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The dynamics of deactivation due to parallel fouling is investigated in the case of a
rough reactive interface under diffusion-limited conditions. For a first-order reaction, a
mathematical method is introduced that permits to analyze the response of the system for
any type of interface geometry or input condition. Exact analytical results, such as the
lifetime of the catalyst or its total production are calculated. The deactivation dynamics
in specific geometries, such as a flat catalytic surface, an infinite pore or a rough surface,
are examined. Through these three examples, a general picture of the role of the
morphology on the system response is provided. Even more, this approach shows that the
determination of a single time response function of a catalyst of unknown morphology
provides a means to control the dynamics of the production process. © 2005 American
Institute of Chemical Engineers AIChE J, 51: 998-1008, 2005
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Introduction

The understanding of heterogeneous catalysis today repre-
sents an important economic and scientific challenge. The
development of techniques for the preparation and/or selection
of catalyst materials constitutes an important aspect of this
subject. From a theoretical point of view, some research effort
in recent years has been dedicated to model catalytic systems
under a more realistic geometrical framework. For instance, it
is well known that the classical pseudo-homogeneous models
for the description of the diffusion-reaction process in porous
catalysts'2 can only implicitly account for the geometrical
features of real pore spaces.?* The standard modeling approach
indeed considers the catalyst particle as a homogeneous system
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where reactants and products can diffuse (molecular or Knud-
sen diffusion), and react according to a given effective trans-
port coefficient and an intrinsic reaction mechanism. One char-
acteristic of heterogeneous catalysis that deserves special
attention is the progressive decrease in time of the surface
activity. The cost involved in catalyst replacement and process
shutdown for the industry due to deactivation can be extremely
high, reaching the order of billions of dollars per year.
Generally speaking, the effect of the porous geometry on the
reactive properties of catalysts has been investigated with a
great variety of irregular structures (for example, pore trees,
pore networks, surface of fractal aggregates and fractal pore
spaces).>~10 At the pore level, the role played by the local
surface morphology on the overall efficiency of the catalyst has
also been the subject of previous studies.!!~'> The fractal con-
cept, in particular, has been adopted as a model for the surface
geometry of some disordered materials, including catalyst sup-
ports and adsorbents.'® The effect of the nonuniform accessi-
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bility of the active sites on the reactivity of irregular catalyst
surfaces is a subject of great interest in heterogeneous catalysis.
Due to screening effects, even if one assumes that the active
sites are uniformly distributed in space along the surface, the
deep parts of the structure may still display a lower activity
when compared to the most exposed regions of the catalyst. As
a result, the efficiency of the catalyst surface can be substan-
tially different than the one expected from the intrinsic chem-
ical reactivity.

The extensive research developed in the last years on the
subject of linear transport through irregular interfaces has been
mainly devoted to the introduction, calculation, and application
of the concept of active zone.'’-'° Inspired by this idea, a new
coarse-graining method has been proposed!” to calculate the
flux through irregular surfaces from their geometry alone,
without solving the general Laplace problem. More recently?0-2!
the notion of active zone has been extended to reactive inter-
faces of arbitrary shape. It has been shown, by direct numerical
simulation, that the coarse graining technique presented in
Sapoval'? provides consistent predictions for the activity of
catalyst surfaces over a wide range of diffusion-reaction con-
ditions (that is, with or without screening effects). In many
practical cases, the effect of roughness is to increase the in-
trinsic reaction rate by a geometrical factor, namely, the ratio
between the real and the apparent surface area. Here, we are
implicitly assuming that the active sites are uniformly distrib-
uted in space along the entire surface. This is not necessarily
true for all catalytic systems. For example, the impregnation
process of a rough catalyst substrate may result in a highly
dispersed distribution of active sites that can substantially
reduce the catalyst activity.

Catalyst deactivation during the campaign of a chemical
reactor is often impossible to avoid. The dynamical character-
istics of this phenomenon should, therefore, be carefully con-
sidered in the design of the diffusion-reaction system, as well
as in the process operation and optimization strategies.>> The
deactivation time, however, can vary over a wide range of time
scales. Most of the catalysts of technological importance de-
activate because of poisoning, sintering, and fouling or coke
formation.?32# The term poisoning refers to the loss of catalytic
activity due to strong chemisorption or reaction of a chemical
impurity with the active sites, preventing their access by the
reagent species. If sintering occurs, normally due to high tem-
peratures in the system, the activity loss might result from the
decrease in the effective catalytic surface area. Finally, in the
case of coking or fouling, the decrease in activity is a conse-
quence of the formation of solid products (for example, carbo-
naceous residues) which deposit on the surface of the catalyst
and impair its reactive efficiency. In a later stage, apart from a
decrease in the available active surface, the formation of coke
can produce drastic changes in the pore space volume and
connectivity due to physical pore plugging.

