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Cancer death statistics: analogy
between epidemiology and critical systems
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Summary The determination of risk factors in carcinogenesis is said to be an essential step towards the understanding
of this disease. Most mathematical models describing the evolution of mortality figures use the concept of death
probability (or “force of mortality” or “hazard of death”). When summarizing the death statistics through this unique
parameter, one implicitly makes the assumption that the death events are independent from one individual to another.
In this paper, we show that this hypothesis has profound consequences as it implies a “gaussian” behavior of the death
statistics fluctuations. In order to verify the validity of this assumption, French cancer death statistics between the
years 1978—1996 are examined. Their fluctuations, for every age bracket, are computed and then compared to the
expected gaussian fluctuations that should emerge from a model of death probability. We show that the observed
fluctuations are in close agreement with a gaussian model up to 35—40 years. After 40 years, the fluctuations are much
higher and cannot be explained by a model where every individual would have a given “probability of death”. These
observations may produce a new insight into old-age cancer mortality. It suggests that there could exist a major
difference between cancers in young or older organisms: cancer developed in young organisms are the consequence of
a specific attack against an organ (essentially originated from a single cause, like a virus or a genetic deficiency). On
the other hand, older organism are closer to a “critical state” and, as such, the outcome of a cancer in a given organ
could be the consequence of a chain of “malfunctions” (analogous to an avalanch in physical systems) in the entire
organism.

© 2004 Published by Elsevier Ltd.

responsible for retinoblastoma, or P53 responsible
for Li-Fraumeni syndrome, or B.C.R.A. responsible

Introduction

Most diseases (cancer, cardiovascular disease, de-
mentia) are supposed to be the result of a complex
interaction between the genes and the environ-
ment. In cancer, genes responsible for tumor for-
mation have been cloned, as for example, Rb
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for early breast cancer [1].

The patients suffering from these hereditary
tumors are young. So far, there is no human gene
which appears to be clearly responsible for late
onset carcinogenesis. Early or late onset breast
cancer and melanoma does not appear to have the
same risk factors [2—4]. Furthermore, we still do
not know what causes most brain tumors, pancre-
atic carcinoma or leukaemia.
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In order to solve this paradox, we need to better
understand the underlying biology, develop mech-
anistic hypotheses and test them in clinical trials in
humans. Nevertheless, the concept of universality,
that has emerged in the last 30 years in modern
physics, can help us to extract some properties of
the pathology directly from the death statistics,
without going into the details of its mechanism.

Universality is a property that explains how very
different systems that obey the same limited
number of rules can exhibit identical macroscopic
behavior, even though their microscopic compo-
nents have nothing in common. For example, in
physics of phase transition, a large class of systems
exhibit at transition some properties known as
scale invariance, power law statistics or extreme
sensitivity to external perturbations. This is the
case in very different domains, as for example in
seismology (distribution of earthquakes), fracture
in material sciences or “physics of the sand pile”.
One of the consequences of these properties is that
the statistical fluctuations are much more impor-
tant and more sensitive to any external perturba-
tion than in classical systems in physics, which are
at or near equilibrium.

Based on this reasoning, we will study in this
paper the fluctuations of cancer death statistics
and analyse them in order to determine whether
they can fall in one or the other class of statistics.

From death statistics to death probabil-
ity: the binomial law

It is very common to come across the expression
“death probability”. This number comprised be-
tween 0 and 1 is supposed to represent the chance
for a given person to die in the next month or year.
It is used as an indicator to compare the respective
efficiencies of various types of cure, or the ad-
vantages and drawbacks of different ways of life. It
is, for example, very common to read that smok-
ing, or drinking increases the death probability by a
certain percentage.

It seems clear that reducing the modelling of
mortality to one parameter, simple to handle, can
be of great interest for physicians. It allows direct
comparisons between different populations and
offers a clear picture of the situation. This sim-
plicity can nevertheless be dangerous because this
approach, although intuitive, contains implicitly a
very important conceptual step: it models the
death as a two-tier probability law, whose tiers are
alive and dead. This law is entirely characterized
by the probability p that a given individual dies
during the next year.

