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Diffusion-Reaction in Branched Structures: Theory and Application to the Lung Acinus

D. S. Grebenkov,1,* M. Filoche,1,2 B. Sapoval,1,2 and M. Felici1
1Laboratoire de Physique de la Matière Condensée, C.N.R.S. Ecole Polytechnique, 91128 Palaiseau, France
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An exact ‘‘branch by branch’’ calculation of the diffusional flux is proposed for partially absorbed
random walks on arbitrary tree structures. In the particular case of symmetric trees, an explicit analytical
expression is found which is valid whatever the size of the tree. Its application to the respiratory
phenomena in pulmonary acini gives an analytical description of the crossover regime governing the
human lung efficiency.
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The supply of nutritive or other substances from the
source to the periphery of an extended biological system
frequently involves branched structures. Typical examples
are plant roots and branches, animal circulatory and respi-
ratory systems, as well as river basins. A ramified geometry
ensures capillary distribution to large exchange surfaces. In
mammalian lungs, the bronchial tree is responsible for the
convective transport of fresh air from the mouth to the gas
exchange units, called pulmonary ‘‘acini’’. The acini com-
prise the last generations of airways where oxygen is trans-
ported by molecular diffusion in air and transferred to
blood through the alveolar membrane [1]. The diffusion
transport in branched structures has been addressed in
several papers (see [2,3], and references therein). The
important point here is that we consider the stationary
diffusion described by the Laplace equation for oxygen
concentration, with a finite absorption rate at the alveolar
membrane. Recently, it has been shown that this partial
differential equations problem (PDE) in a branched ge-
ometry can be mapped into a discrete problem defined by
random walks on a finite Cayley tree, obtained from the
skeleton of the three-dimensional branched structure.
Random walks figuring oxygen diffusion on this skeleton
tree were used to compute the human acinus efficiency [4].
The very slow decrease of branch diameters into the acinus
is known to be irrelevant for diffusional flow (the problem
of extreme sensitivity of a branched system to hydrody-
namic flow is discussed in [5]).

In the present Letter, we describe an efficient ‘‘branch by
branch’’ procedure providing an exact resolution of this
discrete problem. The flux of particles diffusing on arbi-
trary trees with partial absorption at the boundary is de-
rived analytically. Its application to symmetric trees
provides an exact explicit relation for this diffusional
flux. The branch by branch approach can also be used for
asymmetric trees and is applied to calculate the flux into
the real pulmonary acinus described in [6].

The PDE problem for oxygen concentration is expressed
by the Laplace equation �c � 0 with the mixed boundary
condition at the partially absorbing surface
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where n is the normal to the surface. A fixed concentration
c0 is set at the source of diffusion. The parameter � is the
ratio D=W of the oxygen diffusivity in air D and membrane
permeability W [7]. In the healthy human lungs, the value
of � is around 30 cm. It is of practical importance to know
how the transport properties of the human acini depend on
this physical (and physiological) parameter as, for ex-
ample, pulmonary edema degrades the membrane perme-
ability leading to a significant increase of �. The oxygen
flux through the membrane of total surface S is given by
� � W

R
cdS. The system behavior as a gas exchanger is

well described by a quantity 
 called efficiency and de-
fined as


 �
�

Wc0S
: (2)

Therefore, 
 is a number between zero and one represent-
ing the fraction of the surface which is active. It only
depends on the physical parameter � and the morphology
of the branched structure [7].

Let us introduce the discrete representation of this PDE
problem. First, we note that the stationary diffusion with
partial absorption at the boundary can be modeled by
d-dimensional partially absorbed random walks on a lattice
of parameter a [Fig. 1(a)]. In this frame, the mixed bound-
ary condition (1) means that a particle hitting the boundary
can be absorbed with probability , or reflected to its
preceding position with probability �1� �. The absorp-
tion probability  is related to the parameter � of the
equivalent PDE problem by the following relation:  �
�1��=a��1 [8]. Dealing with thin channels of square
profiles, there are 2d� 2 directions to the boundary.
Then, the total probability to be absorbed at one step is
�2d� 2�=�2d�. So, d-dimensional random walks in a thin
channel of ‘‘diameter’’ a can be considered as one-
dimensional longitudinal walks with the following dy-
namic ‘‘rules’’: being on an intermediate site k, the random
particle can jump to the left (site k� 1) with probability
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FIG. 1. (a) The stationary diffusion in a rectangular pore with
partial absorption at the boundary (dotted contour) can be
modeled as a one-dimensional partially absorbed random
walk; (b) Linear chain of ‘ intermediate sites with the entrance
(site 0) and the exit (site ‘� 1); (c) At the branching point ‘� 1,
the parent branch (on the left) is divided into daughter branches
(on the right).
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1=2d, or to the right (site k� 1) with the same probabil-
ity 1=2d; or it can stay on the same site k with probability
�1� ��1� 1=d� (that is equivalent to the reflection from
the boundary); or the random particle can be absorbed with
probability �1� 1=d�.

