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Abstract

The role of the geometry of prefractal interfaces in Laplacian transport is analyzed through its
“harmonic geometrical spectrum.” This spectrum summarizes the properties of the Dirichlet-
to-Neumann operator associated with these geometries. Numerical analysis shows that very few
eigenmodes contribute significantly to the macroscopic response of the system. The hierarchical
spatial frequencies of these particular modes correspond to the characteristic length scales of
the interface. From this result, a simplified analytical model of the response of self-similar
interfaces is developed. This model reproduces the classical low and high frequency asymptotic
limits and gives an approximate constant phase angle behavior for the intermediate frequency
region. It also provides an analytical description for the crossovers between these regimes and
for their dependency on the order of the prefractal interface. In this frame, it is shown that
the properties of any generation prefractal can be deduced from the properties of the fractal
generator, which are easy to reach numerically.

Keywords: Impedance; Model; Irregularity; Transport; Diffusion; Dirichlet-to-Neumann
Operator.
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1. INTRODUCTION

Transfer across irregular interfaces driven by
Laplacian fields occurs in many different domains
(electrochemistry, heterogeneous catalysis, NMR
relaxation in porous media, transfer across biolog-
ical membranes, etc.) In each of these situations,
the physical transport properties of the system
(through the bulk and across the interface) inter-
play in a complicated way with the geometrical
characteristics of the interface, to give rise to a
macroscopic response. A number of theoretical,
numerical and experimental works have been
devoted to this problem.! 2!

Recently a rigorous solution of that question was
given,?! and in this paper we propose a simpli-
fied version of these results which can be used to
understand the macroscopic response of determin-
istic self-similar interfaces. This model is formu-
lated with the help of the “harmonic geometrical
spectrum” deduced from the Dirichlet-to-Neumann
operator.!??! It is based on a simplification of
this spectrum obtained from a thorough numeri-
cal study of deterministic Koch curves and surfaces.
The macroscopic response is derived in an explicit
form for an arbitrary generation of the interface
providing the correct behavior in two asymptotic
limits (low and high frequencies) and approximate
constant phase angle (CPA) behavior for interme-
diate frequencies. Its explicit form allows to study
the crossover regions and the establishment of the
CPA behavior with the generation order. The com-
parison with results of numerical simulations for the
first four generations exemplifies the good accuracy
of the model predictions.

The paper is organized as follows. In the next
section, we briefly recall the “harmonic geometri-
cal spectrum” approach based on the Dirichlet-to-
Neumann operator. The hierarchical structure of
these spectra is discussed in Sec. 3 for different Koch
boundaries in two and three dimensions. A simpli-
fied analytical model of the macroscopic response is
proposed. In Sec. 4, this model is generalized to the
case of a deterministic prefractal interface.

2. THE DIRICHLET-TO-NEUMANN
OPERATOR APPROACH

A basic picture of an electrolytic cell is constituted
of a working electrode and a counter-electrode sep-
arated by an electrolyte with resistivity p. The elec-
troneutrality, insured by the rapid motion of ions,

leads to an electric potential V' obeying the Laplace
equation in the bulk. The amplitude V{ of the
applied potential is fixed at the counter-electrode.
The other boundary condition is given by the charge
conservation at the working electrode. On one hand,
the density of the electric current from the elec-
trolyte bulk is p~'9V/dn, where 0/0n is the normal
derivative on the metallic surface directed towards
the bulk. One the other hand, the density of the
electric current passing through the working elec-
trode is V/{(w), ¢(w) being the surface impedance
which may depend on the frequency w. The charge
conservation implies thus the mixed boundary con-
dition at the working electrode:!®

V=W on the counter-electrode

AV =0 in the bulk (1)
8_V = v at the working electrode.

on A

The length A, defined as ((w)/p, contains the rel-
evant physical parameters about the system. For
instance, in a linearized steady state regime, the
surface impedance ( is simply equal to the surface
resistance r of the working electrode while for the
purely capacitive regime, one has ((w) = (iwvy) !,
~ being the surface double layer capacitance.

A formal analogy allows to interpret these equa-
tions in a diffusional language: a “species” charac-
terized by its concentration V diffuses in a bulk
from a distant source (counter-electrode) towards a
“semi-permeable” interface (working electrode), on
which it disappears at a given rate (for instance, by
transferring across the interface). In this case, the
length A is defined as the ratio between the bulk
diffusion coefficient D and the surface permeability
W:A=D/W.1

Although one can numerically solve the system
(1) for a given domain 2 (bulk), the influence of
the geometry on the transport properties remains
unrevealed in the present form. For a better under-
standing of the Laplacian transport phenomena,
a “harmonic geometrical spectrum” approach had
been recently developed.?! In this section, we briefly
outline its main features.

