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The multifractal properties of the harmonic measure on quadratic and cubic Koch boundaries are studied
with the help of a new fast random walk algorithm adapted to these fractal geometries. The conjectural
logarithmic development of local multifractal exponents is guessed for regular fractals and checked by exten-
sive numerical simulations. This development allows one to compute the multifractal exponents of the har-
monic measure with high accuracy, even with the first generations of the fractal. In particular, the information
dimension in the case of the concave cubic Koch surface embedded in three dimensions is found to be slightly
higher than its valueD1=2 for a smooth boundary.
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I. INTRODUCTION

The scaling properties of the harmonic measure on fractal
curves have been studied intensivelyf1,2g. This measure pro-
vides an efficient mathematical tool to describe the accessi-
bility of a boundary for Brownian motion. For these reasons,
it is involved in various phenomena: random growth pro-
cessesse.g., diffusion-limited aggregationd, primary current
distribution in electrochemistry, distribution of particle flows
on a membrane, and electric charge distribution on a metallic
surface. By studying the harmonic measure on a fractal
curve, one can determine how it varies on different scales
with the help of so-called multifractal exponentstsqd. In the
two-dimensional case, there are important theoretical and nu-
merical results. In particular, the famous Makarov’s theorem
f3g states that the information dimension of the harmonic
measure on a simply connected two-dimensional set is equal
to 1. This mathematical result has important consequences in
physicsf4,5g.

The three-dimensional case is drastically more difficult
for theoretical and numerical reasons. At the same time, it is
the most important case for practical applications.

The present paper is devoted to the numerical study of the
harmonic measure on quadratic and cubic concave Koch
boundaries with Hausdorff dimensionsD0= ln 5/ ln 3 and
D0= ln 13/ ln 3, respectively, shown in Fig. 1. The main goal
of this paper is the accurate determination of the multifractal
exponents in a numerical way. For these purposes, we first
guess a logarithmic development of the local multifractal
exponents allowing one to compute the multifractal expo-
nents accuratelysSec. IId. Then, a fast random walk algo-
rithm is adapted to quadratic and cubic Koch boundaries in
Sec. III, being particularly efficient due to their hierarchical
geometry. The numerical results are described in Sec. IV.

II. MULTIFRACTAL EXPONENTS

Let us consider, for a given scaled, a convenient cover of
the studied boundaryS by a finite number of disjoint com-

pact setshGk
sddj sspheres, cubes, etc.d with diameterd. The

harmonic measurev can be represented by the probabilities

pk,d = vhS ù Gk
sddj

that the Brownian motion is absorbed on thekth element of
the boundaryS. For the sake of simplicity, we consider such
a cover that allpk,d are strictly positive. The measure nor-
malization condition holds whateverd,

o
k

pk,d = 1. s1d

The numberspk,d can thus be thought as a probability distri-
bution characterized by its moments:

zsq,dd = o
k

spk,ddq sq P Rd.

Changing the scale parameterd, one studies how the mo-
ments of this distribution vary. Dealing with harmonic mea-
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FIG. 1. Quadratic and cubic concave Koch boundaries with
Hausdorff dimensions D0= ln 5/ ln 3 and D0= ln 13/ ln 3,
respectively.
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sure on regular fractalsse.g., iterative self-similar fractalsd,
one finds a power law:

zsq,dd , dtsqd

where tsqd are called multifractal exponents. These expo-
nents characterize the scalingsmultifractald properties of the
harmonic measure. One also considers the multifractal di-
mensions:

Dq =
tsqd
q − 1

.

Since it is not possible to study numerically infinite frac-
tals, one has to introducelocal multifractal exponentstsq,dd
which can be considered as approximations of the multifrac-
tal exponentstsqd on a given finite generation of the fractal:

tsq,dd =
lnzsq,dd

ln d
, tsqd = lim

d→0
tsq,dd. s2d

In order to proceed to the limitd→0, one needs to calculate
the momentszsq,dd for any positived. At the same time, the
scalesd should be larger than the smallest length, of a finite
generationsminimal cutoffd which is chosen for the calcula-
tion. Indeed, if one takes the limitd→0 for a finite genera-
tion, the calculated values oftsq,dd will converge to the
multifractal exponents of the harmonic measure on a linear
segment:t0sqd=q−1. This trivial result has no interest. Con-
sequently, one should deal with scalesd lying between the
smallest length, and the diameterL=1 of the whole bound-
ary. In other words, the limitd→0 should be taken for in-
creasing generations of the fractal in order to keep the in-
equality dù,. In practice, however, the numerical
simulations can be carried out only for several first genera-
tions of the fractal.

This difficulty appears in all topics related to the numeri-
cal multifractal analysis. In fact, one typically observes a
slow convergence of the local multifractal exponentstsq,dd
to their limiting values. Consequently, these local exponents
given by numerical simulations for several generations of the
fractal cannot be considered as good approximations for the
multifractal exponentstsqd on a really fractal boundarysin-
finite generationd.

In this paper, we propose a usefullogarithmic develop-
mentfor the local multifractal exponents. First, we consider a
smooth boundary in thed-dimensional space. In this case,
the harmonic measure defined on the boundary can be char-
acterized by its densityvssd, i.e., the harmonic measure of an
infinitesimal vicinity of the boundary points is proportional
to its surface areads with coefficientvssd depending ons.
Whatever the coverhGk

sddj used with sufficiently smalld, the
probabilities pk,d can be written aspk,d.dd−1vsskd, where
dd−1 represents the surface area of the corresponding bound-
ary element containing the boundary pointsk. The moments
zsq,dd of this distribution are

zsq,dd = o
k

pk,d
q . dsd−1dsq−1do

k

vqsskddd−1.

