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Abstract

In several phenomena of practical interest, such as catalyst deactivation, fouling in heat transfer
and other systems of technological and scientific relevance, an irregular surface accessed by
diffusion can be progressively passivated. In a diffusion limited situation, an interface that
works unevenly due to Laplacian screening is simultaneously and unevenly passivated. To study
this phenomenon, we describe a process in which the regions of the surface that are initially
working, are transformed into passive, reflecting zones. As a consequence, at each step, a new
part of the interface becomes active. In turn, this new active zone is passivated, and so on. It
is found that the length of the successive active zones remains approximately constant for a
prefractal interface. The concept of active zone in Laplacian transport can then be successfully
extended to elucidate this self-limiting behavior of the passivation process. A conjecture is then
proposed which states that, in D = 2, the information dimension of the harmonic measure
on a fractal supporting a “passivated or reflecting subfractal” (of smaller dimension) is equal
to 1. This constitutes an extension of Makarov theorem. From our results, fractal geometry
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is revealed as a potential candidate to engineer substrate morphologies that are robust to

Laplacian passivation.
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1. INTRODUCTION

The mathematical concept of harmonic measure, or
modulus of the normal derivative of an interface
Laplacian field, covers many different phenomena
in physics and chemistry. It may, for example, rep-
resent the electric charge distribution on a (possi-
bly irregular or fractal) capacitor electrode or the
current distribution on an irregular electrode in an
electrochemical cell. It also describes the probability
density of diffusing particles reaching an irregular
interface in the case of a catalyst with an irregular
geometry.

In 1985, an important theorem, given by
N. Makarov,! stated that the information dimen-
sion of the harmonic measure on a connected set,
would it be fractal or not, is equal to 1 in D = 2,
where D is the embedding dimension. The physical
meaning of this exact result is that the length of the
active zone, i.e. the zone which receives the major-
ity of the Laplacian flux, should be of the order of
the size or diameter of the smallest sphere that sur-
rounds the interface. This result measures how the
non-uniform accessibility of the interface to random
walkers determines the activity of the system. For
example, in catalysis, the efficiency of the interface
can be significantly smaller than the one expected
from its intrinsic activity because diffusing particles
reach preferably the protrusions of the irregular in-
terface. These so-called screening effects are respon-
sible for substantial differences in behavior between
the deep parts of the interface displaying a lower ac-
tivity, and its most exposed regions that are highly
active. Note that the theorem of Makarov is only
valid for Dirichlet boundary condition (BC), where
the interface presents no resistance to transport or,
equivalently, infinite reactivity or permeability.

Inspired by this result, a coarse-graining method
was proposed that permits to extend the conse-
quences of the Makarov theorem to “resistive” inter-
faces which do not necessarily obey Dirichlet BC’s.?
Through this method, it is possible to determine the
flux across an arbitrarily irregular interface from its
geometry alone, avoiding the solution of the Laplace
problem within a complex boundary domain.

However, a related problem, that arises, for ex-
ample, in the frame of heterogeneous catalysis, has
very important scientific and technological impli-

cations. It is the process of catalyst deactivation,
where a progressive decrease of the surface activity
is observed with time. This is due to the fact that,
together with the primary chemical reaction, there
is a secondary reaction which gradually “passivates”
the surface reactivity of the active zone.

So the following question naturally arises: what
comes next? After deactivation, the diffusing parti-
cles hitting the now passivated zones are reflected
and may eventually reach and react at zones of the
surface that have not been passivated yet, but were
initially poorly active because of screening. This
process is the subject discussed in the present pa-
per. Although the results presented below are ob-
tained in D = 2 where Makarov’s theorem applies,
the concept of active zone still remains in D = 3.
This work then constitutes a first step towards the
understanding of the real (D = 3) problem which
represents a practical issue of importance since the
cost involved in catalyst replacement and process
shutdown for the industry due to deactivation can
be extremely high, reaching the order of billions of
dollars per year.

2. THE DIFFUSION CELL

The question that we try to solve is illustrated in
Fig. 1. We consider a two-dimensional cell where
mass is transported by diffusion through a fluid,
from a source line of length L towards an irregular
interface of perimeter L, but with the same diame-
ter L. In the bulk of the cell, the transport of mass
obeys Fick’s law, q(r) = —DVC, where q repre-
sents the mass flux vector field, C(r) is the local
concentration at position r and D is the (molecular)
diffusion coeflicient. Under steady state conditions,
the concentration field satisfies Laplace equation,

ViC =0. (1)