For a given diffusional or electrolytic cell €2,
one can introduce the Dirichlet-to-Neumann
operator M. This operator is defined as follows: if
one considers a function f on the working interface
0, this operator associates to f the normal deriva-
tive Ou/On, where u is the solution of the Laplace
equation Au = 0 in the bulk with the Dirichlet
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boundary condition v = f on 0€2:

Mp=9t )

For diffusional problems, the function f can be
thought of as a given distribution of “species” on
the working interface that have been sent to diffuse
in the bulk © and then come back to this inter-
face. Their flux density du/On can thus be writ-
ten as the application of the Dirichlet-to-Neumann
operator M to the distribution f. In an elec-
trochemical frame, one can consider the working
interface 02 with a given electric charge distri-
bution f, and the application of the operator M
to f provides the density of the induced elec-
tric field. From the mathematical point of view,
the Dirichlet-to-Neumann operator is a pseudo-
differential self-adjoint operator, characterized by
a discrete positive spectrum and smooth eigen-
functions that form a complete basis of the space
L?(09) of measurable and square integrable func-
tions on 02 (for mathematical details, see Refs. 22
and 23).

Once the Dirichlet-to-Neumann operator is
defined for a given domain €2, one can use it to char-
acterize the macroscopic response of the working
interface (Fig. 1). In particular, the flux or current
density ¢p = 9V/On can be written as?!

on =T +AM) g0,  ¢o(s) = p ' Vo[M1](s)

where the specific flux density ¢g(s) corresponds to
a perfectly conducting interface (A =0). The admit-
tance Y (A) of the cell is defined to be proportional
to the total current or flux ®, through the working
interface: Y (A) = ®,/Vp. This admittance can be

(reflecting walls)

source

Au=0

working interface

Fig. 1 In a typical diffusional cell, “species” diffuses in a
bulk ©Q from a distant source towards an irregular working
interface 0€2. This transport phenomenon can be seen as the
mixed boundary value problem for the function u related to
the concentration of species V as V = V(1 — u).

exactly written as the spectral decomposition of the
normalized flux density ¢f(s) = ¢o(s)/Po over the
eigenvectors V, of the Dirichlet-to-Neumann oper-
ator M:?!

Do en v B

where R = V/®q is the access resistance of the
electrolyte. Here the eigenvalues pu, of the opera-
tor M have the dimensionality of the inverse of a
length, while the spectral components Fy, = (¢f-Vq)
(¢g - V%) have the dimensionality of the inverse of
an area.

The admittance Y (A) characterizes the facility
first to reach the working interface (bulk transport)
and then to cross it (surface transfer). If the inter-
face is perfectly absorbing (A = 0), the admittance
accounts only for the bulk transport. The pure con-
tribution of the working interface can be character-
ized by the difference between total fluxes ¢y and
Dp: Z(A) = Vo(Pg — ®,)/P3. This quantity has
been shown to be an intrinsic characteristic of the
working interface and called its effective impedance.
It can also be written as a spectral decomposition
with the help of (3):

1+Aua

Z(A) = pAZﬁ. (4)

The explicit formula (4) provides the exact depen-
dency of the experimentally measured quantity
Z(A) as a function of the physical parameters of
the problem (A and p). Moreover, the geometrical
irregularity is completely represented via the spec-
tral characteristics p, and F, of the Dirichlet-to-
Neumann operator M. Whatever the nature of the
transport phenomena (stationary diffusion, electric
transport, heterogeneous catalysis), the geometri-
cal irregularity of the interface can be taken into
account through a discrete set of real positive num-
bers po and Fy. The distribution F'(u), which is
a Dirac comb, can thus be called the “harmonic
geometrical spectrum” of the working interface. In
particular, the zeroth eigenvalue g is proportional
to the inverse of the average distance between the
working interface and the source. For the sake of
simplicity, we will deal with an infinitely distant
source, when pg = 0. In this case, Fy is equal to
the inverse of the total area of the working inter-
face. The extension to the case of a source at finite
distance is straightforward.?!
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3. HIERARCHY OF THE
HARMONIC GEOMETRICAL
SPECTRUM

Whatever the shape of the working interface, its
accessibility for the particles diffusing from a dis-
tant source is characterized by the normalized flux
density ¢ (s). In particular, the geometrical struc-
ture of the working interface should be represented
somehow through the spatial distribution of this
density. Being projected onto eigenvectors V, of the
Dirichlet-to-Neumann operator, this density dis-
criminates their contributions F, to the macro-
scopic response. Since the eigenvectors V, oscillate
along the working interface, one can expect that
the most contributing eigenmodes correspond to the
eigenvectors whose “spatial frequencies” are close to
characteristic length scales of the working interface.
Having the dimensionality of the inverse of a length,
the corresponding eigenvalues i, appear as promis-
ing candidates to be related to these length scales.
The numerical study of the quadratic Koch curve
with a perfect hierarchy of characteristic length
scales confirmed this hypothesis.?’