The modeling of catalyst deactivation has been recently
addressed by Froment?> with emphasis on the mechanism of
coke formation. Accordingly, this should be viewed as a three-
fold problem, where the microscopic scale of the active site, the
level of the catalyst particle, and the more macroscopic features
of a chemical reactor operation have to be considered. At the
level of the catalyst pellet, in particular, the role played by the
geometry of the pore space on the dynamics of the deactivation
process has been the focus of some previous studies.20-2° A
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close analogy between catalyst deactivation and percolation
processes has been suggested by Sahimi and Tsotsis,*® where a
special type of percolation model with trapping is developed to
describe the effect of the porous media interconnectedness on
the accessibility of individual pores to transport and chemical
reaction. In a subsequent work, Arbabi and Sahimi3!-3? devel-
oped a model of deactivation for heterogeneous catalysis,
based on a network representation of the pore geometry. As a
paradigm for catalytic pore plugging, this certainly represents a
more realistic approach because phenomenological and struc-
tural features of the system are considered in the same theo-
retical framework.

If we now consider that the catalyst interface is slowly
deactivating due to a fouling mechanism, the following inter-
esting question arises naturally: what is the role of the rough-
ness geometry on the dynamics of the deactivation process?
Furthermore and more important, how do the geometry and the
deactivation process combine to affect the overall performance
and duration of the catalytic activity? The aim of the present
study is to give some preliminary answers to these questions.
The most important result of our theoretical work is to suggest
a new way to control the time dependence of the catalytic
production under slow deactivation. For a first-order reaction,
our results show that the knowledge of a single time response
function of the system provides a means to control the produc-
tion process under a broad range of operational conditions.
Moreover, we show that this general result can be applied to a
catalyst of unknown deactivation dynamics and arbitrary ge-
ometry. As an example, we present in this article a numerical
experiment through the case study of a fractal catalytic surface.

This article is organized as follows. In the section titled
“Theoretical Model,” we describe the catalytic system, and the
deactivation model of parallel fouling studied here. We show
that a mathematical analysis of this model allows to map the
dynamics of diffusion, reaction and deactivation into a steady-
state problem, but with a nonlinear boundary condition at the
catalytic surface. Some general exact results that do not depend
on the shape of the catalytic surface are then presented in the
section titled “Results.” In particular, it is shown that the total
integrated production of a progressively deactivated catalyst is
exactly proportional to its developed area. In the section titled
“Examples of Catalytic Interfaces,” several paradigmatic
shapes of interfaces are studied in order to get a general
understanding of the link between the geometrical features of
the catalytic interface and the overall response of the catalytic
cell. At last, in the section titled “Controlling the Time Pro-
duction of an Unknown Catalyst,” a new way of accessing the
microscopic properties of the interface and, at the same time, to
control the output flux of the system, are proposed.

Theoretical Model
Reaction kinetics of parallel fouling

We first introduce the model describing the slow deactiva-
tion of an irregular catalytic surface in the Eley-Rideal situa-
tion. In such a system, the bulk diffusion of the reactant A

towards the catalytic surface is described by Fick’s law, J, =
-DVC 4> Where C, is the concentration and D is the diffusion
coefficient of species A. When encountering the surface, a
molecule A can react in two different ways. First, it can react
with the catalytic species X to create a new species A*
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Figure 1. Chemical reactions involved in parallel fouling.

A+X — A*+ X @))
Along with this process, a second reaction can also take place
creating the complex species (AX).. In this new state, the
species X is no longer active as a catalyst. This mechanism,
called parallel fouling, thus, deactivates the catalyst X accord-
ing to

A+ X — (AX), )
As depicted in Figure 1, we are concerned with the steady-state
regime of the system

A+ X — A* + X catalytic reaction
A+ X — (AX), parallel fouling

where the concentration C, in the bulk of the diffusion-reac-
tion cell obeys the Laplace equation
Vi€, =0 3)
The use of Laplace equation implies that the discussion
which follows should be limited to mass transport by molecular
diffusion. This is justified here by assuming that the effects of
the micro-roughness linked to the Knudsen diffusion mecha-
nism can be included in the reaction rates values, coarse-
grained to a length scale of the order of the molecular mean
free path.2%2! The molecular mean free path, therefore, consti-
tutes the lower cut-off for the validity of our description. For
example, Knudsen diffusion (instead of molecular diffusion)
may become the dominant mechanism of mass transport deter-
mining the reactivity of the system if the reagent is a diluted
gas for which the collisions among molecules are less frequent
than the collisions between the molecules and the catalytic
Surface_ll,15.33.34
On the catalytic surface, the local flux of disappearance of
species A is given by
J = kiCxCy + ky,CxCy = KCxCy 4)
where Cy is the surface concentration of active sites, k, and &,
<< k, are the rate coefficients for the catalytic and the deac-
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tivation reactions, respectively, and K = k;, + k,. While the
boundary condition at the catalytic surface is given by

GCA
D W = KCXCA,

&)
the local rate of catalyst concentration Cy decreases due to the
kinetics of the parallel fouling as

dCX

7 = —kZCXCA.

(6)

The dynamics of the species A and X are then described by the
following set of equations

C,= Cy(1) at the source  (a)

Vi€, =0 in the bulk (b)

C, K . R f

=D Cx(X,1)Cy(%, 1)  atthesurface (c) (7)
dCy R N

- —k,Cy(%, 1)C,(%, 1) at the surface (d)

As explained later, the concentration of A at the source, C{",
can be time-dependent and used as a control variable for the
production of the system.