If one considers a sample of N individuals who
obey this law, and if one assumes that the death
events are independent, then the probability that n
of them would die during the year to come is given
by

P(n) = Cyp"(1—p)" "

This law is called a binomial law. Its mean is
equal to pN. This is in fact a practical way used to
extract the probability p from the death statistics:
it is the ratio between the average number of
deaths a year (for a given cause and at a given age)
divided by the average number of people of this
age. This binomial law also possesses a standard
deviation which represents the fluctuation of the
law around its mean. As a consequence, the ag-
gregation of a large number of independent events
obeys a law whose standard deviations (or fluctu-
ations) are also very precisely determined. In this
paper, we will use this property to examine the
validity of the “binomial” approach for death sta-
tistics.

Gaussian versus non gaussian fluctua-
tions

By definition, death statistics are obtained by to-
taling the individual death events. It may seem
reasonable to assume that these events are inde-
pendent. Thus, in order to study the fluctuations of
the death statistics, we first need to briefly recall
the properties of the law of the sum of N inde-
pendent events.

The main tool for analyzing such a law is called
the “central limit theorem”. This theorem states
that, if an elementary law has a mean m and a
standard deviation ¢, then the sum of N indepen-
dent events obeying this elementary law obeys an
aggregated law which converges, in the limit of
very large N, towards a gaussian law. A gaussian
law with a mean M and a standard deviation X has
the following form:

(x —M)*

1
—F— X
P 232

p(x) = oS

Within the central limit theorem, the values of M
and X depend only on m, ¢ and N

M=Nm, X=+No.

We have seen this previously in the case of the
binomial law. We can see that the mean of the sum
is proportional to the total number of tries, while
the standard deviation is proportional to the square
root of this number. Thus, the standard deviation
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of the sum increases as the square root of its mean.
In other words, relative fluctuations (characterized
by the standard deviation) decrease when the size
of the sample (N) increases. This is a very impor-
tant property that we will use later in this paper.
Practically, this relations mean also means that in
this model, once the average number of deaths is
known for a given population, the fluctuation
should also be precisely determined.

On the other hand, if the elementary law does not
have amean or astandard deviation (that is, if one of
them is infinite), then one cannot apply the central
limit theorem. These kinds of laws are character-
ized, among others properties, by the large ampli-
tude of their fluctuations that do not decrease
relatively when the size of the sample increases.
Numerous examples of such laws can be found in
modern physics, especially in the study of critical
states. Thus, if one plots the distribution of earth-
quakes as a function of their magnitude, one finds a
power law P(x) =~ x~* with o~ 2 (Fig. 1) (5). The
mean of such a law, when computed, is found to be
infinite. This fact can be expressed by stating that
“there is no average earthquake”. One practical
consequence is that any mean computed on a finite
sample will be directly determined by the magnitude
of the largest event in the sample. The fluctuations
do not vary as the square root of the measured mean:
whatever the number of events in the sample, the
relative fluctuations have the same magnitude.

This type of behavior is one of the signatures of
these probability laws that do not obey the central
limit theorem, and therefore do not converge to-
wards a gaussian law when aggregated. They ap-
pear especially in physics in the field of phase
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Figure 1 Distribution of earthquakes as a function of
their magnitude. The red line represents data from Cal-

ifornia and the blue line data from the world (5).

transition, in systems near a critical state. These
systems are characterized by an extreme depen-
dency on external perturbations, and are the cen-
ter of events called “catastrophic”, like
avalanches, whose magnitudes are distributed ac-
cording to a power law.

In short, the analysis of the fluctuations of death
statistics will allow to test the validity of the bi-
nomial approach used to describe mortality by
cancer.