3.1. Numerical Technique

For a given domain 2, the Dirichlet-to-Neumann
operator M can be numerically constructed in
different ways. We used the approximation of the
operator M by its discrete analog, the Brownian
self-transport operator Q%.1%?° When the domain
is discretized by a lattice of mesh a, the Brownian
self-transport operator is represented by a matrix
composed of the probabilities (Q%); for a random
walker started from the boundary site j to reach the
boundary site k at first hit without any contact with
the interface or with the source during the walk. It
had been pointed out that the Dirichlet-to-Neumann
operator can be obtained in the continuous limit
when the mesh parameter a vanishes: (I — Q%)/a —
M as a — 0.2* The probabilistic meaning of the
Brownian self-transport operator Q“ suggests differ-
ent possibilities for its numerical calculation (Monte
Carlo simulations, finite difference scheme, etc.). We
used an appropriate modification of the boundary
element method ascending to the (discrete) poten-
tial theory.?’ The practical implementation of our
numerical method can be summarized as follows:

e for a given domain, one considers finer and finer
discretizations with smaller and smaller mesh
parameter a;

e for each discretization (each value of a), the Brow-
nian self-transport operator Q¢ is calculated;

e its eigenvalues ¢2 and eigenvectors V¢ are then
computed by standard techniques; at the same
time, the (discrete) normalized flux density ¢,
is obtained;

e an approximation {u, F¢} of the harmonic geo-
metrical spectrum is constructed as:

1—q%
= = (0 VA" V)
e for each a, the dependencies of 1 and F as func-

tions of the mesh parameter a are then extrapo-
lated to the limit a = 0 that gives pu, and Fy,

respectively.

This scheme was realized for several distances
between the working interface and the source. In the
case of an infinitely distant source, the Brownian
self-transport operator Q% can be constructed in a
similar way, but the normalized flux density ¢, has
to be approximated by that for a source at large but
finite distance.

3.2. Quadratic Koch Curve

Finite generations of the quadratic Koch curve (of
fractal dimension In5/1n3) are probably the most
convenient shapes to study the hierarchical struc-
ture of the harmonic geometrical spectrum. For
deterministic prefractal interfaces, one can define
a scaling homothety factor for both the perimeter
(hp) and the diameter (hq) of the interface at each
generation (for the quadratic Koch curve, h, = 5
and hy = 3). Being obtained iteratively from a
simple shape (generator), these generations present
a perfect hierarchy of characteristic length scales
(Fig. 2). At the same time, the discretization of a
domain comprised between the Koch curve and a
planar source by a square lattice is straightforward.
Note that, throughout this paper, the source was
considered to be at infinite distance from the work-
ing interface.

The harmonic geometrical spectra for the first
four generations of the quadratic Koch curve are
shown in Fig. 3. Although the spectrum of the
Dirichlet-to-Neumann operator is infinite, one could

Fig. 2 First three generations of the quadratic Koch curve
of fractal dimension In5/1In 3.
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Fig. 3 Harmonic geometrical spectra Fo(uq) for the first
four generations of the quadratic Koch curve of fractal dimen-
sion In5/In3 (the source is at infinity). To present the
eigenvalue pg = 0 at logarithmic scale, the abscissa axis
is interrupted. The eigenvalues are multiplied by the total
perimeter Lgy of the boundary.

expect only the eigenvectors with “spatial frequen-
cies” smaller than the inverse of the smallest char-
acteristic length to contribute to the macroscopic
response. Consequently, the number of these eigen-
modes might be expected to increase exponentially
with generation order g. The main and striking
observation from Fig. 3 is that the harmonic geo-
metrical spectrum of the generation of order g con-
tains mainly (g + 1) eigenmodes contributing to
the macroscopic response. As a consequence, the
number of contributing eigenmodes increases [lin-
early with g, or logarithmically with the smallest
length of the interface. This observation drastically
simplifies the analysis of the macroscopic response.
Except for the eigenvalue pg which is equal to 0,
the eigenvalues corresponding to the contributing
eigenmodes are equidistant at logarithmic scale;
more precisely, the eigenvalues of two successive
contributing eigenmodes differ by the scaling fac-
tor hy, of the perimeter (which is equal to 5 for this
shape); in other words, the appearance of a new geo-
metrical irregularity at a smaller length scale (next
prefractal generation) is reflected in the harmonic
geometrical spectrum by the single new eigenmode
contributing to the macroscopic response.

Seeing how irregular the shape of the fourth gen-
eration is, the above results sound striking and even
puzzling. What does make possible that among the
infinity of the Dirichlet-to-Neumann operator eigen-
modes, only a few specific ones contribute to the
macroscopic response of the system? Why their
positions on the logarithmic axis (eigenvalues fi)
are equidistant?

