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Multifractal properties of the harmonic measure on Koch boundaries
in two and three dimensions
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The multifractal properties of the harmonic measure on quadratic and cubic Koch boundaries are studied
with the help of a new fast random walk algorithm adapted to these fractal geometries. The conjectural
logarithmic development of local multifractal exponents is guessed for regular fractals and checked by exten-
sive numerical simulations. This development allows one to compute the multifractal exponents of the har-
monic measure with high accuracy, even with the first generations of the fractal. In particular, the information
dimension in the case of the concave cubic Koch surface embedded in three dimensions is found to be slightly
higher than its valu®,=2 for a smooth boundary.
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I. INTRODUCTION pact sets{l“ff)} (spheres, cubes, etavith diameters. The

The scaling properties of the harmonic measure on fractdlarmonic measure can be represented by the probabilities
curves have been studied intensivgly2]. This measure pro- ®
vides an efficient mathematical tool to describe the accessi- Prs= o{SNT7}
bility of a boundary for Brownian motion. For these reasons
it is involved in various phenomena: random growth pro- A .
cessege.g., diffusion-limit%d aggregati()nprimarf/] currenPc the boundans. For the sak_e of S|m.p.I|C|ty, we consider such
distribution in electrochemistry, distribution of particle flows & COVer that allp; are strictly positive. The measure nor-
on a membrane, and electric charge distribution on a metallig*@lization condition holds whatevey
surface. By studying the harmonic measure on a fractal
curve, one can determine how it varies on different scales > pis=1. 1)
with the help of so-called multifractal exponemg). In the k
two—_dlmensmnal case,_there are important theoretl,cal and Nurpe numbers, s can thus be thought as a probability distri-
merical results. In partlcular,. the famous Makarov’s theore.mbution characterized by its moments:
[3] states that the information dimension of the harmonic
measure on a simply connected two-dimensional set is equal _
to 1. This mathematical result has important consequences in {a.9) = zk: (Pko)? (@ eR).
physics[4,5].

The three-dimensional case is dI’aStically more d|ﬁ|CU|tChang|ng the scale paramet&r one studies how the mo-

for theoretical and numerical reasons. At the same time, it ignents of this distribution vary. Dealing with harmonic mea-
the most important case for practical applications.

The present paper is devoted to the numerical study of the
harmonic measure on quadratic and cubic concave Koch
boundaries with Hausdorff dimensior3,=In5/In3 and
Do=In 13/In 3, respectively, shown in Fig. 1. The main goal
of this paper is the accurate determination of the multifractal
exponents in a numerical way. For these purposes, we first
guess a logarithmic development of the local multifractal
exponents allowing one to compute the multifractal expo-
nents accuratelySec. I). Then, a fast random walk algo-
rithm is adapted to quadratic and cubic Koch boundaries in
Sec. lll, being particularly efficient due to their hierarchical
geometry. The numerical results are described in Sec. IV.

Il. MULTIFRACTAL EXPONENTS
Let us consider, for a given scafe a convenient cover of (b)

the studied boundarg by a finite number of disjoint com-

‘that the Brownian motion is absorbed on #ih element of

FIG. 1. Quadratic and cubic concave Koch boundaries with
Hausdorff  dimensions Dy=In5/In3 and Dgy=In13/In 3,
*Electronic address: denis.grebenkov@polytechnique.edu respectively.

1539-3755/2005/7%5)/05612111)/$23.00 056121-1 ©2005 The American Physical Society



GREBENKOV et al. PHYSICAL REVIEW E 71, 056121(20095

sure on regular fractalée.g., iterative self-similar fractals 09,8)= > pl y= §ED@DY ()61,
one finds a power law: ' k ko k

) The last sum can be written as the Riemann integral over the
{(q,8) ~ & surfaces:

where 7(q) are called multifractal exponents. These expo- £(q,6) = 5<d—1><q‘1)< f wi(s)ds+ O(5)>,
nents characterize the scalifrgultifractal) properties of the N
harmonic measure. One also considers the multifractal d

Where the correction tern®(5) is at least of order ofs.

mensions: Consequently, the local multifractal exponents in the case of
a smooth boundary are given as
_1a)
q q- 1 In f wq(S)dS
o . . o S 2
Since it is not possible to study numerically infinite frac- 79,0 =(d-1)(g-1)+ Y +0 ES) (3

tals, one has to introdudecal multifractal exponents(q, d)
which can be considered as approximations of the multifracThe first term can be easily identified as the multifractal ex-
tal exponents{q) on a given finite generation of the fractal: ponentr(q) of the harmonic measure on a smooth boundary
(of dimensiond-1). The second term is responsible for a
InZ(q, 5) slow logarithmic decrease of the local multifractal exponents
0,0 =———, =(q)=1lim 7(q,d). (2)  7(q,9) to their limiting valuesr(q). The third term accounts
0=0 other possible corrections.
Being defined on fractals, the harmonic measure cannot
In order to proceed to the limi#— 0, one needs to calculate be characterized by a density function, and the previous
the momentsg(q, 8) for any positives. At the same time, the analysis falls down. However, the relati@®) may be useful
scaless should be larger than the smallest lengtbf a finite  €ven in this case. In fact, we proposeanjecturalextension
generation(minimal cutofff which is chosen for the calcula- of the logarithmic development for the local multifractal ex-
tion. Indeed, if one takes the limi#é— 0 for afinite genera- ponentsr(q, 9):
tion, the calculated values af(q, 5) will converge to the (@) S
multifractal exponents of the harmonic measure on a linear 0,0 = 7(q) + Tog O(—) (4)
segmentzy(q)=g-1. This trivial result has no interest. Con- In'& In &