The last sum can be written as the Riemann integral over the
surfaceS:

zsq,dd = dsd−1dsq−1dSE
S

vqssdds+ OsddD ,

where the correction termOsdd is at least of order ofd.
Consequently, the local multifractal exponents in the case of
a smooth boundary are given as

tsq,dd = sd − 1dsq − 1d +

ln E
S

vqssdds

ln d
+ OS d

ln d
D . s3d

The first term can be easily identified as the multifractal ex-
ponenttsqd of the harmonic measure on a smooth boundary
sof dimensiond−1d. The second term is responsible for a
slow logarithmic decrease of the local multifractal exponents
tsq,dd to their limiting valuestsqd. The third term accounts
other possible corrections.

Being defined on fractals, the harmonic measure cannot
be characterized by a density function, and the previous
analysis falls down. However, the relations3d may be useful
even in this case. In fact, we propose aconjecturalextension
of the logarithmic development for the local multifractal ex-
ponentstsq,dd:

tsq,dd = tsqd +
tlogsqd
ln d

+ OS dhq

ln d
D , s4d

where the first term presents the multifractal exponent of the
harmonic measure, the second term provides a slow logarith-
mic decrease with a coefficienttlogsqd, and the third term
vanishes rapidly as a certain powerhq of the scaled. Dealing
with a finite generation of the fractal, the minimal scale value
d is equal to the smallest segment length,, which decreases
exponentially with the order of generationg (e.g., ,g
=s1/3dg for the quadratic Koch curve, see below). It means
that the correction term in Eq.s4d vanishesexponentially
with increasing generation order.

For practical purposes, this result has a very important
meaning. Using the logarithmic developments4d without a
correction term, one requires just two values of the local
multifractal exponents,tsq,dd and tsq,d8d, in order to find
the multifractal exponenttsqd: first, one calculates the coef-
ficient tlogsqd,

tlogsqd .
tsq,dd − tsq,d8d
1/ln d − 1/ln d8

,

second, one obtains the multifractal exponenttsqd,

tsqd . tsq,dd −
tlogsqd
ln d

.

If one disposes of several values of local multifractal expo-
nents for different scales, an extrapolation method can be
applied in order to obtaintlogsqd and tsqd with high accu-
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racy. In summary, the use of the conjectural logarithmic de-
velopments4d allows one to calculate the multifractal expo-
nents of the harmonic measure on a fractal boundary by
computing only on its first generations.

A similar analysis can be carried out for the particular
case of the local information dimensionD1,d related to the
entropyzentsdd:

D1,d = lim
q→1

tsq,dd
q − 1

=
zentsdd
ln 1/d

,

zentsdd = − o
k

pk,d ln pk,d.

In this case, the logarithmic development for the local infor-
mation dimensionD1,d can be written as

D1,d = D1 +
D1,log

ln 1/d
+ OS dh1

ln d
D . s5d

As previously, it allows one to compute the information di-
mensionD1 using only the first generations.

Finally, these concepts can be extended to an accurate
calculation of themultifractal spectrum fsad defined as Leg-
endre transform of the multifractal exponentstsqd:

fsad = min
q

hqa − tsqdj.

For a regular fractalS, it has been shown thatfsad gives the
Hausdorff dimension of a subset ofS where the harmonic
measure scales with exponenta f6,7g.

Since the preceding analysis concerning only the scaled
is guessed to be valid for anyspositived q, it can be applied
to compute the multifractal spectrumfsad. First, one uses the
analyticity of the multifractal exponentstsqd to write the
Legendre transform in a parametric form:

aq =
dtsqd

dq
, fsaqd = qaq − tsqd.

For numerical computation, one introduces the local analogs
aqsdd and f(aqsdd ,d) which depend on the scaled, and con-
verge, respectively, toaq and fsaqd asd→0:

aqsdd =
dtsq,dd

dq
, fsaq,dd = qaqsdd − tsq,dd.

The substitution of the logarithmic development for the local
multifractal exponentstsq,dd into these relations leads to a
similar development for the multifractal spectrum:

aqsdd = aq +
aq,log

ln d
+ OS dkq

ln d
D ,

f„aqsdd,d… = fsaqd +
fq,log

ln d
+ OS dmq

ln d
D , s6d

where the last terms vanish rapidly asd→0. Again, it is
sufficient to use the first generations to calculate the multi-
fractal spectrum with high accuracy. Note also that the
present approach is not specifically restricted to the harmonic

measure as it can be applied for the multifractal analysis of
other measures.

In the following sections, we apply the logarithmic devel-
opment for the local multifractal exponents in order to com-
pute the multifractal dimensions of the harmonic measure on
the quadratic and cubic Koch boundaries. These results can
be considered as a numerical verification of the above math-
ematical conjecture.