To clarify these points, the projection of the
eigenvectors V, to the normalized flux density ¢f
has to be studied in detail. Let us first consider the
case of a flat boundary (linear segment of length L).
Since the random walkers coming from an infinitely
remote source are uniformly distributed over the
flat boundary, one gets ¢f (s) = 1/L. The eigenval-
ues and eigenvectors of the Dirichlet-to-Neumann
operator M are known explicitly:

Lo = ’Ct‘/L Va(S) _ L—1/2 e?ﬂ’iozs/L7

i.e. the eigenvectors V, form actually the Fourier
basis, while the eigenvalues p, represent their spa-
tial frequencies. It is now clear that the projection
of any eigenvectors with a > 0 onto the uniform
density ¢g is strictly zero. The only contribution
will be from the constant eigenvector V( leading to
Fy=1/L.

If the boundary is not flat, the normalized flux
density ¢f(s) is not constant anymore, and the
eigenbasis of the Dirichlet-to-Neumann operator is
not formed by Fourier harmonics. However, the
eigenvectors do still oscillate with increasing spatial
frequencies, and the density ¢g(s) is still “smooth”
at length scales smaller than the minimal cut-off of
the irregular or prefractal interface (although it may
possess integrable singularities at some boundary
points). As a consequence, there is no contribution
to the macroscopic response from highly oscillat-
ing eigenvectors. Let us consider as example the
first generation of the Koch curve. The normal-
ized flux density ¢f and several eigenvectors are
shown in Fig. 4. We remind that there are two
contributions. The first one, Fy = 1/Lg, is due
to the constant eigenvector Vg, as in the case of
a flat interface (here the perimeter L, = L(5/3)¢
is equal to L1 = L(5/3)). The new contribution
Fy comes from the eigenvector Vi “oscillating”
at the spatial frequency of order of the inverse
of the linear segment length (L/3). Its projection
onto the density ¢ leads to a non-trivial con-
tribution. In particular, more rapid oscillations of
the other eigenvectors cancel their contributions. A
similar behavior is observed for the second, third
and fourth generations of the Koch curve. In these
cases, such a “resonance” effect is found not only
at length scale L/3, but also at smaller scales: L /32
for ¢ = 2, L/3? and L/3? for g = 3, etc. That
explains the equidistant positions of the contribut-
ing peaks shown in Fig. 3. Their amplitudes pro-
gressively increase by a factor around 5/3 from the
first peak to the last one (the trivial contribution
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Fig. 4 Three-dimensional representation of the normalized
flux density ¢g (A) and three eigenvectors Vo [(B), (C)
and (D) for « = 1, @« = 2 and a = 4, respectively] for
the first generation of the quadratic Koch curve of frac-
tal dimension In5/1n 3. The trivial constant eigenvector Vo
is not presented. A significant contribution comes from the
scalar product between the normalized flux density ¢7 and
the eigenvector V. The eigenvector Vg is anti-symmetric
with respect to the density ¢y so that its contribution totally
vanishes. In contrast, the eigenvector V4 is symmetric, but
it does not almost contribute due to its oscillations.

(B)

Fy of the flat interface is referred to as the Oth
peak and will be considered separately). Indeed, the
number of geometrical irregularities at length scale
L/3F1 is mainly five times greater than that at
length scale L/3*, but they are three times smaller.
Note that a little left shift of the peaks while passing
successively from the first generation to the fourth
may be caused by numerical uncertainty from the
discretization procedure.

3.3. Analytical Model for the
Quadratic Koch Curve

If u,(j’) and F,ig) denote the positions and ampli-
tudes of the peaks contributing to the macroscopic
response of the quadratic Koch curve of generation
g, the above observations can be translated into a
simplified but rather faithful model

mb5*, k>0

R TR

()

f(/3)k k>0

T

(6)
where m and f are proportionality coefficients:
m =~ 0.6 and f ~ 0.4. Knowing the coefficients
m and f allows to reconstruct the harmonic geo-
metrical spectrum for arbitrary generation order g,
at least in a first approximation. In Table 1, we
compare the numerical values of the positions and
amplitudes of the contributing peaks for the first
four generations with that given by our analytical

Table 1 Comparison Between the Main Contributing Peaks of the
Harmonic Geometrical Spectra for the First Four Generations of the
Quadratic Koch Curve of Fractal Dimension In5/1n3 and the Model