sequently, one should deal with scalgsying between the  where the first term presents the multifractal exponent of the
smallest lengttf and the diametel=1 of the whole bound-  harmonic measure, the second term provides a slow logarith-
ary. In other words, the limi— 0 should be taken for in- mjc decrease with a coefficientoy(), and the third term
creasing generations of the fractal in order to keep the iNganishes rapidly as a certain powsgyof the scales. Dealing
equality 6=¢. In practice, however, the numerical it a finite generation of the fractal, the minimal scale value
simulations can be carried out only for several first generay jg equal to the smallest segment lengttwhich decreases
tions of the fractal. , _ _exponentially with the order of generatiog (e.g., ¢4
This difficulty appears in all topics related to the numeri- - (1/3)9 for the quadratic Koch curve, see belout means
cal multifractal analysis. In fact, one typically observes ainat the correction term in Eq4) vanishesexponentially
slow convergence of the local multifractal exponer(ts,d)  \ith increasing generation order.
tq their limiting yalue;. Consequently, these local gxponents For practical purposes, this result has a very important
given by numerical simulations for several generations of th%eaning. Using the logarithmic developmedi without a
fractal cannot be considered as good approximations for thgprrection term, one requires just two values of the local
multifractal exponents{(q) on a really fractal boundargin- multifractal exponentsr(q, ) and (g, '), in order to find

finite generation o the multifractal exponent(q): first, one calculates the coef-
In this paper, we propose a usefobarithmic develop-  fcient Tiog(Q)
og\Y:

mentfor the local multifractal exponents. First, we consider a
smooth boundary in thd-dimensional space. In this case, 7q,8) — 7q,8")

the harmonic measure defined on the boundary can be char- Tiog(Q) = 1UIné=1/Ins"
acterized by its density(s), i.e., the harmonic measure of an

infinitesimal vicinity of the boundary poirg is proportional ~ second, one obtains the multifractal expone(ap,
to its surface areds with coefficientw(s) depending ors. )
Whatever the covefl\”} used with sufficiently smalb, the Ha) = (q, ) — 2=
probabilities p, s can be written agy s~ & tw(s,), where In o
&1 represents the surface area of the corresponding bountf-one disposes of several values of local multifractal expo-
ary element containing the boundary posat The moments nents for different scales, an extrapolation method can be
£(q, 0) of this distribution are applied in order to obtaim,y(q) and 7(g) with high accu-

Iné
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racy. In summary, the use of the conjectural logarithmic deimeasure as it can be applied for the multifractal analysis of

velopment(4) allows one to calculate the multifractal expo- other measures.

nents of the harmonic measure on a fractal boundary by In the following sections, we apply the logarithmic devel-

computing only on its first generations. opment for the local multifractal exponents in order to com-
A similar analysis can be carried out for the particularpute the multifractal dimensions of the harmonic measure on

case of the local information dimensiddy s related to the the quadratic and cubic Koch boundaries. These results can

entropy Lend 9): be considered as a numerical verification of the above math-

10.0) (5 ematical conjecture.
Dy = lim 1% - fenld)

-1 Q-1 Inl/s IIl. GEOMETRY-ADAPTED FAST RANDOM WALK

ALGORITHM

0)=— In . ) i
Lent ) % Pes N Prs Except a few particular cases, the harmonic measure can-

. o ) not be calculated in an analytical way. Among various nu-
In this case, the logarithmic development for the local infor-merical methods, one frequently chooses the Monte Carlo

mation dimensiorD, ; can be written as simulations which can be roughly divided into two groups
D S called “on-lattice” and “off-lattice.” In the first case, one in-
Dy s=D;i+ ﬁ+ O(ﬁ) (5) troduces a convenient lattice with meslx § in order to

discretize the bulke.g., square or cubic lattice_attice cells

As previously, it allows one to compute the information di- provide convenient cove{I'\”} of the boundaryS. The

mensionD; using only the first generations. Brownian motion is then modeled by random walks moving
Finally, these concepts can be extended to an accuraten the lattice and absorbed by the surface. Launching ran-

calculation of themultifractal spectrum o) defined as Leg- dom walkers from a fixed lattice poing, one calculates the

endre transform of the multifractal exponents)): frequencies of absorptions on different boundary elements.
_ In the limit when the number of random walkdxsgoes to
f(a) = mqln{qa - )} infinity, the distribution of these frequencies converges to the

distribution{py s} representing the harmonic measure on the

For a regular fractab, it has been shown thdta) gives the  scales. The “on-lattice” approaches can be easily realized
Hausdorff dimension of a subset &f where the harmonic for various domains, but they are efficient, in general, only
measure scales with exponen{6,7]. for simple geometries. Dealing with fractal shapes, one

Since the preceding analysis concerning only the séale should keep the lattice meshsmaller than the smallest geo-
is guessed to be valid for an(positive g, it can be applied metrical feature lengtiminimal cutoff). If the distance be-
to compute the multifractal spectruftw). First, one uses the tween the starting pointy and the absorbing boundasyis
analyticity of the multifractal exponents(q) to write the  of order of its diametet, the numerical simulations of ran-