III. GEOMETRY-ADAPTED FAST RANDOM WALK
ALGORITHM

Except a few particular cases, the harmonic measure can-
not be calculated in an analytical way. Among various nu-
merical methods, one frequently chooses the Monte Carlo
simulations which can be roughly divided into two groups
called “on-lattice” and “off-lattice.” In the first case, one in-
troduces a convenient lattice with meshaød in order to
discretize the bulkse.g., square or cubic latticed. Lattice cells
provide convenient coverhGk

sddj of the boundaryS. The
Brownian motion is then modeled by random walks moving
on the lattice and absorbed by the surface. Launching ran-
dom walkers from a fixed lattice pointx0, one calculates the
frequencies of absorptions on different boundary elements.
In the limit when the number of random walkersN goes to
infinity, the distribution of these frequencies converges to the
distribution hpk,dj representing the harmonic measure on the
scaled. The “on-lattice” approaches can be easily realized
for various domains, but they are efficient, in general, only
for simple geometries. Dealing with fractal shapes, one
should keep the lattice mesha smaller than the smallest geo-
metrical feature lengthsminimal cutoffd. If the distance be-
tween the starting pointx0 and the absorbing boundaryS is
of order of its diameterL, the numerical simulations of ran-
dom trajectories fromx0 to S become very long and time-
consuming.

In “off-lattice” approaches, one replaces long random
walk trajectories by a sequence of random jumps of different
lengths. For the diffusing particle started from a given point
x0, one first determines the distanced0 betweenx0 and the
absorbing boundaryS. Then the diskB0 of radiusd0, cen-
tered atx0, does not contain any “obstacle” for the random
particle. Thanks to the continuity of the Brownian motion, it
should intersect the corresponding circle before the absorp-
tion on the boundaryS. Rotational symmetry implies that the
distribution of intersection points is uniform. It means that
one can replace the complex Brownian motion trajectory in-
side the diskB0 by a random jump fromx0 to a uniformly
distributed pointx1 on its boundaryscircled. Starting now
from x1, one calculates the distanced1 betweenx1 and S,
considers the diskB1 of radiusd1, and chooses uniformly a
random pointx2 on its boundary. This procedure provides a
sequence of random pointshxnj on a Brownian trajectory.
When a new random pointxn becomes closer to the surfaceS
than a chosen threshold value, one terminates the simulation
saying that the random particle is absorbed on the boundary
element nearest to the current pointxn. Repeating these simu-
lations many times, one obtains the distribution of frequen-
cies of absorptions on different boundary elements. The es-
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sential advantage of the “off-lattice” approach is that each
random jump is made on the maximum possible distance.
This method is valid to model the Brownian motion for any
dimension of the embedding spacesif the disksBn are re-
placed byd-dimensional spheresd.

The main difficulty of this fast random walk algorithm is
to determine the distance between a given pointx and the
boundaryS which has no analytic expression except a few
particular cases. In the general situation, the numerical deter-
mination of the distance can be even more time-consuming
than the realization of long random trajectories in “on-
lattice” approaches.

The idea of the coarse maps technique developed by Os-
sadnik to study diffusion-limited aggregationsDLA d f8g be-
comes particularly efficient for self-similar Koch type geom-

etries. One can use the fact that any generation of the
quadratic Koch curve is “enclosed” to the next one. When a
random walker is far from the surfaceS, it cannot distinguish
its geometrical features. Consequently, the length of the ran-
dom jump can be taken as the distance between the current
point and the generation zeroshorizontal segmentd. Getting
closer and closer to the boundary, the random walker can
recognize smaller and smaller geometrical details. One
should then use finer and finer calculation of the jump length.
The key point here is that the random walker being near a
small part of the boundary cannot “see” the rest of the
boundary. Consequently, one can determine the jump length
examining only thelocal geometrical environment.

In order to clarify these ideas, we are going to follow a
possible trajectory of the random particle from a distant
source to the generationg of the quadratic Koch curve.

s1d Level 0. The Brownian motion begins from a distant
source. While the current positionxn of the Brownian par-
ticle is far from the boundarySg, the random jump length
can be taken to be equal to the distance betweenxn andS0,
i.e., to the height of the particle position above the horizontal
segmentsFig. 2d. Note that the periodic boundary condition
is imposed on the vertical borders: if the particle ought to be
placed to the left of the left border, it appears at a corre-

TABLE I. Entropyzentsdd of the distributionhpk,dj for the first ten generations of the quadratic Koch curve
on different scalesd.

d /g 1 2 3 4 5 6 7 8 9 10

s1/3d 1.2571 1.2653 1.2682 1.2693 1.2697 1.2699 1.2699 1.2699 1.2699 1.2699

s1/3d2 2.3829 2.3950 2.3995 2.4012 2.4018 2.4020 2.4021 2.4021 2.4021

s1/3d3 3.4851 3.4988 3.5039 3.5058 3.5065 3.5068 3.5069 3.5069

s1/3d4 4.5840 4.5982 4.6036 4.6056 4.6063 4.6066 4.6067

s1/3d5 5.6825 5.6970 5.7024 5.7045 5.7052 5.7055

s1/3d6 6.7811 6.7956 6.8011 6.8031 6.8039

s1/3d7 7.8797 7.8942 7.8997 7.9018

s1/3d8 8.9783 8.9928 8.9983

s1/3d9 10.0768 10.0914

s1/3d10 11.1755

FIG. 2. The basic arrowlike cell is divided into the rotated
square and five small trianglessad. Once the Brownian particle ar-
rived into the rotated squareslevel 1d, the distance between its
current positionsfull circled and the boundary can be estimated
explicitly. It allows one to execute random jumps inside the rotated
square until the Brownian particle exits from the arrowlike cell
spassage to level 0d, or enters into a small trianglespassage to level
2d. In the last case, the Brownian particle can “see” the geometrical
details of the next generation. The rescaled arrowlike cellsbd can be
thus used to estimate the distance between the current particle po-
sition sfull circled and the boundary. Note that a distant source is
placed on the top of the figure, while two vertical borders with
periodic conditions are drawn by dotted lines.