Scaling Relations for p,(cg) and F,gg) .
k=0 k=1 k=2 k=3 k=4

g (ax=0) (a=1) (a=T) (a=3T7) (aa=187)
o Lg 1 0 3.480

2 0 3.050 18.857

3 0 3.008 16.184 97.028

4 0 2.992 15.687 78.929 416.336
p L, 0 3 15 75 375
FalLyg 1 1.000 0.686

2 1.000 0.463 1.335

3 1.000 0.441 0.822 2.545

4 1.000 0.437 0.772 1.465 2.573
F9L, 1.000 0.667 1111 1.852 3.086
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Fig. 5 Relative error of the model impedance Zf;}())d(A)
compared to the numerically computed impedance Z(A) for
the fourth generation of the quadratic Koch curve of fractal
dimension In 5/ In 3. This error is smaller than 12% for a wide
range of values A.

model (5) and (6). Although these values do not
coincide exactly, they are reasonably close to each
other. Moreover, the deviations between numerical
and analytical values are less important for calcu-
lation of the effective impedance. Indeed, the effec-
tive impedance Z(A) computed numerically from
the exact spectral decomposition (4) has to be
compared to the corresponding model impedance

Zf;i’gd(A) defined as
9 (9)
) Iy
29 () = Ay T ™)
mod
o1+ A

In contrast with the general relation (4), the only

(9 + 1) contributing eigenmodes are taken into

(9)

account, and their positions p;’ and amplitudes

Fk(:g) are given by the analytical approximation
(5) and (6). The comparison between Z(A) and

Zwilg 4(A) for the fourth generation is shown in Fig. 5.
The maximum relative error is 12% over five orders
of magnitude of A/L. We conclude that the model
impedance (7) captures the essential features of the
macroscopic response. It is quite accurate for a wide
range of values A even for the fourth generation of
the quadratic Koch curve. At the same time, this
model brings a drastic simplification of the problem
since one now has an explicit analytical expression
for an arbitrary fractal generation. In particular,
the CPA behavior raised by a deterministic fractal
morphology can be investigated (see the next sec-
tion). It also provides an approximate but analytical
description of the crossovers between the different
regimes.

3.4. Macroscopic Response of High
Generations

Given that our simplified analytical model has
satisfactorily passed the numerical test for the

s Z(A)p

L L
-15 -10 -5 0 g

Fig. 6 The model impedance Zr(gg 4(A) for different gener-
ation orders g: 5, 10 and 15.
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Fig. 7 Logarithmic derivative of the model impedance
(9)
Z

mod

(A) for different generation orders g: 5, 10 and 15.

first generations, the model impedance is now cal-
culated for an arbitrary generation g. Figure 6
shows the model impedances for different genera-
tion orders g: 5, 10 and 15. One can distinguish
two asymptotic limits with linear dependence on A,
and an intermediate non-trivial behavior. To focus
on the scaling exponent, the logarithmic derivative
of the impedance with respect to A is plotted in
Fig. 7. It converges to 1 at both asymptotic lim-
its, A going to 0 and infinity. For the intermediate
region, which becomes larger for higher generation
orders, one can observe a plateau at a constant value
of the impedance exponent 3. The obtained numer-
ical value 3 ~ 0.68 is very close to the approximate
value 1/Dy for this exponent.”%10:1518 The exact
result of Halsey and Leibig!? leads to a smaller value
B =17(2)/Dy, 7(2) being the correlation dimension
of the harmonic measure. We will return to this dis-
cussion in Sec. 4.2.

A general remark can be derived from the results
shown in Fig. 7. As soon as the interface differs
from a flat one, an intermediate region between
two asymptotic limits is required to “link” two
linear dependencies pA/L,.y and pA/Liy (since
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the Dirichlet active zone length L, is necessarily
smaller than the total perimeter L, due to diffu-
sional screening). Figure 7 clearly shows that a well-
established power law behavior can be reached only
for sufficiently high generation orders. For exam-
ple, the model impedance of the generation g = 5
does not yet exhibit such behavior. The crossovers
play then a significant role if the fractal range is too
narrow. In the same sense, the generation g = 10
exhibits already a well-established CPA behavior
but only on four orders of magnitude for A. Most
numerical simulations in the literature are done for
the first four or five generations, which means that
reported values of the impedance exponent must be
handled with care.

3.5. Extension to Self-Similar
Interfaces

The above arguments developed specifically for the
quadratic Koch curve of fractal dimension In5/1n 3
can be extended to a large class of deterministic
self-similar interfaces.

Let us consider the first generation (generator)
of a deterministic self-similar interface. Although
its harmonic geometrical spectrum is formally com-
posed of infinite number of peaks characterized by
pairs (fiq, Fy), there is only a finite number of peaks
contributing to the macroscopic response. This
number depends on the geometrical complexity of
a chosen interface. For the first generation (e.g. the
generation) one would expect, as previously, one

(1) (1)

contribution (ug ", Fy"’) due to the constant eigen-

vector, and one or several contributions (uglj), Fl(lj))
from one or several length scales of the first gen-
eration. Here the superscript (1) denotes the gen-
eration order g = 1, while the subscript j enumer-
ates different length scales ranging from 1 to J. For
example, J was equal to 1 for the quadratic Koch
curve studied in the previous subsections.

