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Abstract

The progressive deactivation of catalytic surfaces, either by parallel or serial fouling, is a
key problem in heterogeneous catalysis. A mathematical model of the deactivation of a catalytic
reactor is presented. It is shown that this dynamical model can be turned into the study of the
steady-state non-linear response of the same system but for a virtual species. This mapping of
the problem permits to obtain analytical results such as the duration of the reactor or its total
production. As an example, one shows how a fractal surface would respond in such a deactivation
process. Finally, a way to control the time dependency of the reactor production is suggested.
c© 2004 Elsevier B.V. All rights reserved.
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The understanding of heterogeneous catalysis represents today an important economic
and scienti:c challenge [1–6]. In this paper, we consider a catalytic interface slowly
deactivated due to a fouling mechanism, and address the following question: what role
does the geometrical irregularity of the catalytic surface play on the dynamics of the
deactivation process? Furthermore, how do the geometry and the deactivation process
interplay to a9ect the overall performance and duration of the catalytic activity? The
aim of the present study is to give some preliminary answers to these questions. The
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most important result of our theoretical work suggests a new way to control the time
dependency of the catalytic production in a slowly deactivated catalyst. For a :rst order
reaction, our results show that the knowledge of a single time response function of
the system provides a means to control the production process under a broad range
of operational conditions. Moreover, we show that this general result can be applied
to a catalyst of unknown deactivation dynamics and arbitrary geometry.

1. Theoretical model

We :rst introduce the model describing the slow deactivation of an irregular catalytic
surface in the Eley–Rideal situation. In such a system, the reactant A di9uses from a
source at a given concentration Csrc

A (which may be time dependent) towards a catalytic
surface. The bulk di9usion is characterized by Fick’s law, J̃A =−D∇̃CA, CA being the
concentration of A and D its di9usion coeKcient. When encountering the surface, a
molecule A can react in two di9erent ways. First, it can react with the catalyst X
according to the desired catalytic reaction that creates a new species A∗, A + X →
A∗ + X . On the other hand, it also can react according to another reaction, called
parallel fouling, A + X → (AX )c, that creates a complex species (AX )c no longer
active as a catalytic site.
As shown in the left part of Fig. 1, we are concerned with the steady-state regime of

the system where the concentration CA in the bulk of the di9usion–reaction cell obeys
the Laplace equation, ∇2CA=0. On the catalytic surface, the local Nux of disappearance
of species A is given by j = k1CXCA + k2CXCA = KCXCA, where CX is the surface
concentration of active sites, k1 and k2�k1 are the rate coeKcients respectively for the
catalytic and the deactivation reactions, and K = k1 + k2. While the boundary condition
at the catalytic surface is given by D 9CA

9n =KCXCA, the local rate of decrease of catalyst
concentration CX , due to the parallel fouling, is dCX

dt =−k2CXCA. The dynamics of the

Fig. 1. (left) Schematic of the chemical reactions involved in parallel fouling, (right) Scheme of the static
time integrated non-linear problem.
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species A and X are thus described by the following set of equations:

CA = Csrc
A (t) at the source (a) ;

∇2CA = 0 in the bulk (b) ;

9CA

9n =
K
D

CX (̃x; t)CA(̃x; t) at the surface (c) ;

dCX

dt
= −k2CX (̃x; t)CA(̃x; t) at the surface (d) : (1)

In the particular case of a constant concentration of A at the source, the evolution of
CA(̃x; t) is solely due to the variation of the concentration of active catalyst on the
surface. Eq. (1) represents a non-linear system with two unknowns, CA and CX , which
has in general no analytical solution.
One now introduces the time integrated concentration I (̃x; t) ≡ ∫ t

0 CA(̃x; �)d�. This
quantity obviously also obeys the Laplace equation. Furthermore, Eq. (1d) can be
integrated with respect to time, giving:

CX (̃x; t) = C0
X (̃x)e

−k2I (̃x; t) ;

where C0
X (̃x) is the initial distribution of active sites on the surface at time t = 0.