These rules can be written in the form of discrete dif-
ferential equations for concentrations ck (with k � 1; :::; ‘)
[9,10]:

1

2
�ck�1 � ck�1� � ck � �d� 1�ck; (3)

where the left hand side represents the discrete Laplace
operator.

For finite channels, boundary conditions should be de-
fined for the entrance and exit sites. These sites will be
labeled by 0 and ‘� 1 for convenience [see Fig. 1(b)].
Imposing the values of the concentration at the entrance
and the exit of the chain as respectively c0 � cent and
c‘�1 � cexit, one can solve the discrete one-dimensional
Eq. (3) explicitly by Fourier transform. In particular, the
following linear relations hold:

c1 � �1� u;‘�cent � v;‘cexit
c‘ � v;‘cent � �1� u;‘�cexit;

where coefficients u;‘ and v;‘ depend only on the branch
length ‘ and the absorption probability :

u;‘ � 1�
s;‘

��1� �d� 1��s;‘ � 1=2�2 � s2;‘

v;‘ � 1�
�1� �d� 1��s;‘ � 1=2

��1� �d� 1��s;‘ � 1=2�2 � s2;‘
;

with
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�1� �d� 1�� cos2��=‘��1:

The entering flux �ent and the exiting flux �exit can be
defined as

�ent � DS0
c0 � c1

a
�exit � DS0

c‘ � c‘�1

a
;

where the constant D corresponds to the diffusion coeffi-
cient, and S0 stands for cross section area (S0 � ad�1 for a
square profile). In conclusion, the concentration cent and
the entering flux �ent depend on cexit and �exit through
linear functions

cent �
u;‘
v;‘

cexit �
a

DS0

1

v;‘
�exit; (4)

�ent �
u;‘
v;‘

�exit �
DS0
a

u2;‘ � v2
;‘

v;‘
cexit: (5)

The coefficients are complicated but explicit functions of
the parameters  and ‘.

Now, in order to compute the flux within a complex tree,
we divide it into branches. The thin channel description
holds for each single branch. It is then possible to solve the
problem for the entire system by using an iterative branch
by branch procedure from the last generation up to the root,
once some suitable condition has been defined for the
branching points.

Let us consider the last branches. The mixed boundary
condition (1) is applied on the terminal site ‘� 1

�exit � DS0

�
@c
@n

�
exit

�
DS0
�

cexit: (6)

From the last equations, one obtains a direct relation
between cent and �ent:

�ent �
DS0

f;‘���
cent: (7)

Here f;‘��� is the new function

f;‘��� � a
��=a�u;‘ � 1

��=a��u2;‘ � v2
;‘� � u;‘

: (8)

This means that the relation (6) remains valid at the en-
trance but with a modified parameter �0 � f;‘���. In the
particular case of a single deep pore of length ‘ 	 1 (one
branch alone), there is a region of values �=a (of order of
‘2) where the function f;‘��� behaves like ��=a�1=2. One
thus retrieves the flux �ent following a power law with the
classical exponent �1=2 [11].

The next step is to consider the branching point where
the parent branch divides into M daughter branches of
lengths ‘1; . . . ; ‘M [see Fig. 1(c)]. For each of these daugh-
ter branches, one can apply the relation (7) between the
concentration cent and the entering flux �ent. We will use
2-2
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FIG. 2. Efficiency of finite symmetric trees with different
branching numbers M � 2, 3, 4, fixed branch length ‘ � 2,
and five levels of branching (depth n � 5).
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the superscript to distinguish different daughter branches,

��m�
ent �

DS0
f;‘m���

c�m�
ent �m � 1; . . . ;M� (9)

At the branching point, one has the following conditions:

c�1�ent � c�2�ent � . . . � c�M�
ent � cpar

��1�
ent ���2�

ent � . . .���M�
ent � �par:

(10)

The first condition holds since the branching point con-
nects the parent branch exit with the daughter branch
entrances. The second condition provides the conservation
of flux at the branching point: the exiting flux �par of the
parent branch is distributed into M daughter branches. If
the branching point can also absorb the particles, the
corresponding flux ought to be taken into account on the
left hand side. Using these two conditions and relations (9),
one has

�par �
DS0
�0

cpar
1

�0
�

XM
m�1

1

f;‘m���
: (11)

Now, one can forget the branching point and the daughter
branches and use the relation between the concentra-
tion and flux at the end of the parent branch. Perform-
ing iteratively this branch by branch procedure up to the
tree entrance, one obtains a similar expression for the total
flux �,