In the particular case of a constant concentration of A at the
source, the evolution of C,(X, 1) is solely due to the variation
of the concentration of active catalyst on the surface. Equations
7 represent a nonlinear system with two unknowns C, and Cy,
which has no analytical solution. It will be shown that, from a
convenient integral transformation, this problem can be treated
as a nonlinear steady-state system with a single unknown, that
can be studied mathematically.

Steady-state formulation

We first introduce the time-integrated concentration of spe-
cies A, I(Xx, t), defined everywhere in the system as

I(x, 1) = f Cu(x, 7)dT (8)

As a linear function of C,(X, t), this quantity also obeys the
Laplace equation, VI = 0. We now show that our dynamical
system can be mapped in terms of the diffusion-reaction be-
havior of the single variable /, with a nonlinear boundary
condition on the catalytic surface. For this, Eq. 7d can be
directly integrated with respect to time to give

Cyl%, 1) = CY(Fe M1 ©)

where C(X) is the initial distribution of active sites on the
surface at time t+ = 0. The boundary condition for / at the
catalytic surface is then obtained from the combination of Egs.
7c and 7d and integration in time

Vol. 51, No. 3 AIChE Journal



1 — ekl I

M ( " ) Al F)
7N
(s
N \

.

T o= 1{'111

Figure 2. Steady-state nonlinear problem in terms of the
time-integrated concentration I(x, t).
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As a result, the deactivation problem can be formulated by
means of the following set of equations

t
[=1"= j Cy'(t)dt atthe source  (a)
0
V=0 inthebulk () {12
al 1 —e*
R — at the surface (c)
on k2A0(x)
with
A(R) = D
= ke
ol (1—e ™\ 1 .
o\l ) A (13)

where the diffusion-reaction system is described only in terms
of the new variable /. Time is now a dummy variable which
only appears through the boundary condition at the source. For
a fixed value of 1", this set of equation represents a nonlinear
steady-state system. See Figure 2.

At early times, I ~ 0 everywhere, and A, appears as the
relevant parameter ruling the mixed boundary condition 12c.
Previous works have shown that this parameter can be inter-
preted as the size of a subset of the catalytic interface that
works uniformly.!7-35

From the solution of the steady state system Eqs. 12, the
evolution of the dynamical system can be obtained in the
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following way: let ®(I°"") be the response of the nonlinear
system 12

enty — al
QU =-D | o-ds (14)

surf.

We are interested in the time-dependent flux of A species that
can be written as

ba(1) = _DJ

surf.

Eds (]5)

From the definition 8 and using Eqs. 14 and 15, the flux ¢,
relates to the response @ by means of a simple time derivative

o) = D J d dI" dd(1")
n = —
surf.

a ald — @ rent —
I3 S*a[ r (t))]_widenl

(16)

The resulting Eq. 16 expresses mathematically the fact that, if
the solution d(7¢"") is known for any 7', one can predict the
dynamic response of the system for any arbitrary, and even
time-dependent, input concentration C4"(z). Therefore, we can
call the function ® (/") the “master curve” of the system. It is
important to stress that this curve also gives the cumulative
production at time ¢ as a function of the integrated entrance
concentration. Moreover, this result is valid whatever the vari-
ation in time of concentration at the source.

For completeness, the flux of product A* is given by

ki
buu(t) = K (1) )

and since k, << k;, we can assume that, for all practical
purposes

br = b, (18)

Results
Constant concentration at the source

For a constant concentration at the source C¢", the flux of A
through the catalytic surface becomes

p— ent d® 1
G0) = O g (19)

Jent= Cg”'.,)

This equation indicates that the time dependency of the pro-
duction provides a direct way to determine the function d®/
dI°"" of a catalytic system that, in general, is not known a
priori. As we will show in the subsection titled “The case of
prefractal interfaces”, this single function contains the signa-
tures of the geometrical, as well as the physicochemical char-
acteristics of the catalytic system, namely, the internal geom-
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etry of the interface, the distribution of active sites, the
diffusivity, and both the reaction and fouling kinetics.

Total production of the catalytic system

Using the approximation 18 the total catalytic production
can be written as

N = J ’ ba(1)dt (20)
0

The time integrated flux of A is the flux of / when t — +. In
this limit, / increases everywhere, and the boundary condition
11 saturates at the value (K C?(( X)/k,D). This leads to

k -
N=""]  C%F)ds Q1)
ks
surf.

The production of A* molecules is then directly determined
by the total amount of available catalyst, with or without
diffusion limitations, and independently of the interface mor-
phology. In the case of a uniform distribution of catalyst, C%,
N is simply proportional to S,,,

k,C%
N= ( k2 )Slm

where S,,, (=/[,,rds) is the total developed surface of the
catalyst.

(22)

Time response in the absence of diffusion limitation

For sufficiently large diffusivity or, equivalently, small
enough systems, the concentration of A is uniform everywhere

and equal to C¢". In this situation

Cx(%, 1) = Cy(X)e (23)
and, from Eq. 4, the flux is given by
.= (Kctepre( - ) 4)
where
7o = (k,C{) ™! (25)

T, 1s the intrinsic characteristic time of the deactivation process.
This typical time constant of deactivation may be experimen-
tally determined by monitoring the deactivation of a suffi-
ciently small catalyst pellet.