Analysis of French death statistics

We have gathered from INSERM (Institut National de

le Santé et de la Recherche Médicale), the monthly

figures of French mortality between the years 1978

and 1996, as well as the demographic data. At each

death (French citizen or not), in order to get au-
thorisation for burial, a certificate stating the pri-
mary and secondary causes of death must be filled
and signed by a physician. The primary cause of
death is the underlying disease, thought to be the
main reason for death. For example a women dies
from widely metastatic breast cancer. In the days
before cardiac arrest, she was diagnosed with
pneumonia. The primary cause of death is breast
cancer, the secondary cause is pneumonia. These
data are collected by the I.N.S.E.E. (Institut Na-
tional des Statistiques et des Etudes Economiques)
and transmitted to the I.N.S.E.R.M... They are
freely available on the internet at http://sc8.vesi-
net.inserm.fr:1080/. The causes of death are filled
in according to the Classification Internationale des

Maladies (C.1.M7 and 8) as well as sex, age at death,

and calendar year of death.

The French population has been divided into
men and women, and then in twenty age brackets
of five years each. For each of these brackets, first
the monthly death rate has been plotted as a
function of time. For analysing the statistics, we
have assumed two things:

1. The way of life in France during the period
1978—1996 has been constant enough so that
the aggregation of the data is still valid. If anom-
alous fluctuations should be observed, then their
magnitude will be far larger than the slight vari-
ations induced by changes in life style.

2. Secondly, it is assumed that, instead studying
the same population along its aging, one can
study different age brackets coexisting at the
same time. Once again, the analysis of the data
will confirm the validity of this assumption.

Fig. 2 presents the number of deaths for the age
brackets 30—35, 60—65 and 90—95 years. One can
see relative fluctuations strongly increase with
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age, even though the monthly number of deaths
increases, for example between the green and the
blue curves (one should recall that the relative
fluctuation should decrease in a gaussian model).
On the other hand, Fig. 3 presents the death rate
deduced from the number of deaths and the pop-
ulation for the same age brackets.

First, we study the death rate (separately for
men and women). It can be seen that the variation
of this rate is very small (Fig. 3), for any age
bracket, although the figures for these brackets
can change drastically during the same period
(Fig. 2): the blue curve (age bracket 60—65) pre-
sents a sharp increase at the beginning of the
eighties, which corresponds in fact to the evolution

Number of death

1085 w0 199
Year

Figure 2 Monthly number of men deaths by cancer

(between 1978 and 1995). Three age brackets are rep-

resented: in green, 30—35 years, in blue 60—65 and in red

90-95.
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Figure 3 Monthly death rate by cancer for men (be-
tween 1978 and 1995). The age brackets are the same as
in Fig. 2.

of the birth rate during and right after the first
world war. This constant value of the cancer death
rate confirms our assumption that consists in
studying the fluctuations during the period
1978—1996 and neglecting the possible changes in
life style. If these changes exist, it is remarkable to
notice that they did not heavily modify the average
cancer death rate, nor annual or monthly fluctua-
tions.

One can also notice a small periodicity on the
red curve (age bracket 95—100). This periodicity
corresponds to an increase of the cancer death rate
in winter. One can say two things: first, after re-
moving this fluctuation one would still have a larger
fluctuation than the fluctuation predicted by a
gaussian model. Second, it is also a sign that the
death by cancer is in this case an event extremely
sensitive to an external perturbation (pollution,
temperature or light variation,...).

From these data, one can extract un average
death rate for each age bracket over the whole
period (Fig. 4). This rate varies greatly from one
bracket to another, going from 1 to 10000 for
bracket 5—10, to 1—10 for bracket 95—100. In
terms of probabilities (p,1 — p), one can say that a
very large range of p is explored.