Legendre transform in a parametric form: dom trajectories fronx, to S become very long and time-
consuming.
aq:dT(Q), f(ag) = gag— 7(0). In “off-lattice” approaches, one replaces long random

dq

For numerical computation, one introduces the local analog
aq(9) andf(aqy(6), 6) which depend on the scal® and con-
verge, respectively, te,; and f(ag) as6—0:

walk trajectories by a sequence of random jumps of different
lengths. For the diffusing particle started from a given point
§o, one first determines the distandg betweenx, and the
absorbing boundang. Then the diskB, of radiusd,, cen-
tered atxy, does not contain any “obstacle” for the random
dr(q, d) particle. Thanks to the continuity of the Brownian motion, it

, flag,0) =qay(d) - 7q,9). should intersect the corresponding circle before the absorp-

dq tion on the boundang. Rotational symmetry implies that the

The substitution of the logarithmic development for the localdistribution of intersection points is uniform. It means that
multifractal exponents{(q, §) into these relations leads to a one can replace the complex Brownian motion trajectory in-

MOE

similar development for the multifractal spectrum: side the diskB, by a random jump fronx, to a uniformly
distributed pointx; on its boundary(circle). Starting now
(8 = au+ Xglog , S from x,, one calculates the distancg betweenx, and S,

a 9 Inés Ins/’ considers the disB, of radiusd,;, and chooses uniformly a

random pointx, on its boundary. This procedure provides a
fulo SHa sequence of random poin{,} on a Brownian trajectory.
f(aq(9),0) = flag) + 222+ 0| — |, (6)  When a new random point, becomes closer to the surfase
Inés Inés . . .
than a chosen threshold value, one terminates the simulation
where the last terms vanish rapidly as-0. Again, it is  saying that the random particle is absorbed on the boundary
sufficient to use the first generations to calculate the multielement nearest to the current poiptRepeating these simu-
fractal spectrum with high accuracy. Note also that thelations many times, one obtains the distribution of frequen-
present approach is not specifically restricted to the harmonicies of absorptions on different boundary elements. The es-
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FIG. 2. The basic arrowlike cell is divided into the rotated FIG. 3. First generation of the cubic Koch surface. The three-
square and five small triangléa). Once the Brownian particle ar- dimensional cell is composed of the pyran('mf square basd.
rived into the rotated squarevel 1), the distance between its x L and of heighlL/2) and small cubéwith edgeL/3). This cell is
current position(full circle) and the boundary can be estimated divided onto 13 smaller cells and the rest volume.
explicitly. It allows one to execute random jumps inside the rotated
square until the Brownian particle exits from the arrowlike cell €tries. One can use the fact that any generation of the
(passage to level)por enters into a small triangl@assage to level quadratic Koch curve is “enclosed” to the next one. When a
2). In the last case, the Brownian particle can “see” the geometricalandom walker is far from the surfacg it cannot distinguish
details of the next generation. The rescaled arrowlike(bgltan be  its geometrical features. Consequently, the length of the ran-
thus used to estimate the distance between the current particle pdom jump can be taken as the distance between the current
sition (full circle) and the boundary. Note that a distant source ispoint and the generation zetborizontal segmeit Getting
placed on the top of the figure, while two vertical borders with closer and closer to the boundary, the random walker can
periodic conditions are drawn by dotted lines. recognize smaller and smaller geometrical details. One

should then use finer and finer calculation of the jump length.

sential advantage of the “off-lattice” approach is that eachThe key point here is that the random walker being near a
random jump is made on the maximum possible distancesmall part of the boundary cannot “see” the rest of the
This method is valid to model the Brownian motion for any boundary. Consequently, one can determine the jump length
dimension of the embedding spa@éthe disksB, are re- examining only thdocal geometrical environment.
placed byd-dimensional sphergs In order to clarify these ideas, we are going to follow a

The main difficulty of this fast random walk algorithm is possible trajectory of the random particle from a distant
to determine the distance between a given paimind the  source to the generatianof the quadratic Koch curve.
boundaryS which has no analytic expression except a few (1) Level 0. The Brownian motion begins from a distant
particular cases. In the general situation, the numerical detesource. While the current positiog, of the Brownian par-
mination of the distance can be even more time-consumingcle is far from the boundary,, the random jump length
than the realization of long random trajectories in “on-can be taken to be equal to the distance betwgeand S,
lattice” approaches. i.e., to the height of the particle position above the horizontal

The idea of the coarse maps technique developed by Osegment(Fig. 2). Note that the periodic boundary condition
sadnik to study diffusion-limited aggregati¢bLA) [8] be- is imposed on the vertical borders: if the particle ought to be
comes particularly efficient for self-similar Koch type geom- placed to the left of the left border, it appears at a corre-

TABLE I. Entropy {eq{6) of the distribution{py s} for the first ten generations of the quadratic Koch curve
on different scales.

