
ticular, the flow distribution at rest and exercise might be
significantly different. These results could also help to
better understand lung morphology. It has been argued
[24] that the asymmetric structure of the lung is solely
due to geometrical constraints. Our study indicates that
the inertial effects play also an important role in air
distribution. In other words, the asymmetry of the bron-
chial tree is determined not only by geometrical con-
straints but also by the existence of inertial effects. Of
course, if the flow distribution is found uniform although
the geometry is ‘‘imperfect,’’ the following question
would naturally arise [25]: What are the physiological
regulation mechanisms that can compensate the flow
nonuniformity due to inertial effects? In addition, the
fluid dynamics studied here is certainly relevant to under-
stand particle deposition in the airway tree [13], a prob-
lem of crucial importance both from the physiologic and
therapeutic points of view.
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