FIG. 3. First generation of the cubic Koch surface. The three-
dimensional cell is composed of the pyramidsof square baseL
3L and of heightL /2d and small cubeswith edgeL /3d. This cell is
divided onto 13 smaller cells and the rest volume.
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sponding position near the right border, and vice versa.
s2d Level 1. When the Brownian particle approaches the

boundarySg, it can enter the arrowlike cell composed of five
small triangles and the rotated squarefFig. 2sadg. If the
Brownian particle falls at once into a small triangle, one
passes directly to the level 2. For the particle arrived to the
rotated square, the random jump length is taken to be equal
to the distance betweenxn and the first generationS1 that can
be calculated explicitly. Such a random jump can either
change the position of the Brownian particle inside the ro-
tated squaresthen one recalculates the distance and executes
a new jumpd, or bring it out of the arrowlike cellsthen one
returns to the level 0d, or move it into one of the small
trianglessthen one passes to the level 2d.

s3d Level 2. The small triangle can be seen as a coarse-
grained form of a similar allowlike cell scaled by factor 1/3
fFig. 2sbdg. When the Brownian particle falls into this tri-
angle, it can “see” the details of the allowlike cell that is
composed of five small triangles and the rotated square.
Again, the random jumps inside the rotated square can either
change the particle’s position or bring out to level 1 or 3, and
so on.

s4d Level g. When the Brownian particle reaches the last
level g si.e., the chosen generation of the fractal boundaryd, it
moves inside the corresponding arrowlike cell until one of
two events: either it brings out of this level onto the previous
level sand the motion continuesd, or it approaches the bound-
ary Sg swhich coincides withS1 at this scaled by a distance
less than a chosen threshold value. In this case, the Brownian
particle is considered as being absorbed.

Based on particular features of self-similar Koch geom-
etries, this numerical method can be called thegeometry-
adapted fast random walksGAFRWd algorithm.

The three-dimensional case can be treated in a similar
way. One considers a three-dimensional arrowlike cell com-
posed of the square pyramid and small cubessee Fig. 3d.

This cell can be divided onto 13 smaller pyramids and the
rest volume. When the Brownian particle started from a dis-
tant source enters into the arrowlike cell, there are three pos-
sibilities: to leave this cellslevel 0d, to stay at this cellslevel
1d, and to enter into one of the small pyramidsslevel 2d, and
so on. Once again, one takes advantage of the deterministic
hierarchical structure of the boundary to speed up the ran-
dom walk simulations.

IV. NUMERICAL RESULTS

A. Quadratic Koch curve

We consider the first ten generations of the self-similar
quadratic Koch curve with Hausdorff dimensionD0
= ln 5/ ln 3<1.4650. Using the GAFRW algorithm, we cal-
culate the distribution of frequencies of absorptions on
boundary elementsSùGk

sdd of the curve on different scalesd.
When the number of random particlesN goes to infinity, this
distribution converges to the distributionhpk,dj of hitting
probabilities on different scalesd. Using a large but finite
numberN, one obtains an approximation of this distribution.
It is known that the relative error of such approximation
decreases slowly, asN−1/2. Although an accurate computation
of small probabilitiesslike 10−10d would require a huge num-
ber of simulations, the contribution of these probabilities to
the average characteristics of the harmonic measure(like en-
tropy zentsdd or second momentzs2,dd) are completely neg-
ligible. Consequently, one can calculate these characteristics
very accurately by using a reasonable number of random
particles. At the same time, this reasoning falls down for the
momentszsq,dd of negative orderssq,0d, where the con-
tribution of small probabilities dominates. In what follows,
we focus our attention on positive order momentszsq,dd and
entropyzentsdd.

In order to estimate the accuracy of our calculations, we
perform ten series of simulations for each generation, using

TABLE II. Local information dimensionD1,,g
for different generationsg of the quadratic Koch fractal on

the smallest scale,g=s1/3dg.

g 1 2 3 4 5 6 7 8 9 10

D1,,g
1.1442 1.0845 1.0574 1.0431 1.0345 1.0287 1.0246 1.0215 1.0191 1.0172

FIG. 4. Dependence of the local information dimensionD1,,g
on

the generation orderg. An extrapolation of these datassee Table IId,
for g lying between 4 and 10, providesD1=1.0000. A remarkable
agreement with logarithmic development can be observed even for
the second generation.

FIG. 5. The derivativedD1,,g
/ds1/g ln 3d as a function ofg

becomes constant fromg=3. This allows one to derive the mean
coefficientkD1,logl and the double maximum deviation«1.
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109 random particles in each case. Since these simulations
are independent, fluctuations of computed values will indi-
cate the corresponding stochastic error. For all local informa-
tion dimensions D1,,g

and local correlation exponents
ts2,,gd, the observed fluctuation is less than 10−5, i.e., all
five significant digits, shown in Tables II, IV, VIII, and X, are
correct.