slg 1 2 3 4 5 6 7 8 9 10
(1/3) 1.2571 1.2653 1.2682 1.2693 1.2697 1.2699 1.2699 1.2699 1.2699  1.2699
(1/3)2 2.3829 2.3950 2.3995 2.4012 2.4018 2.4020 2.4021 2.4021 2.4021
(1/3)3 3.4851 3.4988 3.5039 3.5058 3.5065 3.5068 3.5069  3.5069
(1/3)* 45840 4.5982 4.6036 4.6056 4.6063 4.6066 4.6067
(1/3)° 5.6825 5.6970 5.7024 5.7045 5.7052 5.7055
(1/3)® 6.7811 6.7956 6.8011 6.8031  6.8039
(1/3)7 7.8797 7.8942 7.8997  7.9018
(1/3)8 8.9783 8.9928  8.9983
(1/3)° 10.0768 10.0914
(1/3)10 11.1755
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TABLE Il. Local information dimensiod)ug for different generationg of the quadratic Koch fractal on
the smallest scaléy=(1/3)%.

g 1 2 3 4 5 6 7 8 9 10

Dl,(g 1.1442 1.0845 1.0574 1.0431 1.0345 1.0287 1.0246 1.0215 1.0191 1.0172

sponding position near the right border, and vice versa.  This cell can be divided onto 13 smaller pyramids and the
(2) Level 1. When the Brownian particle approaches therest volume. When the Brownian particle started from a dis-
boundarySy, it can enter the arrowlike cell composed of five tant source enters into the arrowlike cell, there are three pos-
small triangles and the rotated squdfeig. 2@)]. If the  sibilities: to leave this celllevel 0), to stay at this cel{level
Brownian patrticle falls at once into a small triangle, onel), and to enter into one of the small pyramigisvel 2), and
passes directly to the level 2. For the particle arrived to theso on. Once again, one takes advantage of the deterministic
rotated square, the random jump length is taken to be equdlerarchical structure of the boundary to speed up the ran-
to the distance betweeqy and the first generatio; thatcan  dom walk simulations.
be calculated explicitly. Such a random jump can either
change the position of the Brownian particle inside the ro-
tated squaréthen one recalculates the distance and executes IV. NUMERICAL RESULTS
a new jump, or bring it out of the arrowlike cel(then one
returns to the level ) or move it into one of the small
triangles(then one passes to the level 2 We consider the first ten generations of the self-similar
(3) Level 2. The small triangle can be seen as a coarsequadratic Koch curve with Hausdorff dimensiob,
grained form of a similar allowlike cell scaled by factor 1/3 =In 5/In 3~1.4650. Using the GAFRW algorithm, we cal-
[Fig. 2b)]. When the Brownian particle falls into this tri- culate the distribution of frequencies of absorptions on
angle, it can “see” the details of the allowlike cell that is boundary elementS N F,((‘s) of the curve on different scale®
composed of five small triangles and the rotated squaré/Vhen the number of random particlsgoes to infinity, this
Again, the random jumps inside the rotated square can eithelistribution converges to the distributiofp, s} of hitting
change the particle’s position or bring out to level 1 or 3, andprobabilities on different scaled. Using a large but finite
S0 on. numberN, one obtains an approximation of this distribution.
(4) Level g. When the Brownian particle reaches the lastlt is known that the relative error of such approximation
levelg (i.e., the chosen generation of the fractal boungary —decreases slowly, a2 Although an accurate computation
moves inside the corresponding arrowlike cell until one ofof small probabilitieglike 1072 would require a huge num-
two events: either it brings out of this level onto the previousber of simulations, the contribution of these probabilities to
level (and the motion continugsor it approaches the bound- the average characteristics of the harmonic mea@ilieeen-
ary Sy (which coincides withS; at this scalg by a distance tropy {en(6) or second momen#(2,45)) are completely neg-
less than a chosen threshold value. In this case, the Brownidigible. Consequently, one can calculate these characteristics
particle is considered as being absorbed. very accurately by using a reasonable number of random
Based on particular features of self-similar Koch geom-particles. At the same time, this reasoning falls down for the
etries, this numerical method can be called gewmetry- moments{(q, ) of negative ordergq< 0), where the con-
adapted fast random wallGAFRW) algorithm. tribution of small probabilities dominates. In what follows,
The three-dimensional case can be treated in a similaye focus our attention on positive order momei(ts, ) and
way. One considers a three-dimensional arrowlike cell comentropy /e 9).
posed of the square pyramid and small cubee Fig. 3. In order to estimate the accuracy of our calculations, we
perform ten series of simulations for each generation, using

A. Quadratic Koch curve

1.2

Dl,zg

02 — — :
OD1te e Yo “
0.19} d(i/gIn 3)

0.18 1

0171
0.16

g 0.15}
0.2 0.4 0.6 0.8 1 014t

FIG. 4. Dependence of the local information dimensiiry on OB % 3 4+ 5 & 7 & 3
the generation ordag. An extrapolation of these dataee Table I),
for g lying between 4 and 10, providé3;=1.0000. A remarkable FIG. 5. The derivativedD, , /d(1/gIn3) as a function ofg
agreement with logarithmic development can be observed even fdrecomes constant from=3. This allows one to derive the mean
the second generation. coefficient(D joy and the double maximum deviatien.
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TABLE IIl. Moments ¢(2,6) of the distribution{py s} for the first ten generations of the quadratic Koch curve on different séalEse
last column contains the factor which should be multiplied to the values in the corresponding line.