At the source line, a constant concentration Cyg is
imposed as the boundary condition, whereas the lat-
eral walls of the access space between the source and
the interface are considered to be perfectly non-
absorbing. In the initial, non-passivated, regime
(top part of Fig. 1), the boundary condition is
Dirichlet everywhere (i.e. C' = 0). In that situa-
tion the active zones are in the most prominent re-
gions of the geometry. They are shown in red in the



(b)

Fig. 1 Schematic representation of the diffusion cell sub-
jected to passivation. The reactive interface is irregular, the
reactant concentration obeys the Laplace equation and a con-
stant concentration Cg is maintained at the source line. The
passivation mechanism adopted will dictate the type of BC
at a given subset of the interface, and for a given iteration
of the process. (a) At the beginning, the entire interface fol-
lows Dirichlet’s BC (i.e. C = 0). (b) Ounly the most exposed
zones (shown in red), however, receive the quasi totality of
the flux. After passivation, these same regions are deactivated
(i.e. they obey Neumann’s BC, dC/dn = 0) and the zone of
high activity moves deeper into the irregular geometry. The
Makarov theorem states that the cumulative length of the
red regions is of the order of the system size.

bottom part of Fig. 1. The question to be solved is
the following: if now these same zones are passivated
(i.e. the BC at these zones becomes purely Neu-
mann: 0C/On = 0), what is the new active zone?
It will be shown in the following section that the
length of the new active zone is approximately the
same as the length of the first active zone. Even
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more, this remains true if we iterate the process up
to the point where the entire interface is passive.
We first discuss the simple case of a smooth pore,
and then apply the same procedure to a prefractal
interface.

3. THE PASSIVATION PROCESS

One should recall that the notion of active zone is a
powerful, but drastic simplification of the problem.
It is based on the strongly uneven distribution of
the harmonic measure on the interface. The passi-
vation, being a consequence of the local activity, will
then occur first on the most active fraction of the in-
terface. To characterize quantitatively this process,
one has to find the regions of the interface that re-
ceives the highest fluxes and constitute a large, but
not total, p-fraction of the total flux. (The total
flux corresponding to p = 1 is supported by the en-
tire interface.) Here we will consider the cumulative
lengths of the zones that receive the fraction p = 0.8
or 0.9 of the total flux.

For a given interface geometry and passivation
step, the solution of the Laplacian problem Eq. (1)
for the concentration field C inside the diffusion
cell is obtained after numerical discretization. A
structured mesh comprising quadrilateral elements
is generated and the solution is calculated by means
of the finite-difference technique. From the solution
C at a given passivation step, we compute each local
mass flux ¢; crossing the non-passivated elements ¢
of the interface as well as the total flux penetrating
the system &.

Starting from a non-passivated interface, we se-
lect the wall elements that have the higher mass
fluxes ¢;, and for which the sum constitutes a large
fixed fraction p of the total flux ®. We change the
BC’s on these selected elements from Dirichlet’s
type, C' = 0, to Neumann’s type, 9C/0n = 0. These
operations constitute the first iteration.

One then starts the second iteration: the concen-
tration field and the local fluxes in the remaining
potentially active parts of the interface (those that
are still Dirichlet) are recalculated. A new active
zone is determined by selection of the same large
fraction p of the total activity. It is then passivated
and so on. At each iteration step it, we count the
number of elements L;;(p) that support the highest
fluxes and totalize a given fraction p of the entire
flux. This is what we call the active zone length
at stage it. If it keeps constant as a function of it,
the cumulative passivated zone should be a linear
function of it until the entire interface becomes pas-
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sivated. This is what is found approximately for a
prefractal interface and very precisely for a single
smooth pore.

During this process, the total flux in the system
slowly decreases. Since we restrict ourselves here to
the study of the effects of passivation on the evolu-
tion of the active surface, we renormalize the local
fluxes at each iteration of the passivation process.
This corresponds to the definition of the informa-
tion dimension which is computed from the normal-
ized measure distribution. The complex dynamics of
the total flux, which is certainly a subject of practi-
cal interest, is discussed elsewhere in a more realistic
diffusion-reaction model.3