The boundary condition for I at the catalytic surface is then obtained from the time
integrated combination of Eqs. (1c) and (1d)

9I
9n =

∫ t

0

9CA(̃x; �)
9n d�= −

∫ t

0

K
Dk2

dCX

dt
d�=

KC0
X (̃x)

Dk2
[1 − e−k2I ] : (2)

As a result, the deactivation problem can be formulated by means of the new set of
equations:

I = I src =
∫ t

0
Csrc

A (�)d� at the source (a) ;

∇2I = 0 in the bulk (b) ;

9I
9n =

1 − e−k2I

k2�0(̃x)
at the source (c) : (3)

�0(̃x) ≡ D=KC0
X (̃x) can be interpreted as the perimeter of a part of the catalytic inter-

face that works uniformly at the beginning of the reaction [7–9]. The di9usion–reaction
system is thus described only in terms of the new variable I in which the time appears
now as a dummy variable in the boundary condition at the source. For a :xed value of
I src, this set of equations represents a non-linear steady-state system. Given the solution
of this system, the evolution of the dynamical system can be obtained in the following



398 M. Filoche et al. / Physica A 342 (2004) 395–401

way: let �(I src) be the response of the non-linear system (3)

�(I src) = −D
∫
surf :

9I
9n ds : (4)

The time dependent Nux of A species that can be written as

�A(t) = −D
∫
surf :

9CA

9n ds= −D
∫
surf :

9
9n
9I
9t ds=

dI src

dt
d�(I src)
dI src

: (5)

The resulting Eq. (5) expresses mathematically the fact that, if the solution �(I src)
is known for any I src, one can predict the dynamic response of the system for any
arbitrary, and even time dependent, input concentration Csrc

A (t). One therefore can call
the function �(I src) the “master curve” of the system. It is important to stress that this
curve also gives the cumulative production at time t. This result is valid whatever the
dynamics of the source concentration.

2. General results

In the case of a constant concentration at the source Csrc
A , the Nux of A through the

catalytic surface becomes

�A(t) = Csrc
A

d�
dI src

∣∣∣∣
(I src=Csrc

A :t)
: (6)

This equation indicates that the time dependency of the production provides a direct
way to determine the function d�=dI src of a catalytic system that, in general, is not
known a priori. This single function gathers the signatures of the geometrical as well as
the physico-chemical characteristics of the catalytic system (i.e., the internal geometry
of the interface, the distribution of active sites, the di9usivity, and both the reaction
and fouling kinetics).
The total catalytic production can be written as N =

∫ +∞
0 �A(t)dt, which is also

the Nux of I when t → +∞. In this limit, I increases everywhere and the boundary

condition (2) saturates at the value
(

KC0
X (̃x)

k2D

)
. This leads to N = k1

k2

∫
surf : C

0
X (̃x)ds =(

k1〈C0
X 〉surf :
k2

)
Stot , where Stot is the total developed surface of the catalyst. The total

production of A∗ molecules is then directly determined by the total amount of avail-
able catalytic surface independently of the interface morphology and the existence of
di=usion limitations.
For suKciently large di9usivity or, equivalently, small enough systems, the concen-

tration of A is uniform everywhere and equal to Csrc
A . In this situation,

CX (̃x; t) = C0
X (̃x)e

−t=�0 and �A(t) = (KC0
XC

src
A )e−t=�0 ; (7)

where �0 ≡ (k2Csrc
A )−1. �0 is thus the intrinsic characteristic time of the deactiva-

tion process. It can be determined experimentally by monitoring the deactivation of a
suKciently small catalyst pellet.
On the other hand, the inNuence of a small di9usivity (or large access impedance)

can be investigated in the case of a Nat interface. In this case, the problem can be
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treated in one dimension. Let I su be the value of I at the surface and h the height of

the cell. The Nux of I through the bulk is simply given by Fick’s law, StotD
(

I src−I su

h

)
,

while the Nux at the catalytic surface determined by Eq. (3c). The conservation of the
Nux thus yields the following relation:

Stot

(
KC0

X

k2

)
[1 − e−k2I su ] =

StotD
h

(I src − I su) : (8)

The crossover between the early (non-deactivated) and late (deactivated) regimes is
determined by the condition k2I su ≈ 1. As long as k2I su�1, Eq. (8) can be solved at
:rst order, which yields: I su ≈ I src

1+ h
�0

.

The crossover condition thus corresponds to: t ≈ �0
(
1 + h

�0

)
≡ �1.