Examples of Catalytic Interfaces

As already mentioned, under diffusion-limited conditions,
screening effects can have an important role on the overall
performance of the catalytic interface.3%-37-38 One possible way
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to quantify the influence of the shape of the interface on the
response of the diffusion-reaction cell is to characterize the
irregularity of the geometrical interface in terms of the screen-
ing ratio®®

S=1L/JL (26)

where L and L, are the size of the cell and the perimeter of the
interface, respectively. In the following subsections, we inves-
tigate the deactivation behavior of three systems whose mor-
phologies correspond to distinct values of the parameter S.
Precisely, we study the case of the flat interface, for which S =
1, the infinite pore, for which S — <o, and at last, a set of
prefractal interfaces whose generations rank from 0O to 5, and
for which § takes finite values ranging from 1 to more than 4.
For simplicity, we assume in all cases that the initial distribu-
tion of catalyst concentration Cy (¢t = 0) is uniform at the
interface. This implies that the parameter A, is identical at
every point of the catalytic surface. Also, the source concen-
tration of C, at the source, C4", is kept constant in time.

Flat catalytic surface

For a flat interface, the problem is essentially one-dimen-
sional (1-D). Since I obeys the Laplace equation, the gradient
of I is constant in the bulk. Let I** be the value of I at the
surface, and & the distance between the source and the catalytic
surface (the height of the cell). Equating the flux of / both at the
catalytic surface and in the bulk, yields the following relation

KC} D
s( ")[1 e == @)

ky

The term on the right of this equation is the flux of I across the
cell, and its time derivative is then the flux of A. Writing the
derivative of the left term one obtains

Su

d) — (KC() — ko5t di S
A x)€ tot

at (28)

Although Eq. 27 cannot be solved analytically, it is possible
to examine the behavior of the system both at the beginning
and at longer times. Initially, at ¢ = 0, I*' = [* = 0. As long
as k,I'" << 1, Eq. 27 can be solved at first-order, which yields

Ienr d Dcznt
pooad o ba=gTn

T+

I.Yu ~

SIOZ

A, being the length introduced in Eq. 13. During this first
period, the flux of A is constant. It means that the catalyst has
not been significantly altered by the fouling process, which is
slowed down by diffusion. On the other hand, if k,I°" > 1,
Eq. 27 and Eq. 28 yield
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Figure 3. Chemical activity as a function of time for sys-
tems with a flat catalytic interface and various
values of the height h: the integral under the
different curves are the same.
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Aok,

SuDCS" [ h
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Pa= R, PR, )¢

29

The crossover condition between the short and long time
regimes, k,I°* ~ 1, corresponds to

ent 1 1 h
I ~k72 +A70

which can be written as

h
tzTol"FAiO =T

This time 7, is the characteristic time of the deactivation
process in the entire system, taking into account both the
diffusion process through the cell of height &, and the deacti-
vation process on the catalytic surface. It is interesting to note
that the length & appears in the expression of the time as the
diffusion across the cell commands the intensity of the fouling
flux. In order to observe both times 7, and 7,, the solutions of
Eq. 27 have been computed numerically. The time response of
a flat catalytic surface for different values of 4 is shown in
Figure 3.

In summary, the flux of reactants A through a cell with a flat
catalytic surface remains constant, at a value DS,,,C{"/(h +
Ay), until t = 7,. After this time, Eq. 29 shows that the flux
then decreases exponentially with a characteristic time 7,. In
the case of an irregular interface with a distribution of distances
between the source and the different regions of the surface,
there will be corresponding different deactivation times, as
discussed in the section titled “The case of prefractal inter-
faces.”
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The infinite pore

In the geometry of an infinite pore (in 2 or 3 dimensions), the
steady-state system 12 can be transformed into a 1-D differen-
tial equation, where x is the abscissa along the pore, and I(x, 1)
is the mean of I(x, y, z, t) over the cross section of the pore.
This unknown obeys

dzi_ p
dx* \o

where T (x = 0, t) = C¢"'t and (p/o) is the ratio between the
perimeter and the area of the cross section of the pore (in two
dimensions, this parameter is equal to 2/w, where w is the
width of the pore). The second term of Eq. 30 is simply
proportional (with a factor Do) to the flux density of T per unit
length along the pore.