Once the local exponents are computed for different finite
order generations, one uses the logarithmic development to
calculate the multifractal exponents corresponding to the
mathematical fractal of infinite order. For the finite genera-
tions of sufficiently high order, the correction terms in the
logarithmic development can be neglected. An extrapolation
of the local exponents provides then an accurate computation
of the corresponding multifractal exponents.

1. Information dimension

The entropyzentsdd is computed on different scalesd be-
tween 1/3 and,g=s1/3dg sTable Id. Comparing its values for
different generations on the same scaled sin a lined, one
finds that these entropies rapidly approach a stable value
which does not vary with further increase of the generation
orderg. It means that, for a given scaled, the appearance of
new irregularities on smaller scales almost does not change
the entropy on the scaled. One will see that this result is
general for other moments of positive orders. Roughly
speaking, if we are not interested in the scaling behavior of
the harmonic measure on the scales smaller thand, it does
not matter if one deals with the moderate generation of order
of ln d / lns1/3d, with any extremely high generation, or with
a real mathematical fractal of infinite order.

Taking values on the diagonal of Table I which corre-
spond to the smallest scaled=,g for a given generation order

g, one calculates the local information dimensionD1,,g
sTable IId. One remarks a slow monotonic decrease of these
numbers. Writing the logarithmic developments5d as

D1,,g
. D1 +

1

g

D1,log

ln 3
s7d

one can derive from the extrapolation method described be-
low the information dimensionD1 with high accuracyssee
the next section for estimation of the error barsd:

D1 = 1.0000 ± 0.0003. s8d

This numerical value is remarkably close to its theoretical
valueD1=1 predicted by Makarov’s theoremf3g. This excel-
lent agreement supports the conjectural logarithmic develop-
ments5d and the efficiency of the method on the whole. The
linear dependences7d of the local information dimensions
D1,,g

on 1/g is satisfied even from the second generation as
shown in Fig. 4.

2. Accounting for systematic errors

The use of the logarithmic development without correc-
tion term leads to systematic errors that have to be accounted
for. The accuracy of the limiting values of the multifractal
exponents is essentially determined by the accuracy of com-
putation of the coefficientD1,log in front of the logarithmic
term. For these purposes, we compute numerically the de-
rivative dD1,,g

/ds1/g ln 3d that provides an approximation to
D1,log according to the logarithmic development, up to the
correction term that vanishes rapidly with the generation or-
der g. The dependency of this derivative ong is shown in
Fig. 5. One recognizes that it is almost constant fromg=3,

TABLE III. Moments zs2,dd of the distributionhpk,dj for the first ten generations of the quadratic Koch curve on different scalesd. The
last column contains the factor which should be multiplied to the values in the corresponding line.

d /g 1 2 3 4 5 6 7 8 9 10

s1/3d 3.2774 3.2496 3.2397 3.2361 3.2347 3.2342 3.2340 3.2340 3.2339 3.2339310−1

s1/3d2 1.1820 1.1688 1.1638 1.1620 1.1613 1.1611 1.1609 1.1609 1.1609310−1

s1/3d3 4.3935 4.3403 4.3201 4.3126 4.3099 4.3087 4.3083 4.3082310−2

s1/3d4 1.6450 1.6246 1.6168 1.6139 1.6128 1.6124 1.6123310−2

s1/3d5 6.1687 6.0915 6.0623 6.0510 6.0471 6.0455 310−3

s1/3d6 2.3139 2.2849 2.2739 2.2698 2.2682 310−3

s1/3d7 8.6805 8.5715 8.5301 8.5145 310−4

s1/3d8 3.2563 3.2155 3.2000 310−4

s1/3d9 1.2216 1.2063 310−4

s1/3d10 4.5828 310−5

TABLE IV. Local correlation exponentts2,,gd for different generationsg of the quadratic Koch fractal
on the smallest scale,g=s1/3dg.

g 1 2 3 4 5 6 7 8 9 10

ts2,,gd 1.0154 0.9719 0.9482 0.9347 0.9263 0.9207 0.9166 0.9136 0.9113 0.9094

GREBENKOV et al. PHYSICAL REVIEW E 71, 056121s2005d

056121-6



up to the fluctuations due to systematic errors. One can thus
compute the mean value ofD1,log and the double maximum
deviation«1 from this mean:

«1 = 2 max
3øgø9

U dD1,,g

ds1/g ln 3d
− kD1,loglU .

The limiting value of the information dimensionD1 lies thus
in the confidence intervalfD1

−,D1
+g, where

D1
± = SD1,,g

−
1

g

kD1,logl
ln 3

D ±
1

g

«1

ln 3
,

g being the maximum generation order available for the nu-
merical simulations.

This scheme has been applied throughout this paper to
account for the systematic errors for other multifractal di-
mensions, both in the two- and three-dimensional cases.

3. Correlation dimension

Similarly, one can study any positive momentzsq,dd of
the probability distributionhpk,dj for different generation or-
dersg and scalesd. The correlation dimensionD2=ts2d is
particularly important for the Laplacian transfer phenomena
f9,10g. Table III shows the momentszs2,dd on different
scalesd between 1/3 and,g=s1/3dg.