5lg 1 2 3 4 5 6 7 8 9 10
(1/3) 3.2774  3.2496  3.2397  3.2361  3.2347  3.2342  3.2340 3.2340  3.2339  3.233010!
(1/3)2 11820 1.1688  1.1638  1.1620  1.1613  1.1611  1.1609  1.1609  1.160910°
(1/3)8 43935  4.3403  4.3201  4.3126  4.3099  4.3087  4.3083  4.308X1072
(1/3)* 1.6450  1.6246 16168  1.6139  1.6128  1.6124  1.6123x1072
(1/3)° 6.1687 6.0915 6.0623 6.0510 6.0471 6.0455 x 1073
(1/3)8 2.3139 2.2849 2.2739 2.2698 2.2682 x10°3
(1137 8.6805  8.5715  8.5301 8.5145 x10™*
(1/3)8 3.2563 3.2155 3.2000 x10*
(1/3)° 1.2216 1.2063 %10
(1/3)1° 45828 x10°

10° random particles in each case. Since these simulatiors, one calculates the local information d|menS|@1€
are independent, fluctuations of computed values will indi<(Table 1l). One remarks a slow monotonic decrease of these

cate the corresponding stochastic error. For all local informanumbers. Writing the logarithmic developmeBsi as
tion dimensionsD;, and local correlation exponents

72,{,), the observed fluctuation is less than %0.e., all 1Dy

9 Dy =D;+ (7
five significant digits, shown in Tables II, IV, VIII, and X, are Ly 1t gin3
correct.

Once the local exponents are computed for different finiteone can derive from the extrapolation method described be-
order generations, one uses the logarithmic development @w the information dimensioD; with high accuracy(see

calculate the multifractal exponents corresponding to theéhe next section for estimation of the error bars
mathematical fractal of infinite order. For the finite genera-

tions of sufficiently high order, the correction terms in the D, =1.0000 + 0.0003. (8)
logarithmic development can be neglected. An extrapolation
of the local exponents provides then an accurate computationhis numerical value is remarkably close to its theoretical

of the corresponding multifractal exponents. valueD;=1 predicted by Makarov's theoref8]. This excel-
lent agreement supports the conjectural logarithmic develop-
1. Information dimension ment(5) and the efficiency of the method on the whole. The

linear dependencé€?) of the local information dimensions
Dlyfg on 1/g is satisfied even from the second generation as
shown in Fig. 4.

The entropyl.n{d) is computed on different scalesbe-
tween 1/3 and 4=(1/3) (Table ). Comparing its values for
different generations on the same scdléin a ling), one
finds that these entropies rapidly approach a stable value
which does not vary with further increase of the generation
orderg. It means that, for a given scaf the appearance of The use of the logarithmic development without correc-
new irregularities on smaller scales almost does not chang#n term leads to systematic errors that have to be accounted
the entropy on the scalé. One will see that this result is for. The accuracy of the limiting values of the multifractal
general for other moments of positive orders. Roughlyexponents is essentially determined by the accuracy of com-
speaking, if we are not interested in the scaling behavior oputation of the coefficienD, o4 in front of the logarithmic
the harmonic measure on the scales smaller #hahdoes term. For these purposes, we compute numerically the de-
not matter if one deals with the moderate generation of ordefivative dD; , /d(1/gIn 3) that provides an approximation to
of In 6/In(1/3), with any extremely high generation, or with D, 4 according to the logarithmic development, up to the
a real mathematical fractal of infinite order. correction term that vanishes rapidly with the generation or-

Taking values on the diagonal of Table | which corre-der g. The dependency of this derivative gnis shown in
spond to the smallest scade ¢ for a given generation order Fig. 5. One recognizes that it is almost constant frgr8,

2. Accounting for systematic errors

TABLE IV. Local correlation exponent(2,€,) for different generationg of the quadratic Koch fractal
on the smallest scalé;=(1/3)%.

g 1 2 3 4 5 6 7 8 9 10

72,6 1.0154 09719 0.9482 0.9347 0.9263 0.9207 0.9166 0.9136 0.9113 0.9094
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Q1) ' ' ' 10° F Ly 1L

< 12040 11792
1(2)=0.8925

1

L 1 L L g I—4 I—Z 0
085, 0.2 0.4 06 0.8 | 10 10 10

FIG. 6. Dependence of the local correlation expon€gt(y) on FIG. 7. Diric_:hlet active zone Iengths_for the first ten generations
the generation ordeg. An extrapolation of these dataee Table of the quadrgtlc Koch curve. As Qescrlbed, these lengths follow a
IV), for g lying between 4 and 10, provide$2)=0.8925. A very ~ POWer law with exponent 1#2), with 7(2)=0.8925.
good agreement with logarithmic development can be observed

even for the third generation. 1 7iog(Q)
L) = m(q) + =~ 9
"4y = )+ 272 (©)
up to the fluctuations due to systematic errors. One can thus )
compute the mean value &f; o, and the double maximum the correlation exponent can be deduced from the extrapola-

deviatione; from this mean: tion method described above:
7(2) = 0.8925 + 0.0007. (10)
£,=2 max dD”g ~(D1jog)| - Figure 6 shows that the linear dependeli@eof the local
3=<g=9| d(1/gIn 3) "o correlation exponents(2,{y) on 1/g holds even from the

third generation providing a good numerical verification for
The limiting value of the information dimensidy, lies thus  the logarithmic development.

in the confidence intervdD7,D7], where
4. Dirichlet active zone lengths

. 1(D1jo9 ) . 1 &1 The data of Table Il allow direct calculations of the Di-
Di= 1, _é In’3 * ém richlet active zone length#,11,13 which are defined as the

inverse of the second moment of the harmonic measure:

g being the maximum generation order available for the nu- L= ¢
merical simulations. T 1(2,0)