After solving Eq. 30, the time-integrated concentration 7 and
its flux ®, along the pore can be expressed as

- 1 t x
Ix. 1) = kgH) B e]

— Dp ent 7k21~
O/(x, 1) = Aio Ci'1o(1 — e™™)

I

oA, (30)

3D

(32)

where the length €, = Vo Ay/p, and the functions f and g are
defined by

“ dv
flu) = fl Pwte—D and  g[flu)] = u

From Eq. 32 one can immediately deduce the expressions of
the concentration and the flux of A along the pore:

(3)

Culx, 1) = C,‘;”’ ’ (/( t> x) (33)
4 [g ) Tt ]
$alx, 1) = (%p) Calx, n)e M=l (34)
0

Finally, the total flux of reactants through the cell at time ¢ can
be exactly computed as

( ) +% ( )d Dpczmev 1 — e—l/-ro
) = CDdx =
b balx, 1)dx A, \‘5 \,/I/To +e™—1

0

(35)

One then can see that the flux of a cell constituted by an
infinite pore of perimeter p and cross section o decreases as the
inverse square root of time when ¢ is much larger than 7,

Vol. 51, No. 3 1003



po ¢t —(1/2)
24, (;)

Early and Long Time Asymptotics. The expressions in Egs.
33, 34 may look rather complicated, but the system behavior
for early and late times for a given abscissa x can be investi-
gated by considering the asymptotics of f

$a(r) = DCY" (36)

foru << 1, f"(u) z% and flu) = In(u)

‘ .

foru>1, f'(u)=

and flu) = \,Fu

S

\

Let us first examine the early time behavior: for a given
abscissa x in the pore, as long as ¢t << 1, then

Calx, 1) =~ Cf{”exp(— %) (37)

The concentration profile into the pore at the beginning is
exponential with a characteristic length determined by both the
geometry of the pore and the parameters governing the chem-
ical reactions.

The long time asymptotics for a given abscissa x (larger than
€.) is reached when the following condition is fulfilled

LY P 2
t E +{7€

This represents the time for the fouling reaction to consume
most of the catalyst up to the abscissa x, so that the portion of
the pore around x is almost deactivated. In this case, the
concentration of reactants C,(x, t) evolves at longer times
approximately as

~ (ent _ E i
CA(X, t) CA |:] \/; ec

Distribution of the Activity Along the Pore. Figure 4 shows
the behavior of the reactive flux for successive times. When ¢
> 1, the flux ¢,(x, t) can be, with very good approximation,
written into the following form

(38)

X — \/ZDeﬁrt
dalx. 1) = H()»F| =" (39)
with
( 63
Deff, - ?O
DpCy" To
H(r) = - 40
=% \5) t 0)
B d
| F0) = 4, Lexp(—g(—u)]
1004 March 2005
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Figure 4. Plots of the chemical activity along a 2-D pore
of width w (p/o = 2/w), at successive times
(every 47,).
At the beginning, the chemical activity decreases exponen-
tially in space. When the time ¢ is much larger than 7, the
production flux distribution is given by a constant profile, of
constant width 2€_, that progresses into the pore with the
square root of time. The envelope M(x) of the profiles,
represented by the dashed line, is proportional to the inverse

of the abscissa (Eq. 41). The parameter A, was taken equal to
Sw in these computations.

This can be analyzed as follows: the total catalytic activity
(given by H(t)) decreases in time like the inverse of the square
root of time as it goes deeper into the pore (Figure 4). Its
progression into the pore goes as a classical diffusion law with
an effective diffusion constant D, . Furthermore, the flux of
reactants along the pore keeps a constant profile (given by
F(u), with [*% F(u)du = 1), with a typical width of order
2¢.. It means that the size of the active zone remains constant
throughout the deactivation of the pore.

If ones transforms the time ¢ in the amplitude H(?) into a
space coordinate with the help of the effective diffusion law
characterized by D, one gets the envelope of the maxima of
the chemical flux along the pore (dashed line in Figure 4):

e

x2 ) (2)(3/2) Dpcznt €C

M(x) = F(O)*H(wqf A x @D

The case of prefractal interfaces

In order to investigate the influence of the interface mor-
phology on the production of the catalytic system under deac-
tivation, the response of six different geometries have been
studied numerically. As shown in Figure 5, these morphologies
correspond to the first six generations of the triangular Von
Koch curve.

Each of these diffusion-reaction cells has been discretized in
triangular elements, and the solution of the nonlinear Eq. 12
has been computed through finite element techniques.*® The
profiles displayed in Figure 6 represent the “master curves” of
the different cells. The increase of their saturation values (that
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Figure 5. Finite element meshings for the six prefractal
interfaces.

is, total production) by a factor of 4/3 corresponds to the
successive values of the fractal perimeters.

Considering the particular case of a constant concentration at
the entrance, the dynamical responses of the different catalytic
systems can be predicted by direct derivation of the master
curve, following Eq. 19. As shown in Figure 6 and Figure 7,
from one generation to the next, the increased surface of the
catalyst extends the time needed to reach saturation.

The contour plots shown in Figures 8(a)—(d) correspond to
the concentration of reactants A (left) and to the diffusion
current density (right) for different times. One can see that the
activity of the catalytic interface is initially concentrated at the
most accessible regions and that this active zone is progres-
sively transferred into the deepest parts of the interface. At the
end, the activity is concentrated in the most remote regions of
the interface. When, during the deactivation process, the active
zone is shifted to a deeper region, this is reflected on the
response curve, namely, a marked transition can be observed.

Then, in this type of structure, the catalytic activity starts in
the most accessible parts of the interface. Once the first active

o(I°"™)

2500,

2000,

1500

1000

500

0 500 1000 1500

Ient

Figure 6. Flux of /°" vs. input concentration /°™ for the
integrated steady-state system in the six dif-
ferent interfaces.