Again, taking the values on the diagonal of Table III
which correspond to the smallest scaled=,g for a given
generation orderg, one calculates the local multifractal ex-
ponentsts2,,gd sTable IVd. With the help of the logarithmic
developments4d written as

tsq,,gd . tsqd +
1

g

tlogsqd
ln1/3

s9d

the correlation exponent can be deduced from the extrapola-
tion method described above:

ts2d = 0.8925 ± 0.0007. s10d

Figure 6 shows that the linear dependences9d of the local
correlation exponentsts2,,gd on 1/g holds even from the
third generation providing a good numerical verification for
the logarithmic development.

4. Dirichlet active zone lengths

The data of Table III allow direct calculations of the Di-
richlet active zone lengthsf4,11,12g which are defined as the
inverse of the second moment of the harmonic measure:

Lact =
,

zs2,,d
,

where, is the smallest length of the chosen generation. Tak-
ing the values of the second momentszs2,dd on the diagonal
of Table III, one obtains the Dirichlet active zone lengths
given in Table V. One remarks the slow decrease of these
lengths when the generation orderg increases. Figure 7
shows that this length follows a power lawLact,,1−ts2d.

Note that the Dirichlet active zone length characterizes
the asymptotic behavior of the spectroscopic impedance in
the limit of high frequenciesf12g.

5. Box-counting method

The obtained data allow one to check another method
frequently used to calculate the multifractal dimensions.
Within this box-counting method, one fixes the highest gen-
eration available for a chosen numerical method and calcu-
lates the momentszsq,dd on different scalesd. For the qua-

FIG. 6. Dependence of the local correlation exponentts2,,gd on
the generation orderg. An extrapolation of these datassee Table
IV d, for g lying between 4 and 10, providests2d=0.8925. A very
good agreement with logarithmic development can be observed
even for the third generation.

TABLE V. Dirichlet active zone lengths for the first ten generations of the quadratic Koch curve. These
lengths vary slowly asLact,,1−ts2d. The corresponding perimeters are given for comparison.

g 1 2 3 4 5 6 7 8 9 10

Lact 1.0171 0.9400 0.8430 0.7505 0.6671 0.5928 0.5268 0.4681 0.4159 0.3695

Ltot 1.67 2.78 4.63 7.72 12.86 21.43 35.72 59.54 99.23 165.38

FIG. 7. Dirichlet active zone lengths for the first ten generations
of the quadratic Koch curve. As described, these lengths follow a
power law with exponent 1−ts2d, with ts2d=0.8925.
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dratic Koch curve, these results are shown in the last column
of Table III. The logarithmic derivatives of the moments
zsq,dd with respect tod provide the numerical estimates
tbsq,dd of the multifractal exponents for finited:

tbsq,dd =
] ln zsq,dd

] ln d
.

For a numerical computation, one takes two close valuesd8
andd9 in order to approximate this logarithmic derivative as

tbsq,dd <
ln zsq,d8d − ln zsq,d9d

ln d8 − ln d9
, d < Îd8d9.

In particular, the variation of the box-counting correlation
exponenttbs2,dd with d is shown in Fig. 8.

One finds a good agreement between these values and
ts2d=0.8925 obtained previously. The decrease oftbs2,dd
for smalld corresponds to the use of finite generations: at the
minimal cutoff ,g, one replaces the infinite self-similar frac-
tal by a linear segment. On the other hand, the increase of
tbs2,dd for larged is caused by the fact that the fractality is
not yet well-established on such scales.

In order to obtain a reasonable accuracy by the classical
box-counting methodslook at the “stabilization” for the tenth
generation in Fig. 8d, one has to consider high generations. In
other words, the level corresponding to the valuets2d
=0.8925 is not well-established for lower generations. It
means that the use of this approach for low order generations
se.g.,g=6d does not lead to an accurate determination of the
multifractal exponents. It perhaps explains the values be-
tween 0.92 and 0.96 found in the literature for the correlation
exponentts2d of the harmonic measure on similar Koch
curvesf13–15g. On the other hand, the logarithmic develop-
ment provides very accurate results even for the first several
generationsssee Fig. 6d.

6. Other dimensions and multifractal spectrum

In a similar way, one can calculate the other multifractal
dimensionsDq. For the quadratic Koch curve, their depen-
dency on the orderq is shown in Fig. 9sseef10g for numeri-
cal valuesd. Multifractal spectra have already been computed
in the literature for DLA aggregatesf18,19g or percolation
clustersf16,17g. For comparison, we draw on the same plot
the multifractal dimensions as a function ofq for two-
dimensional percolation clusters obtained analytically by
Duplantier. These two curves have an intersection at point
q=1 since the information dimension in both cases is equal
to 1 according to the Makarov’s theorem. This result consti-
tutes the first accurate comparison of the multifractal dimen-
sions for both deterministic and stochastic boundaries.

The multifractal spectrumfsad of the harmonic measure
on the quadratic Koch curve has been numerically computed
for the first time by Evertsz and Mandelbrot for the first
generationsf20g. The GAFRW algorithm allows one to re-
produce this study for higher generations, while the logarith-
mic developments6d improves its accuracy. Figure 10 shows
the left-hand side part of this spectrum that corresponds to

TABLE VI. Number of random particlesN used to realize the
GAFRW algorithm.

g 1 2 3 4 5 6

N 1.23109 93108 53109 1.531010 1.631010 531010

FIG. 9. Multifractal dimensionsDq of the harmonic measure on
the quadratic Koch curvessolid lined and on two-dimensional per-
colation clusterssdashed lined. The intersection point is guaranteed
by the Makarov’s theorem. The error bars are always smaller than
3310−3. The largest error is obtained for smaller order. The region
of ordersq around 0 is shown by a dotted line since the error bars
become too large.