3.1. Sequential Passivation of a
Smooth Pore

We first apply the passivation scheme proposed
here to the case of a finite straight pore, as shown
schematically in Fig. 2. In this case, the flux in the
starting (non-passivated) configuration decreases
monotonically from the entrance to the deeper parts
of the pore. Practically, we suppose that there exists
a small passive zone at the pore entrance in order to
suppress the local divergences linked to non-realistic
discontinuities between the source and the absorb-
ing wall at the entrance corners. Due to symmetry,
the amount L; that receives the fraction p of the
entire flux corresponds to the sum of the lengths of
two identical parallel wall subsets at the pore inlet.
As shown in Fig. 3, the length L; that supports a
fraction p increases rapidly with p and saturates at
a value close to the pore entry diameter L. For ex-
ample, a length L;; = L is found to support around
90% of the total flux in accordance with our practi-
cal interpretation of Makarov’s result. The amount
L;; of the interface which is passivated at each iter-
ation of the process should remain essentially con-
stant for a given value of the fraction p. In other
words, the passivation process can be described as
a simple sequence of translations of the pore inlet
in the axis direction by a distance L;;/2, as schema-
tized in Fig. 2. The cumulative passivated length

it
Si=> L;
j=1

for p = 0.9 is shown in Fig. 4 for a pore of di-
ameter 30 and depth 185 (total perimeter 400).
The cumulative passivated length saturates at the
pore perimeter. The inset in the figure shows that

Cs Vie=0

Fig. 2 Schematic diagram of the passivation process ap-
plied to a smooth pore. The amount of the interface L;;(p)
which is passivated (shown in red) at each iteration of the
process remains constant. It is of the order of half the en-
trance diameter L. The passivation process follows as a sim-
ple sequence of translations of the pore inlet by the same
passivated distance (shown in blue) L (p)/2.
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Fig. 3 Dependence of the fraction p of the total flux on the

ratio L;;/L for the case of a smooth pore.



400 F—— e
[ ]
[ ]
300 - o .
S [ ]
it °
200 .
® o
[ ] 40
00000OOOOS
30
100 | ° L, J ,
20
[ ]
10 [ )
b 0
O 1 1
0 5 10 15
iteration

Fig. 4 Dependence of the cumulative amount passivated
S;+ at each step it of the process for the case of a smooth
pore of width L = 30 and perimeter L, = 400. The inset
shows the corresponding sequences for L.

the active length is constant during the passivation
process.

This result is not surprising from the theoreti-
cal point of view since the passivation amounts to
translate sequentially the source inside the pore. It
is however interesting from a qualitative point of
view as it indicates that random walkers are es-
sentially absorbed from the source within an an-
gle of order 7/2 or within a depth of the order of
the lateral width. This corresponds qualitatively to
Makarov’s result. This means also that essentially
all particles are colliding with the pore walls in a
distance of the order of the pore width. During pas-
sivation, the diffusing particles which are emitted
by the source may have two different destinies. Ei-
ther they diffuse without hitting the pore walls or
they hit the passivated regions and are reflected.
However, the fraction of particles of the first type
is very small so that the absorption (and the con-
sequent passivation) is due to particles which have
collided with the passivated walls many times. Even
if the passivated region is large, only the deepest
part of it will act as a source, constituting now a
deep source. The very fact that the absorption is
in that sense “local” is qualitatively general and is
confirmed by the study of the prefractal interface.

3.2. Sequential Passivation of a
Prefractal Interface

We now turn to the investigation of the passivation
process applied to an irregular interface. The square
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Koch tree is utilized here as a paradigmatic geom-
etry, but we expect our results to be valid for other
complex structures.

In the left part of Fig. 5a we show the iso-
concentration lines calculated numerically for a
fully active (not yet passivated) interface. After se-
lecting and passivating the most active elements,
the concentration field and the local fluxes in the
remaining possibly active parts of the interface are
recalculated and a new iteration of the passivation
process takes place. We proceed with these calcu-
lations up to the point where the entire interface
becomes inactive (passivated). Figures 5b to f show
the effect of sequential passivation on the concen-
tration field C after 1, 3, 5, 7 and 9 iterations of the
passivation process, respectively. The results dis-
played in Figs. ba to f clearly indicate that the part
of the interface receiving most of the flux is gradu-
ally moving to the deeper regions of the cell as the
passivation develops. In the right part of Figs. 5a—f,
we show how the fractal interface becomes progres-
sively passivated for the corresponding iterations.

In Fig. 6, we show the evolution during the pas-
sivation process of the cumulative variable S;; for
p = 0.8 and 0.9. Remarkably, S;; displays the same
linear increase as the smooth pore from the begin-
ning of the passivation process. This behavior per-
sists till a crossover to a saturation regime corre-
sponding to the complete deactivation of the sys-
tem. The inset of Fig. 6 shows the variation of
L;; at each iteration for the same geometries and
p values. In the fractal case, we observe that the
active length, defined above as the support of the
p-fraction of the activity, exhibit fluctuations but
keeps the same order of magnitude till the entire
interface is passivated. Note that for p = 0.8 and
0.9 respectively, the length of the successive active
zones are approximately 60 and 100. They are of the
order of the interface diameter (equal to 3* = 81).
This corresponds to Makarov’s result, even though
the reflecting region increases at each iteration step.