For each interface, the corresponding curve is the master
curve from which the response of the cell for any input
concentration C**(t) can be deduced.
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Figure 7. Flux of reactants A vs. time for a constant input
concentration C5™ (obtained by derivating the
corresponding master curves as shown in Eq.
19).

The perimeter of the interface at a given generation is exactly
4/3 times the perimeter of the previous generation. Therefore,

the integral of each of these curves is exactly 4/3 the integral
of the previous curve, as demonstrated in Eq. 21.

zone of the catalyst has been exhausted by the fouling reaction,
the activity is transferred to the next accessible area. In this
new active zone, the production flux is directly determined by
the diffusional resistance of access. The process is then re-
peated up to the point where the entire catalytic surface has

Figure 8. Contour plot of the concentration (left) and the
current density (right) of reactant A at various
times of the evolution of the catalytic cell: (a)
t/t, = 10, (b) t/7, = 40, (c) t/7, = 80, (d) t/7, =

130.
The concentration (left) and current (right) decreases from red
to blue.
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been deactivated. In the particular case of the prefractal geom-
etry used here, this is revealed by the sequence of shoulders in
the response curve, as shown in Figure 7.

Controling the Time Production of an Unknown
Catalyst

As previously demonstrated, the catalytic production under
deactivation is fully determined by the function d®/dI", that
is, the derivative of the master curve. Moreover, we have also
shown that, even if the geometry of the system and the active
sites distribution are unknown, this curve can be experimen-
tally obtained from constant source concentration measure-
ments.

It is important to note that Eq. 16 also provides a way to
impose an arbitrary time dependence of the flux ¢(#) through
an appropriate (variable) input concentration C§"'(¢). To do so,
this concentration must verify

= (1)

(1)

ent, d(p
Ci'(r) PG (42)

Integrating this equation between 0 and ¢ yields

P (1)) = f d(r)dr = F(1)

0

and introducing the inverse function of ®, W, we finally obtain

d
Ci'(n) = [W(F(1)] (43)
This equation implies that
ent, — d(I) -
Ci'(0) = &) Jpem (44)
=W (F ()

In practice, the only requirement is to know d®/dI*", from
which ® and ¥ can be deduced. But as we have shown above
this can be deduced from the experimental determination of the
behavior of the flux for a constant concentration (or partial
pressure) at the entrance of the system.

An important practical problem is to determine how to
operate a diffusion-reaction system that is progressively deac-
tivating, in order to obtain a constant flux of product. In
mathematical terms, this means that ¢ is constant. Thus, Eq. 44
gives the time-dependence of the concentration needed at the
source in order to obtain this constant flux (Figure 9)

dq) ( Ient)

T (43)

ent j— - j— (l)
CA (t) - d)|: MHPMMJ - q)'[‘;[’(d)l‘)]

We have already seen that the flux @ of species I saturates at
the value

1006 March 2005
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Figure 9. Time evolution of the input concentrations C*™*
necessary to get a constant flux of products
for different generations of the Von Koch in-
terface.

KC%

¢S11t. = kz Smt

From this, one can deduce that it is possible to maintain a
constant flux of reactants A, f,, throughout the cell until a time
t.,q Such that

KC%

tend = fAkZ Smt. (46)

Discussion

In this work, the dynamics of deactivation through parallel
fouling of an irregular catalytic interface operating under dif-
fusion-limited conditions has been investigated. For the partic-
ular case of a first-order reaction, we have been able to develop
a general analytical approach to the problem that applies to any
arbitrary interface geometry with any distribution of active
sites. A few general conclusions can be drawn from this math-
ematical analysis.

The principal result here is that the behavior of the system,
whatever the input concentration and time-dependence, can be
deduced from the knowledge of a “master curve.” This curve
represents the time integrated production as a function of the
time-integrated input concentration. Remarkably, it retains the
complete characterization of the catalytic system in terms of its
morphology, its diffusional limitations and the chemical reac-
tion kinetics at the surface. On the basis of this method, one can
discuss two different scenarios.

First, if the surface geometry and the distribution of active
sites is known, the “master curve” can be directly obtained
through the numerical solution of the nonlinear problem. An
example of this procedure is presented in the section titled
“Examples of Catalytic Interfaces,” where the case of diffu-
sion-reaction cells with prefractal catalytic interfaces is ana-
lyzed in detail. Using the same approach, the deactivation
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process of an infinite pore with smooth walls is investigated
analytically. For a constant concentration at the entrance, the
production is shown to decay as ¢~ '/2. During the deactivation
process, the active zone for reaction remains approximately
constant in size. This result can be extended to the case of a
rough pore with an arbitrary geometry using the tools devel-
oped in our previous work.20-2!

Second, in the practical case where neither the geometry nor
the active sites are known, the method developed here provides
a means to obtain the “master curve” from a single experiment,
namely, the measure of the time production for a fixed con-
centration at the input. The master curve can be determined
more precisely if one performs several experiments for various
input concentrations (or time-dependent profiles). Once ob-
tained, this master curve can be used to predict the dynamics of
the system subjected to any input condition. Even more, an
arbitrary time production of this (unknown) catalyst can be
programmed using these methods. In particular, this can be
applied to obtain a constant production flux from a progres-
sively deactivating catalyst.