When passing to the second generation, one
actually reproduces each of the above character-
istic lengths at a smaller scale. Therefore, one
may expect to appear 2J + 1 contributing eigen-
modes since there are J + J characteristic length
scales: the previous ones of the first generation,
and those obtained by rescaling them. In general,
the generation of order g would possess gJ + 1

peaks contributing to its macroscopic response: con-

tribution of the constant eigenvector (u(()g),FO(g))

and J sequences (u,gg;,F,ggj)) of g peaks risen by

g consecutive rescaling of J initial characteristic
length scales.

The only difference with respect to the previous
example of the quadratic Koch curve is that now
there are possibly several sequences of equidistant
peaks instead of the single one. And for each of these
sequences, the scaling relations, similar to (5) and

(6), are expected to hold. Indeed, two successive

eigenvalues ul({g;. and ,u,(fle - (of the same sequence)

differ by the homothety factor h, of the perimeter
that leads to

i Ly ~ my(hy)* (8)

where the coefficients m; can be found numeri-
cally from the analysis of the first generation. The
perimeter L, of the generation g can be related
to its diameter L by the scaling relation L, =
(hp/hq)?L, hg being the homothety factor of the
diameter.

The arguments for the spectral components F; ég])
are quite similar. Indeed, the number of geometri-
cal irregularities at scale of order k + 1 is h,, times
greater than that of order k, but they are hy times
smaller. Consequently, two successive spectral com-

ponents Fk(; j) and Fk(;i)l ; (of the same sequence) dif-
fer by the ratio hy/hq, whence:

B Ly = fi(ho/ha)* 9)
where the coefficients f; can be found numerically
from the analysis of the first generation. Note that
these scaling arguments do not pretend to math-
ematical rigorousness, but will be confirmed by
numerical simulations in the next subsection.

The contribution of the zeroth eigenmode is

p9 =0  F9r,=1. (10)

In the framework of this analytical model, the
harmonic geometrical spectrum of prefractal inter-
faces is represented through their simple geometri-
cal characteristics: the homothety factors h, and hgy
and the diameter L of the curve. The only empirical
parameters that have to be calibrated are the coeffi-
cients m; and f;. For this purpose, it is sufficient to
study the first generation and to compute numeri-
cally the contributing eigenmodes. That represents
a drastic simplification of the problem.

3.6. Numerical Verification for
Different Koch Interfaces

We have checked the above analysis for several Koch
curves and surfaces (their generators are shown in
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Fig. 8 Generators for two quadratic Koch curves of fractal
dimensions In6/In4 (A) and In8/1n4 (B).
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Fig. 9 Harmonic geometrical spectra Fo(uq) for the first
three generations of the quadratic Koch curve of fractal
dimension In 6/ In 4.
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Fig. 10 Harmonic geometrical spectra Fo(pq) for the first
three generations of the quadratic Koch curve of fractal
dimension In 8/ In 4.

Figs. 8 and 11). Since the calculation procedure and
the analysis are essentially the same as for the previ-
ous case (Sec. 3.2), we only present the main results.

Figures 9 and 10 show the harmonic geomet-
rical spectra for the first three generations of
the quadratic Koch curves of fractal dimensions
In6/1n4 and In 8/ In 4, respectively. In the first case
(hp = 6 and hg = 4), one observes a single sequence
of contributing peaks generated by the single char-
acteristic length scale of this generator (J = 1).

1 -

(A) (B)

Fig. 11 Generators for two cubic Koch surfaces of fractal
dimension In 13/ 1n 3: concave (A) and convex (B).

The eigenvalues ,u,(f’ ) are equidistant at logarithmic

scale, while the corresponding spectral components

Fég) differ by the factor hy/hg. The coefficients m
and f are close to 1/2 and 1/3, respectively. Noth-
ing special is found for this geometry with respect
to the previously studied quadratic Koch curve of
fractal dimension In5/1In 3.

In the second case (h, = 8 and h, = 4), a new
feature is that there are two sequences of contribut-
ing peaks (J = 2), since the generator shown in
Fig. 8B involves two characteristic length scales. As
previously, each of these lengths is rescaled with
the factor h, leading to a linear shift of the corre-
sponding peaks at logarithmic scale of Fig. 10. The
coefficients m; and f; are found to be:

fi~1/6 fo~1/3.

As previously, some secondary peaks can be fused
with the principal ones.

In principle, one can study the self-similar curves
iterated from a more complex generator presenting
three or more characteristic length scales. In prac-
tice, however, the identification of the correspond-
ing scales may be technically difficult.

The numerical study of self-similar surfaces in
3D requires higher computational resources since an
appropriate discretization leads to larger matrices
representing the Brownian self-transport operator.
For this reason, the harmonic geometrical spectra
have been computed only for the first two genera-
tions of the concave and convex Koch surfaces of
fractal dimension In13/In3 (their generators are
shown in Fig. 11).