This scheme has been applied throughout this paper to . ,
account for the systematic errors for other multifractal di-Where¢ is the smallest length of the chosen generation. Tak-

mensions, both in the two- and three-dimensional cases. N the values of the second momet(&, 9) on the diagonal
of Table Ill, one obtains the Dirichlet active zone lengths

given in Table V. One remarks the slow decrease of these
lengths when the generation ordgrincreases. Figure 7
Similarly, one can study any positive momejtt), ) of  shows that this length follows a power lelvy~ €172
the probability distributio{p, s} for different generation or- Note that the Dirichlet active zone length characterizes
dersg and scaless. The correlation dimensioD,=7(2) is  the asymptotic behavior of the spectroscopic impedance in
particularly important for the Laplacian transfer phenomenghe limit of high frequencie$12].
[9,10. Table Il shows the momentg(2,5) on different .
scalesd between 1/3 and,=(1/3)%. 5. Box-counting method
Again, taking the values on the diagonal of Table Il The obtained data allow one to check another method
which correspond to the smallest scafe, for a given frequently used to calculate the multifractal dimensions.
generation ordeg, one calculates the local multifractal ex- Within this box-counting methqdne fixes the highest gen-
ponentsr(2,{,) (Table IV). With the help of the logarithmic eration available for a chosen numerical method and calcu-
development4) written as lates the moments(q, 8) on different scales. For the qua-

3. Correlation dimension

TABLE V. Dirichlet active zone lengths for the first ten generations of the quadratic Koch curve. These
lengths vary slowly as .~ ¢1~"?. The corresponding perimeters are given for comparison.

g 1 2 3 4 5 6 7 8 9 10

Lot 1.0171 0.9400 0.8430 0.7505 0.6671 0.5928 0.5268 0.4681 0.4159 0.3695
Lot 1.67 2.78 4.63 7.72 12.86 21.43 35.72 59.54 99.23  165.38
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0.94 . . ' . 15
0.92f
1 L
0.9}
0.5}
0.88}
) ) ) ) o/L . . . .
0.86 ppe e jpe e 8 0.8 1 12 14 1.6
FIG. 8. Numerical values of the correlation exponeg2, o) FIG. 10. Multifractal spectrunfi(«) of the harmonic measure on

given by the box-counting method for generation ordgrsé the quadratic Koch curv(?solid Iin_e) and on two-dimensional per-
(dashed lingandg=10 (solid line). The straight dotted line repre- colation clustergdashed ling The intersection point corresponds to

sents the value(2)=0.8925 obtained with the help of the logarith- the Makarov’s theorem. The error bars are always smaller than 3
mic development4). X 1072, The largest error is obtained for smaller order.

dratic Koch curve, these results are shown in the last colump [ order to obtain a reasonable accuracy by the classical
of Table Ill. The logarithmic derivatives of the moments Pox-counting methodook at the “stabilization” for the tenth
£(g, 8 with respect tos provide the numerical estimates 9enerationin Fig. B one has to consider high generations. In
7(q, 8) of the multifractal exponents for finité: other words, the level corresponding to the valu)
=0.8925 is not well-established for lower generations. It
21 £(q, ) means that the use of this approach for low orde_zr g_enerations
-7 (e.g.,g=6) does not lead to an accurate determination of the

dlno multifractal exponents. It perhaps explains the values be-

tween 0.92 and 0.96 found in the literature for the correlation

For a numerical computation, one takes two close valties exponent7(2) of the harmonic measure on similar Koch
andd” in order to approximate this logarithmic derivative as curves[13—15. On the other hand, the logarithmic develop-
ment provides very accurate results even for the first several
generationgsee Fig. 6.

(0, 0) =

In £(q,68") —In £(q, ")
In& —1Iné '

(0, 8) =~ 5=868".

6. Other dimensions and multifractal spectrum

In particular, the variation of the box-counting correlation N @ similar way, one can calculate the other multifractal
exponentry,(2,8) with & is shown in Fig. 8. dimensionsD,. For the quadratic Koch curve, their depen-
One finds a good agreement between these values afi§ncy on the ordeg is shown in Fig. 9see[10] for numeri-
72)=0.8925 obtained previously. The decreaserng®,s) cal value$. Multifractal spectra have already been computed

for small § corresponds to the use of finite generations: at thér: the I|tira;u7re|:for DLA ag_gregate[ioila,lg or phercolatlonl
minimal cutoff €5, one replaces the infinite self-similar frac- ¢ usters(16,17. For comparison, we draw on the same plot
tal by a linear segment. On the other hand, the increase cgﬁe multifractal dimensions as a function qf for two-

(2, 0) for large § is caused by the fact that the fractality is Dm?ns;pnalﬂp])erco:atlon clustehrs obta|netd ane:!ytlcaltly pyt
not yet well-established on such scales. uplantier. These two curves have an intersection at poin

g=1 since the information dimension in both cases is equal

. . . . . to 1 according to the Makarov’'s theorem. This result consti-

14k "a | tutes the first accurate comparison of the multifractal dimen-
sions for both deterministic and stochastic boundaries.