The role played by the surface geometry on the catalyst
performance under slow deactivation and diffusion-limited
conditions certainly constitutes an intricate and difficult prob-
lem to be solved, both theoretically and experimentally.
Clearly, our study represents only one step in this direction, but
it relies on a well-defined and systematic approach, that we
believe can be experimentally valuable. Besides the mathemat-
ical tools developed here, we believe that a general qualitative
picture applies to the dynamics of deactivation under diffusion
limitations. There should be basically three zones present in the
catalyst pellet: (1) a passivated zone which is responsible for
diffusional screening; (2) an active zone, where the production
takes place, and (3) an still unexploited region, but potentially
active. During the dynamics, the passivated zone progressively
increases, the size of the active zone remains approximately the
same,!” and the unexploited region decreases. This picture
should also apply to higher-order reactions. Our approach also
gives some hints on the way to design a catalytic geometry that
is proper to a specific chemical process. Although the final total
production depends only on the total catalytic surface, we
showed here that, as described, the deactivation dynamics can
be adequately modulated to perform some required operational
task (for example, production at a constant flux).
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Notation

C,(X, t) = concentration of reactants A
Cy(X, 1) = concentration of catalyst X
C4"(t) = input concentration of reactants A
CY%(X%) = initial concentration of catalyst X
I(X, ) = time integrated concentration of reactants A
ky, k,, K = reaction rates (K = k, + k,)
D = molecular diffusion coefficient
¢4(1) = flux of reactants A
D(I°"") = response of the integrated system (master curve)
W() = inverse function of ®
L = diameter of the system
» = perimeter of the catalytic interface in 2-D
S, = total surface of the catalytic interface in 3-D

AIChE Journal

A, = unscreened perimeter length
Ty, T, = characteristic deactivation times

Literature Cited

1. Aris, R. The Mathematical Theory of Diffusion and Reaction in Per-
meable Catalysts, Clarendon Press, Oxford (1975).

2. Bird, R. B., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena,
John Wiley & Sons, New York (1960).

3. Adler, P. M., Porous Media: Geometry and Transport, Butterworth-
Heinemann, Stoneham, MA (1992).

4. Sahimi, M., Flow and Transport in Porous Media and Fractured Rock,
VCH, Boston (1995).

5. Gavrilov, C., and M. Sheintuch, “Reaction Rates in Fractals vs. Uni-
form Catalysts with Linear and Nonlinear Kinetics,” AIChE J., 43,
1691-1699 (1997).

6. Giona, M., “First-Order Reaction-Diffusion Kinetics in Complex Frac-
tal Media,” Chem. Eng. Sci., 47, 1503-1515 (1992).

7. Gutfraind, R., and M. Sheintuch, “Scaling Approach to Study Diffu-
sion and Reaction Processes on Fractal Catalysts,” Chem. Eng. Sci.,
47, 4425-4433 (1992).

8. Keil, F. J., “Modelling of Phenomena within Catalyst Particles,”
Chem. Eng. Sci., 51, 1543-1567 (1996).

9. McGreavy, C., J. S. Andrade, Jr., and K. Rajagopal, “Consistent
Evaluation of Effective Diffusion and Reaction in Pore Networks,”
Chem. Eng. Sci., 47, 2751-2756 (1992).

10. Villermaux, J., D. Schweich, and J.-R. Authelin, “Transfert et réaction
a une interface fractale représentée par le ‘Peigne du Diable’,” C. R.
Acad. Sc. Paris Série 11, 304, 399-404 (1987).

11. Coppens, M.-O., and G. F. Froment, “Diffusion and Reaction in
Fractal Catalyst Pore—I. Geometrical Aspects,” Chem. Eng. Sci., 50,
1013-1026 (1995).

12. Coppens, M.-O., and G. F. Froment, “Diffusion and Reaction in
Fractal Catalyst Pore—II. Diffusion and First-Order Reaction,” Chem.
Eng. Sci., 50, 1027-1039 (1995).

13. Coppens, M.-O., “The Effect of Fractal Surface Roughness on Diffu-
sion and Reaction in Porous Catalysts—From Fundamentals to Prac-
tical Applications,” Catalysis Today, 53, 225-243 (1999).

14. Meakin, P., “Simulation of the Effects of Fractal Geometry on the
Selectivity of Heterogeneous Catalysts,” Chem. Phys. Lett., 123, 428—
432 (1986).

15. Santra, S. B., and B. Sapoval, “Interaction of Ballistic Particles with
Irregular Walls, Knudsen Diffusion, and Catalytic Efficiency,” Phys.
Rev. E, 57, 6888—6896 (1998).

16. Avnir, D., ed., The Fractal Approach to Heterogeneous Chemistry:
Surfaces, Colloids, Polymers, Wiley, Chichester (1989).

17. Sapoval, B., “General Formulation of Laplacian Transfer Across Ir-
regular Surfaces,” Phys. Rev. Lett., 73, 3314-3316 (1994).