� �
DS0
�eff

c0; (12)

where c0 is the concentration at the main entrance. The
function �eff (depending on  and, consequently, on �)
provides the response of the branched tree, and the effi-
ciency 
 can be written as


��� �
�

Wc0S
�

S0
S

�

�eff
: (13)

A particular simplification appears in the case of a
symmetric tree of constant branching number M when all
branches have the same length ‘. Let us consider such a
tree of depth n (containing n branching levels). In this case,
the relation (11) becomes

�1 � �f;‘��� 
 ~f;‘���;

with � 
 1=M. On the second level, one applies again this
relation: �2 � ~f;‘��1� � ~f;‘�~f;‘����. Repeating this
procedure, one finds for the main entrance:

�eff 
 �n � ~f;‘�~f;‘�:::~f;‘|�����������{z�����������}
n times

���:::��: (14)

Since ~f;‘��� is the linear fractional transformation of �,
its successive application of itself gives again a linear
fractional transformation. One can calculate its coefficients
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explicitly
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with

�1;2 �
�1� ��u;‘ �
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Eqs. (13) and (15) give then an analytical expression for the
efficiency 
 of a symmetric tree as a function of � and of
the tree characteristics �, ‘, and n.

Figure 2 shows the dependency of the efficiency 
 as a
function of �=Lp, where the length scale Lp � S=a quali-
tatively corresponds to the perimeter of a cut of the acinus
from the model of Kitaoka [12]. The observed behavior
may be quite different from that of large trees for which
one expects a power law with an exponent equal to 1 [13].
This last behavior can be derived from the above equations
by taking the tree depth n sufficiently large. It can be
shown that in this case the length �eff becomes very close
to the fixed point ��1�

eff � a�‘� 1�=�M� 1� of the linear
fractional transformation ~f;‘��� (for small ). In this re-
gime, the efficiency 
 given by (14) varies linearly with �.
This behavior is observed in Fig. 2 for the larger tree
corresponding to M � 4 and ��=Lp� not too large.
Consequently, a particular property of a large tree is that
the flux given by Eq. (12) is constant and independent of
the permeability W: the change in permeability is exactly
compensated by the change in the size of the active zone. In
this regime, the global flux is ‘‘robust’’ against permeabil-
ity changes.

On the opposite, for the smaller tree corresponding to
M � 2, which is representative of the human acinus, one
observes a nontrivial behavior. This means that, due to
finite size effects, the system always works in the crossover
regime for which we now have an exact theory. In other
words, the whole function 
��� (instead of a single power
2-3
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FIG. 3. Comparison between the flux (at constant D) in the
average symmetrized acinus and the real acinus.
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FIG. 4. Logarithmic derivatives of the efficiency of eight real
subacini (dotted lines) compared to that of the symmetric dicho-
tomic tree with ‘ � 2 and n � 5.
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law) has to be considered to correctly reproduce the com-
plex response of the branched structure.

The human lung works in a different manner at rest and
in exercise conditions because the region where the
convection-diffusion transition occurs depends directly
on the air flow velocity [7]. At rest the diffusion source is
situated at the entry of what is called a ‘‘1=8 subacinus’’.
Although always dichotomic (M � 2), the real subacini
are slightly different in size and the corresponding trees are
not symmetric: the branch lengths vary and some of them
are terminated earlier than others [6]. It is then of interest to
compare the properties of an ‘‘average’’ symmetrized
structure to the different real subacini. The branch by
branch method presented above can be used to compute
the flux in the real acinus as the sum of the fluxes in its
eight subacini. One can then compare this real flux with 8
times the flux in the dichotomic symmetric tree with the
same average length of branches (‘ � 2) and the same
average total area (corresponding to the depth n � 5).
The result is shown in Fig. 3. One observes that the
simplified acinus provides a good analytical approximation
for the flux in the real pulmonary acinus. Figure 4 shows
the detailed comparison between the logarithmic deriva-
tives of the efficiency of the eight real subacini with the
same quantity for the average symmetrized subacinus.

In summary, an exact branch by branch calculation of
the diffusional flux has been developed for arbitrary trees.
For symmetric trees, one obtains an explicit analytical
expression. In a general case, one can use this branch by
branch procedure as a theoretical basis for efficient nu-
merical calculations. Indeed, this method opens the possi-
bility to investigate various transport phenomena on large
trees. In particular, it is found that large trees present a flux
which corresponds to a limited efficiency but, remarkably,
the global flux remains independent of the permeability.
The particular application of this approach to the respira-
tory processes in human lungs provides an explicit analyti-
cal approximation for the efficiency of pulmonary acini for
05060
which a symmetrized acinus approximation is shown to be
valuable. This last result is important for future studies of
the convection-diffusion transition in the human lung. This
theoretical approach could be useful for studying other
phenomena on branched structures such as, e.g., spectral
dimension of fractal trees [14,15].
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