FIG. 10. Multifractal spectrumfsad of the harmonic measure on
the quadratic Koch curvessolid lined and on two-dimensional per-
colation clusterssdashed lined. The intersection point corresponds to
the Makarov’s theorem. The error bars are always smaller than 3
310−2. The largest error is obtained for smaller order.

FIG. 8. Numerical values of the correlation exponenttbs2,dd
given by the box-counting method for generation ordersg=6
sdashed lined andg=10 ssolid lined. The straight dotted line repre-
sents the valuets2d=0.8925 obtained with the help of the logarith-
mic developments4d.
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positive moments. For comparison, we draw the multifractal
spectrum for two-dimensional percolation clusters. Although
the deterministic Koch curve and random percolation clus-
ters present very different geometries, the left hand sides of
their multifractal spectra are relatively close to each other. In
other words, the multifractal dimensions of the harmonic
measure corresponding to positive moments are not very
sensitive to the particular distribution of highly accessible
boundary points. On the other hand, these dimensions may
be more specific of the geometry in the region of negative
moments hence the two curves should exhibit larger differ-
ences.

At the same time, the region of negative moments, which
corresponds to the right-hand side of the multifractal spec-
trum, is much more difficult to compute accurately. This
right-hand side is mostly determined by the values of the
harmonic measure on the boundary points of low accessibil-
ity and the numerical method used in this paper loses most of
its interest.

B. Cubic Koch surface

Similar numerical simulations are carried out for the first
six generations of the self-similar cubic Koch surface with
Hausdorff dimensionD0= ln 13/ ln 3<2.3347. Again, one
uses the geometry-adapted fast random walk algorithm in
order to calculate the distribution of frequencies of absorp-
tions on boundary elementsSùGk

sdd on different scalesd.
For largeN, this distribution provides a good approximation
for the distributionhpk,dj of hitting probabilities on this sur-
face on different scalesd. Table VI describes the number of
random particles used for the calculation for each generation.
As previously, one separates these simulations in ten groups
in order to estimate stochastic errors, while the systematic
errors are taken into account by our extrapolation method.

1. Information dimension

The calculation of the information dimension in the two-
dimensional case has been realized as a verification test for

our method since the Makarov’s theorem provides the exact
valueD1=1 for any simply connected set in the plane. The
situation is drastically different in the three-dimensional
case, where one can mention two important mathematical
results:

s1d Bourgain’s theorem states that the information dimen-
sion D1 of the harmonic measure is strictly less than the
space dimensiond f21g; and

s2d Wolff’s counterexample to a hypothetic extension of
the Makarov’s theorem toR3 shows that there exists a regu-
lar se.g., self-similard fractal for which the information di-
mensionD1 of the harmonic measure is strictly greater than 2
f22g.
Consequently, there is no particular reason to obtain the in-
formation dimension being equal to 2.

In three dimensions, the numerical calculations are sig-
nificantly more difficult to realize for high generation orders
than in the planar case. The use of the GAFRW algorithm for
the cubic Koch surface together with the logarithmic devel-
opment allow one to calculate the information dimension
accurately.

Table VII shows the entropyzentsdd on different scalesd
between 1/3 and,g=s1/3dg. Taking the values on the diag-
onal of Table VII, which correspond to the smallest scale
,g=s1/3dg for a given generation orderg, one calculates the
local information dimensionsD1,,g

ssee Table VIIId. As pre-
viously, one notices a monotonic decrease of these numbers.
Using the logarithmic development, one obtains the informa-
tion dimensionD1 of the harmonic measure on the cubic
Koch surface by the extrapolation method:

TABLE VII. Entropy zentsdd of the distributionhpk,dj for the first
six generations of the cubic Koch surface on different scalesd.

d /g 1 2 3 4 5 6

s1/3d 2.2867 2.2878 2.2882 2.2883 2.2884 2.2884

s1/3d2 4.5195 4.5209 4.5215 4.5218 4.5218

s1/3d3 6.7320 6.7336 6.7343 6.7345

s1/3d4 8.9386 8.9402 8.9409

s1/3d5 11.143 11.145

s1/3d6 13.347

TABLE VIII. Local information dimensionD1,,g
for different

generations of the cubic Koch surface on the smallest scale,g

=s1/3dg.

g 1 2 3 4 5 6

D1,,g
2.0814 2.0569 2.0426 2.0341 2.0286 2.0249

TABLE IX. Moments zs2,dd of the distributionhpk,dj for the
first six generations of the cubic Koch surface on different scalesd.
The last column contains the factor which should be multiplied to
the values in the corresponding line.

d /g 1 2 3 4 5 6

s1/3d 1.0952 1.0942 1.0938 1.0937 1.0936 1.0936310−1

s1/3d2 1.2245 1.2230 1.2224 1.2221 1.2220310−2

s1/3d3 1.3943 1.3925 1.3917 1.3914310−3

s1/3d4 1.6046 1.6025 1.6015310−4

s1/3d5 1.8570 1.8544 310−5

s1/3d6 2.1552 310−6

FIG. 11. Dependence of the local information dimensionsD1,,g
on the generation orderg. An extrapolation of these datasTable
VIII d, for g lying between 3 and 6, providesD1=2.007.
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D1 = 2.007 ± 0.002. s11d

This value is very close to the information dimension 2 for a
smooth boundary. According to the estimation scheme we
used in this work, it seems to be possible to distinguish the
obtained numerical value from 2. We emphasize again that,
in three dimensions, there is no mathematical reason to ex-
pect a particular value for the information dimensionse.g.,
2d. On the other hand, the values 2.007 and 2 are impossible
to distinguish in practice, for instance, in a physical experi-
ment. Figure 11 shows that the linear dependences7d holds
from the third generation.