Although expected for regular interfaces (e.g. for
the pore geometry), the observed regime of con-
stant passivation length is a non-trivial result for
a complex fractal structure. One can understand
this behavior by using the concept of active zone.
As illustrated by the case of the smooth pore, each
fragment of the active zone, whatever its size, will
find after passivation a nearby absorbing (and ac-
tive) region of essentially the same size. This is
why the active zone, although fragmented on a pre-
fractal, exhibits an approximately constant length.
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Fig. 5 [Iterative passivation of a fourth generation prefrac-
tal quadratic Koch curve of dimension Log5/Log3. In this
case the diameter L and perimeter L), are respectively equal
to 81 and 625 in terms of the smaller cut-off. On the left,
the contour plots of the concentration of diffusing species at
different iterations of the passivation process: (a) starting
configuration, (b) it =1, (c) 3, (d) 5, (e) 7, and (f) 9. The
concentration decreases from red to blue. On the right, the
corresponding fractal interfaces with non-passivated (shown
in red) and passivated (shown in black) wall elements.

Furthermore, these considerations suggest a conjec-
tural extension of the Makarov theorem to partially
passivated interfaces. This conjecture predicts that,
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Fig. 6 Dependence of the cumulative passivated length S;¢
at each step it of the process for different values of p. The
dashed line corresponds to the interface perimeter Ly, = 625.
The inset shows the corresponding sequences for L;;. L;; re-
mains approximately constant during the process, up to com-
plete passivation which occurs after 8 and 5 iterations for
p = 0.8 and 0.9, respectively.

as long as the non-passivated part of the interface is
sufficiently larger than L, the transport at the irreg-
ular interface should take place on an active zone
Lg. whose length remains of the order of the system
diameter L.

4. DISCUSSION AND
CONCLUSIONS

Transport due to Laplacian fields towards irreg-
ular surfaces is a very common phenomenon in
nature with important scientific and technological
applications, including heat transfer, electrochem-
ical transport, heterogeneous catalysis, and gas
exchange from air to blood during the respiration
process. In the case of heterogeneous catalysis, for
example, the typical scenario at the microscopic
scale is a cell where the reagent species have to
be transported by diffusion through the bulk of a
fluid to reach an active catalytic surface and be con-
sumed according to a given reaction mechanism.*?
The influence of the surface morphology on the effi-
ciency of the catalyst certainly plays an important
role on this process and has already been the sub-
ject of interest in some previous studies.6~8
Concerning catalyst deactivation, the dynamical
characteristics of this phenomenon should therefore
be considered in the design of the diffusion-reaction



system as well as in the process operation and opti-
mization strategies.”10 At the level of the catalyst
pellet, the role played by the geometry of the pore
space on the dynamics of the deactivation process
has been the focus of some previous studies.'' 14 In
a recent work, the dynamics of deactivation through
parallel fouling of an irregular catalytic interface op-
erating under diffusion-limited conditions has been
investigated.? For the particular case of a first-order
reaction, a general analytical approach has been
developed that confirms that, even for a partially
absorbing surface, the active length in a progres-
sively deactivated smooth pore remains constant as
a function of time.

We now discuss what can be inferred from our re-
sults when the order of fractality increases towards
the realization of this same problem on a mathe-
matical fractal. When the generation of the prefrac-
tal increases, the ratio L/L, of the primary active
length to the perimeter decreases to 0. In that sense
the active zone is more and more diluted. In this sit-
uation, the passivation of that zone will also corre-
spond to a gradually smaller fraction of the surface.
In the case of a mathematical fractal, the active
length represents an infitesimal fraction of the to-
tal perimeter. As a consequence, the modification of
the activity in this fraction of the interface will not
dramatically alter the trajectories of the incoming
particles as they will explore by reflection nearby
regions which are Dirichlet and have a mass infinite
as compared to that of the former active zone which
is now Neumann.

This will also be the case for a (mathematical)
fractal F’ with dimension D} supported by our ini-
tial fractal F' with dimension Dy, provided that
D} is strictly smaller than Dy. So our conjecture

is based on the fact that, if D} < Dy, F' is in-
finitely “diluted” in F'. Consequently, diffusing par-
ticles can finally find Dirichlet regions in any vicin-
ity of the passivated zone. The conjectural extension
of Makarov’s theorem can then be written as: “The
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information dimension of the harmonic measure on
a fractal with dimension Dy supporting a fractal

with dimension D} strictly smaller than Dy which
is Neumann is equal to 1.”

The possible extension of such studies to the
passivation of irregular interfaces in D = 3 would
clearly have important consequences.
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