The next figure presents the same type of data,
but the means are computed on an annual basis
instead of over the whole period 1978—1996
(Fig. 5). Indeed, for each age bracket, each cross
represents one of the years. Thus, the vertical
dispersion of the crosses gives an idea of the rela-
tive fluctuation. In order to represent more pre-
cisely this fluctuation, and to study its behavior,
the ratio between the standard deviation extracted
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Figure 4 Average death rate for each age bracket
during the period 1978—1996. The data are plotted in a
semi-log. One can see the wide range of values explored
for the death rate.
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Figure 5 Annual death rate by cancer for each age
bracket: each cross represents one year between 1978
and 1995. The blue crosses are the men and the red
crosses the women.

from the data and the standard deviation com-
puted from the gaussian aggregration has been
plotted, both for the number of deaths (Fig. 6) and
the death rate (Fig. 7). One can notice immediately
a striking change for men under 35 years of age.
Indeed, this ratio stays very close to 1 up to 35
years, even though the death rate (or death prob-
ability) changes by a factor 50 between 5 and 35
years. Based on the study of these fluctuations, we
can conclude that the binomial model (p,1 — p) is
well fitted to describe cancer mortality up to 35
years.

0 20 40 60 80 100
Age bracket

Figure 6 Ratio between the standard deviation mea-

sured from the number of deaths by cancer and the

standard deviation expected from gaussian behavior.

One can see that this ratio deviates sharply from 1 after
40 years.
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Figure 7 Ratio between the standard deviation mea-
sured from death rate by cancer and the standard devi-
ation expected from gaussian behavior. One can see that
this ratio deviates sharply from 1 after 40 years.

On the other hand, from 35 years the ratio starts
a dramatic increase, up to a value close to 20 (for
men around 70 years). It then decreases between
70 and 100 years. This calculation gives for both
men and women a kind of “bell curve”, shifted 10
years later for the women. It appears then that,
after 35 years, mortality by cancer cannot be
summed up in one unique parameter p, as if it was
a probabilistic factor based on a binomial law.

Variations of fluctuations versus the
number of death

In order to analyse more precisely the variations of
these fluctuations, one can plot the standard de-
viation extracted from the statistics versus the
number of deaths, for each age bracket (Fig. 8).
The lower dotted line represents the exact value of
the standard deviation, as predicted by a binomial
or gaussian model. The upper dotted line is simply
a line of slope 1, in order to visualize what would
be the slope if the variations were directly pro-
portional to the number of deaths.

On this plot, one can see once again that the age
brackets up to 35 years follow quite closely the
gaussian model. After that age, the fluctuations
increase and seem to be proportional to the num-
ber of deaths. Thus, if one compares the brackets
35—40 years and 90—95 years, one can see that the
fluctuation is 10 times greater for the second
bracket, while the number of deaths is similar for
both brackets. The linear behavior of the fluctua-
tions versus the number of events is very similar to
what we can find in critical phenomena.
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Figure 8 Log—log plot of the standard deviation versus
the average annual number of deaths. Each cross rep-
resents an age bracket. The green crosses are for age
brackets from 0 to 30 years, blue from 35 to 70 and red
from 70 to 100. The dotted bottom line represents the
theoretical standard deviation for the gaussian model.

Conclusion

The notion of death probability is inherently based
on the assumption that the death of individuals are
independent events that occur at a given rate. This
intuitive idea has profound implications on the
behaviour of the fluctuations of these events. By
measuring the fluctuations (characterized in a first
step by standard deviation) of death by cancer in
the French population over 18 years, an anomalous
behavior was exhibited for individuals older than 35
or 40 years. In fact, fluctuations of death by cancer
for age brackets after 40 years are much stronger
than what one should expect from a gaussian model
based on independent events obeying a binomial
law.

These fluctuations seem, on the other hand,
increase at the same rate as the number of death
events. This characteristic of large fluctuations can
also be found, in modern physics, in the study of
physical systems near critical states. This could be
a strong indication that cancer of a young popula-
tion and of an older population should be regarded
as different diseases. In the former case, cancer
would be more like a “classical” disease with
"deterministic and simple” causes. In the latter,
cancer acts on an aged organism that could be
considered as a “system near a critical state”.
Thus, the global interaction between the disease
and the organism could no longer be summarized in
a single scalar quantity as the death probability,
and the large fluctuations of death events observed
in the statistics are a signature of this criticality.
We wish to point out that this way of looking at
cancer could have major consequences on the un-
derstanding of the behavior of the disease in gen-
eral and also on the interpretation of therapeutic
effects.
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