18. Pfeifer, P., and B. Sapoval, “Optimization of Diffusive Transport to
Irregular Surfaces with Low Sticking Probability,” Mat. Res. Soc.
Symp. Proc., 366, 271-276 (1995).

19. Sapoval, B., “Transport Across Irregular Interfaces: Fractal Electrodes,
Membranes and Catalysts,” Fractals and Disordered Systems, A.
Bunde and S. Havlin, eds., Springer-Verlag, Berlin, pp. 232-261
(1996).

20. Andrade Jr., J. S., M. Filoche, and B. Sapoval, “Analytical Approxi-
mation for Diffusion-Reaction Processes in Rough Pores,” Europhys.
Lett., 55, 573-579 (2001).

21. Sapoval, B., J. S. Andrade, Jr., and M. Filoche, “Catalytic Effective-
ness of Irregular Interfaces and Rough Pores: The ‘Land Surveyor
Approximation’,” Chem. Eng. Sci., 56, 5011-5023 (2001).

22. Sie, S. T., “Consequences of Catalyst Deactivation for Process Design
and Operation,” Appl. Catal. A, 212, 129-151 (2001).

23. Bartholomew, C. H., “Mechanisms of Catalyst Deactivation,” Appl.
Catal. A, 212, 17-60 (2001).

24. Moulijn, J. A., A. E. van Diepen, and F. Kapteijn, “Catalyst Deacti-
vation: Is It Predictable? What To Do?,” Appl. Catal. A, 212, 3-16
(2001).

25. Froment, G. F., “Modeling of Catalyst Deactivation,” Appl. Catal. A,
212, 117-128 (2001).

26. Beeckman, J. W., and G. F. Froment, “Catalyst Deactivation by
Active-Site Coverage and Pore Blockage,” Ind. Eng. Chem. Fund., 18,
245-256 (1979).

27. Beeckman, J. W., and G. F. Froment, “Catalyst Deactivation By Site

March 2005 Vol. 51, No. 3 1007



28.

29.

30.

31.

32.

33.

1008

Coverage and Pore Blockage—Finite Rate of Growth of the Carbo-
naceous Deposit,” Chem. Eng. Sci., 35, 805—815 (1980).

Beeckman, J. W., and G. F. Froment, “Deactivation of Catalysts by
Coke Formation in the Presence of Internal Diffusional Limitation,”
Ind. Eng. Chem. Fund., 21, 243-250 (1982).

Nam, I. S., and G. F. Froment, “Catalyst Deactivation by Site Cover-
age Through Multi-Site Reaction-Mechanisms,” J. Catal., 108, 271—
282 (1987).

Sahimi, M., and T. T. Tsotsis, “A Percolation Model of Catalyst
Deactivation by Site Coverage and Pore Plockage,” J. Catal., 96,
552-562 (1985).

Arbabi, S., and M. Sahimi, “Computer Simulations of Catalyst Deac-
tivation—I. Model Formulation and Validation,” Chem. Eng. Sci., 46,
1739-1748 (1991).

Arbabi, S., and M. Sahimi, “Computer Simulations of Catalyst Deac-
tivation—II. The Effect of Morphological Transport and Kinetic Pa-
rameters on the Performance of the Catalyst,” Chem. Eng. Sci., 46,
1749-1755 (1991).

Malek, K., and M.-O. Coppens, “Effects of Surface Roughness on
Self- and Transport Diffusion in Porous Media in the Knudsen Re-
gime,” Phys. Rev. Lett., 87, 125505 (2001).

34.

35.

36.

37.

38.

39.

40.

Andrade Jr., J. S., H. F. da Silva, M. Baquil, and B. Sapoval, “Tran-
sition from Knudsen to Molecular Diffusion in Activity of Absorbing
Irregular Interfaces,” Phys. Rev. E, 68, 41608 (2003).

Filoche, M., and B. Sapoval, “A Simple Method to Compute the
Response of Non-Homogeneous and Irregular Interfaces: Electrodes
and Membranes,” J. Phys. I France, 7, 1487-1498 (1997).

Jones, P., and T. Wolff, “Hausdorff Dimension of Harmonic Measures
in the Plane,” Acta Math., 161, 131-144 (1988).

Makarov, N. G., “On the Distortion of Boundary Sets Under Confor-
mal Mapping,” Proc. London Math. Soc., 51, 369-384 (1985).
Filoche, M., and B. Sapoval, “Shape Dependence of the Non-Linear
Response of Irregular Electrodes,” Electrochimica Acta, 46, 213-220
(2000).

Sapoval, B., M. Filoche, K. Karamanos, and R. Brizzi, “Can One Hear
the Shape of an Electrode? I. Numerical Study of the Active Zone in
Laplacian Transfer,” Eur. Phys. J. B., 9, 739-753 (1999).

Bernadou, M. et al., “Modulef: Une Bibliotheque Modulaire d’Blé-
ments finis,” INRIA Report, France (1985).

Manuscript received Nov. 14, 2003, and revision received July 9, 2004.

March 2005 Vol. 51, No. 3

AIChE Journal