The multifractal spectrunf(«) of the harmonic measure
on the quadratic Koch curve has been numerically computed
for the first time by Evertsz and Mandelbrot for the first
generationg20]. The GAFRW algorithm allows one to re-
produce this study for higher generations, while the logarith-
. . . . ] q mic developmen(6) improves its accuracy. Figure 10 shows
0 2 4 6 8 10 the left-hand side part of this spectrum that corresponds to

FIG. 9. Multifractal dimension®, of the harmonic measure on
the quadratic Koch curvésolid line) and on two-dimensional per-
colation clustergdashed ling The intersection point is guaranteed
by the Makarov’s theorem. The error bars are always smaller than 1 2 3 4 5 6
3% 1073 The largest error is obtained for smaller order. The region
of ordersq around 0 is shown by a dotted line since the error bars  1.2x10° 9x10® 5x10° 1.5X10° 1.6x101° 5x 100
become too large.

TABLE VI. Number of random particle® used to realize the
GAFRW algorithm.
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TABLE VII. Entropy {en{6) of the distribution{py s} for the first
six generations of the cubic Koch surface on different scéles

211

Slg 1 2 3 4 5 6

(1/3) 2.2867 2.2878 2.2882 2.2883 2.2884 2.2884 205l
(1/3)? 45195 45209 45215 45218 4.5218 '
(1733 6.7320 6.7336 6.7343 6.7345 »
(1734 8.9386 8.9402 8.9409 2 s . s s 9
(13 11143  11.145 0 02 04 06 08 !
(1/3)8 13.347 FIG. 11. Dependence of the local information dimensibrg

on the generation ordeg. An extrapolation of these dat(éi’ablge
VIII), for g lying between 3 and 6, providds;=2.007.
positive moments. For comparison, we draw the multifractal
spectrum for two-dimensional percolation clusters. Althoughour method since the Makarov’s theorem provides the exact
the deterministic Koch curve and random percolation clusvalue D,=1 for any simply connected set in the plane. The
ters present very different geometries, the left hand sides dfituation is drastically different in the three-dimensional
their multifractal spectra are relatively close to each other. Ircase, where one can mention two important mathematical
other words, the multifractal dimensions of the harmonicresults:
measure corresponding to positive moments are not very (1) Bourgain's theorem states that the information dimen-
sensitive to the particular distribution of highly accessiblesion D, of the harmonic measure is strictly less than the
boundary points. On the other hand, these dimensions maypace dimensiod [21]; and
be more specific of the geometry in the region of negative (2) Wolff's counterexample to a hypothetic extension of
moments hence the two curves should exhibit larger differthe Makarov’s theorem t&2 shows that there exists a regu-
ences. _ _ _ ~ lar (e.g., self-similar fractal for which the information di-

At the same time, the region of negative moments, whichmensionD, of the harmonic measure is strictly greater than 2
corresponds to the right-hand side of the multifractal specf22].
trum, is much more difficult to compute accurately. This Consequently, there is no particular reason to obtain the in-
right-hand side is mostly determined by the values of th&ormation dimension being equal to 2.
harmonic measure on the boundary points of low accessibil- In three dimensions, the numerical calculations are sig-
ity and the numerical method used in this paper loses most dfificantly more difficult to realize for high generation orders
Its Interest. than in the planar case. The use of the GAFRW algorithm for
the cubic Koch surface together with the logarithmic devel-
opment allow one to calculate the information dimension

Similar numerical simulations are carried out for the firstaccurately.
six generations of the self-similar cubic Koch surface with  Taple VII shows the entropyen(d) on different scaless
Hausdorff dimensionDgy=In 13/In 3=~2.3347. Again, oné  petween 1/3 andy=(1/3) Taking the values on the diag-
uses the geometry-adapted fast random walk algorithm ignal of Table VII, which correspond to the smallest scale
order to calculate the distribution of frequencies of absorp-ggz(l/g)g for a given generation ordey;, one calculates the
. ) . !
tions on boundary elementSN F_(k) on different scalesd. |gcal information dimension®, , (see Table VII). As pre-
For largeN, this distribution provides a good approximation \joysly, one notices a monotonic decrease of these numbers.

for the distribution{p, s} of hitting probabilities on this sur- gjng the logarithmic development, one obtains the informa-
face on different scales. Table VI describes the number of g dimensionD, of the harmonic measure on the cubic

random particles used for the calculation for each generationgsch surface by the extrapolation method:

As previously, one separates these simulations in ten groups

in order to estimate stochastic errors, while the systematic tag|E |x. Moments ¢(2,6) of the distribution{p, s} for the
errors are taken into account by our extrapolation method. first six generations of the cubic Koch surface on different scales
The last column contains the factor which should be multiplied to
the values in the corresponding line.

B. Cubic Koch surface

1. Information dimension
The calculation of the information dimension in the two-

dimensional case has been realized as a verification test for, 4 1 2 3 4 5 6
TABLE VIII. Local information dimensionD, ¢ for different (1/3) 1.0952 1.0942 1.0938 1.0937 1.0936 1.093610°*
generations of the cubic Koch surface on the 'smallest s€ale (1/3)2 1.2245 1.2230 1.2224 1.2221 1.222R107?
=(1/3)9. (173 1.3943 1.3925 1.3917 1.3914&10°3
(1/3)* 1.6046 1.6025 1.6015x107*
9 ! 2 3 4 5 6 (1/3)° 1.8570 1.8544 X10°5
Dug 2.0814 2.0569 2.0426 2.0341 2.0286 2.0249 (1/3)® 2.1552 x10°°
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TABLE X. Local correlation exponents(2,{y) for different TABLE XI. Dirichlet active zone areas for the first six genera-
generations of the cubic Koch surface on the smallest s€ale tions of the cubic Koch surface. The total areas are given for
=(1/3)". comparison.