2. Correlation dimension and Dirichlet active zone areas

To study the correlation exponentts2d, one computes the
second momentszs2,dd given in Table IX, while Table X
gives the local correlation exponentsts2,,gd corresponding
to the diagonal elements. The logarithmic development pro-
vides the correlation exponentts2d by means of the extrapo-
lation method:

ts2d = 1.963 ± 0.006. s12d

The linear dependences9d of the local correlation exponents
on 1/g is well satisfied from the third generation as shown in
Fig. 12.

The Dirichlet active zone areas are computed as

Sact =
,2

zs2,,d

and given in Table XI. One finds a slow decrease for increas-
ing values of the generation orderg.

3. Other dimensions and multifractal spectrum

In a similar way, one calculates the other multifractal di-
mensionsDq shown in Fig. 13sseef10g for numerical val-

uesd. After that, the logarithmic developments6d is used to
determine the multifractal spectrumfsad of the harmonic
measure shown in Fig. 14.

V. CONCLUSIONS

In this paper we have studied the multifractal properties
of the harmonic measure on quadratic and cubic Koch
boundaries with Hausdorff dimensionsD0= ln 5/ ln 3 and
D0= ln 13/ ln 3. Applying the geometry-adapted fast random
walk algorithm, we have calculated the distribution of hitting
probabilities that represent the harmonic measure on a given
scaled. Dealing with the first ten generations of the quadratic
Koch curve and with the first six generations of the cubic
Koch surface, we have computed the local information and
correlation dimensions,D1,d and ts2,dd, on different scales
d. In order to proceed the limitd→0, we have conjectured
logarithmic developmentss4d ands5d for the local multifrac-
tal exponents. The numerical data support the validity of this
development. In particular, this result provides with high ac-
curacy the multifractal dimensionsD1 and ts2d of the har-
monic measure on a really fractal boundary. Generally, use
of this logarithmic development allows one to compute the
multifractal exponents corresponding to theinfinite genera-
tion dealing only with its first several generations.

An excellent agreement between the theoretical and nu-
merical values of the information dimension in the two-
dimensional case supports both the conjectural logarithmic
development and our numerical method’s applicability on the
whole.

TABLE X. Local correlation exponentsts2,,gd for different
generations of the cubic Koch surface on the smallest scale,g

=s1/3dg.

g 1 2 3 4 5 6

ts2,,gd 2.0131 2.0037 1.9950 1.9883 1.9832 1.9794

FIG. 12. Dependence of local correlation exponentsts2,,gd on
the generation orderg. An extrapolation of these datasTable Xd, for
g lying between 3 and 6, providests2d=1.963.

TABLE XI. Dirichlet active zone areas for the first six genera-
tions of the cubic Koch surface. The total areas are given for
comparison.

g 1 2 3 4 5 6

Sact 1.0145 1.0082 0.9838 0.9499 0.9120 0.8731

Stot 1.4444 2.0864 3.0137 4.3531 6.2879 9.0825

FIG. 13. Multifractal dimensionsDq of the harmonic measure
on the cubic Koch surface. The error bar is large forq.0 since the
contributions of small probabilities become more and more impor-
tant. The error bars increase also for largeq: the extrapolation
method of Sec. IV A 2 is based on approaching to a constant value
of the derivativedDq,,g

/ds1/g ln 3d for a large generation orderg.
The first six generations used in this work are not sufficient to reach
this value for largeq.
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The determination of the information dimensionD1 of the
harmonic measure on fractal surfaces in a general case re-
mains an important problem. It has been solved analytically
by Makarov for the two-dimensional case:D1=1 for simply
connected sets. The naive extension of this theorem onto the
three-dimensional case is false. In particular, the information
dimension of the harmonic measure defined on the regular
sself-similard fractal constructed by Wolff is strictly greater
than 2. The information dimension for the cubic Koch sur-

face is found to be equal to 2.007±0.002 which seems to be
the first accurate numerical computation of this important
characteristic of the harmonic measure in three dimensions.
It is striking thatD1 is very close to 2. In fact, it seems very
difficult to exhibit strong deviations from this value. Finding
surfaces with largeD1 presents a major challenge in these
fields and could have strong practical applications.

For the correlation exponentts2d, there is no analytical
results providing an expected theoretical value. The obtained
numerical value for the cubic Koch surface 1.963±0.006
shows that this correlation exponent is relatively close to 2
scorrelation exponent for a smooth surfaced. “Seen” by the
Brownian motion, the cubic Koch surface does not differ
considerably with respect to a smooth surface. In particular,
their physical transfer properties will not be too different. As
a practical consequence, it would be difficult to distinguish
the correlation exponent from 2 in a physical experiment.
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