The harmonic geometrical spectra for both sur-
faces are shown in Fig. 12. The comparison
between the first two generations suggests that, in
both cases, there is a single characteristic length
scale generating the single sequence of contribut-
ing peaks (J = 1). The coefficients m and f
are found to be close to 4/9 and 4/13, respec-
tively. The model impedance can be calculated
for an arbitrary generation order using the geo-
metrical parameters of these surfaces: hy = 13,

my~1/4 mgo~1
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Fig. 12 Harmonic geometrical spectra Fo(pa) for the first
two generations of two cubic Koch surfaces of fractal dimen-
sion In13/1In 3.

hg = 3 and h, = 13/3 (see the next section). An
accurate simulation for the third generation would
be helpful to validate the model for these Koch
surfaces.

4. ANALYTICAL MODEL OF
THE MACROSCOPIC
RESPONSE

The scaling relations (8) to (10) allow to obtain the
approximate but explicit formulae for the macro-
scopic response of the studied prefractal interface.
For example, the effective impedance Z(A) can be
written as

A LS
280N =0 | T4 D0 sminy)|

=1

where the explicit function z(z) only depends on
the simple geometrical characteristics of the work-
ing interface:

g —k
T E L (12)
hy* +a

A similar expression can be written for the admit-
tance Y (A) of diffusional or electrolytic cell. Once
the coefficients m; and f; are determined for
the considered type of self-similar geometry, the
relations (11) and (12) provide an approximate
but explicit dependency of the effective impedance
on the physical parameter A, for any generation
order g.

4.1. CPA Behavior

The presence of different length scales ranging
from the smallest geometrical features of the work-
ing interface up to its total perimeter leads to a
non-trivial frequency dependence of the impedance
largely deviating from the linear one. The most
common dependence experimentally observed and
numerically studied is called the constant phase
angle (CPA) behavior, when the impedance as a
function of A (or frequency) follows a power law in
a certain range of values A:

Z(A) ~ p (A/LY’ (13)

the exponent [ lying between 0 and 1. In the
Appendix, it is shown that the model impedance

Zr(ggd(A) exhibits this CPA behavior, provided that
the generation g is sufficiently large. In particular,
the exponent 3 is related to the homothety factors
hy, and hg:
In hd 1
Inh, Dy
Within this model, one captures the essential
features of the macroscopic response of an irregu-
lar interface with self-similar hierarchical structure.
The relation (14) between the impedance exponent
B3 and fractal dimension Dy had been derived by dif-
ferent methods (general scaling arguments, dimen-
sion analysis, etc.)¥ 10:15:18.25 The main advantage
of the present approach is the explicit dependence of
the model impedance on the physical parameter A.

6=

(14)

4.2. Correlation Dimension

The relation (14) between the impedance exponent
B and fractal dimension Dy is known as an approx-
imation. A detailed scaling analysis performed by
Halsey and Leibig!* led to a slightly different
expression involving the correlation dimension 7(2)
of the harmonic measure on the working interface
in 2D:

7(2)

8= D, (15)
This dimension allows to account for a multifrac-
tal scaling behavior of the hitting probabilities near
geometrical singularities. The extensive studies of
the harmonic measure on different fractal curves in
the plane showed that the correlation dimension is
relatively close to 1, taking in general values com-
prised between 0.85 and 0.95.21:26=32 Tt is not thus
surprising that such a subtle behavior of the har-
monic measure is not taken into account by the
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present model, which only involves simple geomet-
rical features as scaling homothety factors. A fur-
ther numerical study of the spectral properties of
the Dirichlet-to-Neumann operator would permit to
link the features that have been neglected in the
approximate harmonic geometrical spectrum to the
correlation dimension in the real scaling limit.

4.3. Extension to 3D Case

The preceding analysis can be easily extended to
self-similar surfaces defined by the homothety fac-
tor hg of the diameter and the homothety factor hg
of the surface. The “perimeter” of such a surface can
then be introduced in a classical way as the surface
area divided by the diameter. The corresponding
homothety factor hy, is then equal to hg/hg. This
definition is logically consistent with the scaling
relations (8) and (9) for the harmonic geometrical
spectrum. For instance, the ratio between two suc-
cessive weights Féi’_)m and Fég]) is hg/hZ, since the
number of new (smallest) irregularities is hy times
greater, but their “strength” is h?l times smaller.
The model impedance can thus be written as

J
(9) A Ly~ T
Zoy N =p | =+ 5 E == z(m;A/L,)
d Sy S amy J g

where S, is the total surface area of the gener-
ation g, Sy (hs/h3)9L?; Ly is its perimeter,
Ly = Sy/L = (hs/h%)9L, while the function z(x)
remains unchanged. Consequently, one can apply
the same analysis for this model impedance. In par-
ticular, the substitution of h), into (14) gives

1
b=5,-1
F—
in agreement with other approaches, for which
D¢ =1Inhg/Inhy.