g 1 2 3 4 5 6 g 1 2 3 4 5 6

2,0y 20131 20037 1.9950 1.9883 1.9832 1.9794 S,; 1.0145 1.0082 0.9838 0.9499 0.9120 0.8731
Sot 1.4444 2.0864 3.0137 4.3531 6.2879 9.0825

D, =2.007 +0.002. (11)
This value is very close to _the informatio_n dimension 2 for agg?e.rgfitr? é ttf;]a;t, r;huelti!‘?gce;ltg[lh;np;g C?reuvme‘lcty))prgf ﬁﬁ)elsh :rsn(:gnti?:
smooth boundary. According to the estimation scheme WE . asure shown in Fig. 14
used in this work, it seems to be possible to distinguish the T
obtained numerical value from 2. We emphasize again that,
in three dimensions, there is no mathematical reason to ex- V. CONCLUSIONS
pect a particular value for the information dimensi@ng.,
2). On the other hand, the values 2.007 and 2 are impossibl&
to distinguish in practice, for instance, in a physical experi—bo
ment. Figure 11 shows that the linear depend€iigénolds
from the third generation.

In this paper we have studied the multifractal properties
the harmonic measure on quadratic and cubic Koch
undaries with Hausdorff dimensiori3;=In5/In3 and
Do=In 13/In 3. Applying the geometry-adapted fast random
walk algorithm, we have calculated the distribution of hitting
probabilities that represent the harmonic measure on a given
scaleé. Dealing with the first ten generations of the quadratic
To study the correlation exponen2), one computes the Koch curve and with the first six generations of the cubic
second momentg(2,6) given in Table IX, while Table X Koch surface, we have computed the local information and
gives the local correlation exponent€2,€,) corresponding correlation dimensiond), 5 and 7(2,4), on different scales
to the diagonal elements. The logarithmic development proé. In order to proceed the limié— 0, we have conjectured
vides the correlation exponenf2) by means of the extrapo- logarithmic developmentg}) and(5) for the local multifrac-
lation method: tal exponents. The numerical data support the validity of this
development. In particular, this result provides with high ac-
72) =1.963+0.006. (12) curacy the multifractal dimensiori3; and 7(2) of the har-

The linear dependend®) of the local correlation exponents Monic measure on a really fractal boundary. Generally, use
on 1/g is well satisfied from the third generation as shown in©f this logarithmic development allows one to compute the

2. Correlation dimension and Dirichlet active zone areas

Fig. 12. multifractal exponents corresponding to tinéinite genera-
The Dirichlet active zone areas are Computed as tion dealing Only with its first several generations.
An excellent agreement between the theoretical and nu-
Siu= % merical values of the information dimension in the two-
T 1(2,0) dimensional case supports both the conjectural logarithmic

. . . , development and our numerical method’s applicability on the
and given in Table XI. One finds a slow decrease for increasg;pole.

ing values of the generation ordgr

3. Other dimensions and multifractal spectrum

In a similar way, one calculates the other multifractal di- 2.2
mensionsD, shown in Fig. 13(see[10] for numerical val-

21

2. 1)

1.8

2.05¢

. . . . . . . . . J 9
1.60

FIG. 13. Multifractal dimension®, of the harmonic measure
on the cubic Koch surface. The error bar is largeder0 since the
contributions of small probabilities become more and more impor-

0 02 04 06 08 1 tant. The error bars increase also for largethe extrapolation
method of Sec. IV A 2 is based on approaching to a constant value

FIG. 12. Dependence of local correlation exponetis, £g) on of the derivativequ'(g/d(llg In 3) for a large generation ordey.
the generation ordag. An extrapolation of these dat@able X), for The first six generations used in this work are not sufficient to reach
g lying between 3 and 6, provide$2)=1.963. this value for largen.
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25 ) ' ' ' ' face is found to be equal to 2.007+0.002 which seems to be
ol the first accurate numerical computation of this important
characteristic of the harmonic measure in three dimensions.
15k | It is striking thatD; is very close to 2. In fact, it seems very
difficult to exhibit strong deviations from this value. Finding
1t 1 surfaces with largdd; presents a major challenge in these
fields and could have strong practical applications.
0.5 1 For the correlation exponeni2), there is no analytical
o . . . . o results providing an expected theoretical value. The obtained
16 18 2 2.2 2.4 2.6 numerical value for the cubic Koch surface 1.963+0.006

) ) shows that this correlation exponent is relatively close to 2
FIG. 14. Multifractal spectrunfi(a) of the harmonic measure on (correlation exponent for a smooth surfactSeen” by the
the cubic Ko_ch surface. The error bars increase when approachirgrownian motion, the cubic Koch surface does not differ
the top of thisn-shape(q=0) and also for small values af (4 ¢ nsiderably with respect to a smooth surface. In particular,
going to infinity, see the caption of Fig. 13 their physical transfer properties will not be too different. As
a practical consequence, it would be difficult to distinguish

The determination of the information dimensibn of the ) . . .
@_e correlation exponent from 2 in a physical experiment.

harmonic measure on fractal surfaces in a general case r
mains an important problem. It has been solved analytically

by Makarov for the two—.dimension_al caﬂ@izl for simply ACKNOWLEDGMENTS
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