This new time �1 is the characteristic time of the deactivation process in the entire
cell, taking into account both the di9usion process through the cell of height h and the
deactivation process on the catalytic surface.
In summary, the Nux of reactants A through a cell with a Nat catalytic surface

remains constant (at a value DStotCsrc
A =(h+ �0)) until t = �1. After this time, the Nux

then decreases exponentially with a characteristic time �0. In the case of an irregular
interface, there exists a distribution of distances between the source and the di9erent
regions of the surface, and thus a distribution of the corresponding di9erent deactivation
times.
In order to investigate the inNuence of the interface morphology on the production

of slowly deactivated catalytic system, the responses of six di9erent geometries have
been numerically computed. As shown in the left part of Fig. 2, these morphologies
correspond to the :rst six generations of the triangular Von Koch curve. Each of these
di9usion–reaction cells has been discretized in triangular elements, and the solution of
the non-linear Eq. (3) has been computed through :nite element techniques. The right
part of Fig. 2 presents the “master curves” of the di9erent cells. The increase of their

Fig. 2. (left) Finite element meshings for the six prefractal interfaces. (right) Flux of I src versus input
concentration I src for the six di9erent interfaces. For each interface, the corresponding curve is the master
curve from which can be deduced the response of the cell for any input concentration Csrc(t).
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saturation values (i.e., total production) by a factor 4
3 at each generation corresponds

to the increasing lengths of the prefractal perimeters.

3. Controlling the time production of an unknown catalyst

As previously demonstrated, the catalytic production under deactivation is fully de-
termined by the function d�=dI src, i.e., the derivative of the master curve. More-
over, we have also shown that, even if the geometry of the system and the active
sites distribution are unknown, this curve can be experimentally obtained from con-
stant source concentration measurements. But Eq. (5) also provides a way to ob-
tain an arbitrary time-dependent Nux �A(t) by imposing an appropriate (variable)
input concentration Csrc

A (t). In order to do so, this concentration must verify, from
Eq. (5): Csrc

A (t) d�
dI src |I src(t)=�A(t). A time integration of this equation yields: �(I src(t))=∫ t

0 �A(�)d� ≡ F(t). Introducing � as the inverse function of �, one can express what
is the dynamics of the source concentration that will give the reactant Nux �A(t):

Csrc
A (t) =

d
dt
[�(F(t))] = �A(t)

[
d�
dI src

∣∣∣∣
I src=�(F(t))

]−1

: (9)

For practical purposes, the only requirement is to know d�=dI src, from which � and
� can be deduced. But, as we have shown above, this can be deduced from the
experimental determination of the behavior of the Nux for a constant concentration
(or partial pressure) at the source of the system. An important practical problem is to
determine how to operate a di9usion–reaction system that is progressively deactivated,
in order to obtain a constant Nux of product. In mathematical terms, it corresponds to
:nd the corresponding time dependent source concentration Csrc

A (t) that would result
in a constant output Nux �A. Applying Eq. (9) in the case of a constant Nux �A gives
after some algebra:

Csrc
A (t) = �A

[
d�(I src)
dI src

∣∣∣∣
I src=�(�A×t)

]−1

=
�A

�′[�(�A × t)]
: (10)

Knowing that the function �, which is the Nux of species I , saturates at the value
�sat: =(KC0

X Stot:)=k2, the product �A × t cannot exceed this value. It is thus possible to
maintain a constant Nux �A of reactants only until a time tend such that:

tend =
KC0

X

�Ak2
Stot :

In summary, the dynamics of deactivation through parallel fouling of an irregular
catalytic interface operating under di9usion-limited conditions has been investigated.
We have been able to develop a general analytical approach that can be applied to
any arbitrary interface geometry with any distribution of active sites. The main result
here is that the behavior of the system, whatever the input concentration and time
dependency, can be deduced from the knowledge of a “master curve” which is the
solution of a non-linear problem. This curve represents the time integrated production



M. Filoche et al. / Physica A 342 (2004) 395–401 401

as a function of the time integrated input concentration. It remarkably retains the com-
plete characterization of the catalytic system in terms of its morphology, its di9usional
limitations and the chemical reaction kinetics at the surface.
In practical cases where neither the geometry nor the active sites are known, the

method developed here provides a means to obtain the “master curve” from a single
experiment, namely, the measure of the time production for a :xed concentration at
the input. Once obtained, this curve can be used to determine the dynamics of the
system subjected to more complex boundary conditions. Finally, our approach also
gives some hints on the way to design a catalytic geometry that is proper to a speci:c
chemical process. Although the :nal total production depends only on the total catalytic
surface, we showed here that, as described, the deactivation dynamics can be adequately
modulated to perform some required operational task (e.g., production at a constant
Nux).
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