4.4. Realistic Interfaces

Deterministic hierarchical scaling of self-similar
boundaries is difficult to find in nature or indus-
trial frames, where randomness and variability are
generally present. But the deterministic self-similar
surfaces can be thought of as a simplifying paradigm
of more realistic irregular interfaces.?? For example,
it has been shown that the macroscopic response
of fractal curves in 2D essentially depends on their
dimension and little on the deterministic or ran-
dom character of their geometry.?* This means
that their transport properties are determined more

by their hierarchical structure than by a spe-
cific geometrical arrangement. In this light, the
model impedance derived in this paper is expected to
describe approximately the properties of many real-
istic morphologies.

The idea is the following. Whether an irregular
curve is fractal or not, one can define its “effective”
fractal dimension as

& (Lot /1)
I~ (L))

where L;; and L are the perimeter and diame-
ter of this curve, while ¢ is the smallest cut-off
which is naturally determined by specific features
of the studied transport phenomena (e.g. it can
be the size of catalytic germs in chemical indus-
try). According to Filoche and Saporal,>* in 2D the
macroscopic response of this irregular curve is close
to that of a deterministic fractal of the same fractal
dimension. Thus, if one builds such a determinis-
tic fractal (for instance, a Koch curve), its analyti-
cal impedance model can be used to represent also
the impedance of the former irregular boundary.
Furthermore, since the model impedance integrates
information about the positions and the amplitudes
of the contributing eigenmodes (4), it implicitly
yields some information about the density and the
contributions of the eigenmodes of the irregular or
random interface as well, whatever its geometrical
complezity. Since the model impedance is found in
an explicit analytical form, the whole range of fre-
quencies (or A) can be investigated, including the
crossover regions. A further numerical study will be
valuable to develop this concept for different natu-
ral interfaces.

5. CONCLUSION

In this paper, we have developed an analytical
model describing the macroscopic impedance of
deterministic self-similar interfaces. This model is
based on a mathematical solution of the Lapla-
cian transport using the properties of the Dirichlet-
to-Neumann operator. The effective impedance is
derived in an analytical form, in which the geo-
metry is represented by a set of spectral character-
istics of this operator referred to as its “harmonic
geometrical spectrum.” In the case of deterministic
self-similar boundaries, the spectrum can be sim-
plified due to its hierarchial structure which in turn
results from self-similarity of the interface. As each
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characteristic length scale of the generator produces
a sequence of contributing peaks to the harmonic
geometrical spectrum, simple scaling relations can
be deduced for these characteristics. The prefac-
tors remain unknown but they may be calibrated by
numerical simulations of the Laplacian transport in
the elementary generator only and such simulations
are in general easy to realize. Once these coefficients
are determined, one can use the explicit relation for
the model impedance for any prefractal generation.
The impedance exponent (3 of the CPA behavior
is found to be related to the fractal dimension of
the working interface. An explicit formula allows
to study the crossover regions between the asymp-
totic limits and the CPA regime which is shown to
exist only for large generation order prefractals. It
clearly indicates that the first generations exhibit
rather some sort of transitional behavior at the
intermediate region instead of showing a proper
CPA behavior.

The model assumptions and predictions have
been carefully checked in 2D for quadratic Koch
boundaries of different fractal dimensions. The
comparison between the model impedance and
the numerically computed impedance even for the
fourth generation showed that the maximum rela-
tive error is less than 12% for all values of A. It
indicates that the model impedance captures the
essential features of the macroscopic response both
in qualitative and quantitative senses. Since it is
known that the response of random and determin-
istic fractals of the same fractal dimension are very
similar, this study opens the way for a better under-
standing of the “harmonic geometrical spectrum” of
random fractal interfaces.

Further developments should include a careful
check of the approximate model for prefractal sur-
faces in 3D and an explanation on how the corre-
lation effects of the harmonic measure intervene in
the spectral formalism of this problem.
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APPENDIX

In this Appendix, we are going to show that the
model impedance Z (9) 4(AA) exhibits the CPA behav-

ior (13), provided t};’eﬁ the generation order g is suf-
ficiently high. In this case, one may expect that,
for the intermediate values of A, the dominating
contribution will be brought by the “intermediate”
terms in the sum (12) over k. In order to deter-
mine this contribution, we write the function z(x)
by introducing the following notations: ag = In hg

and oy = In hy,:

9 ek

B P
e~k 4 g

k=1

z(x) =

The largest contribution will correspond to kgth
term such that

d efadk 0
% e~k 4 g N
whence
Inz oy
ko = — n n=——":.
ap ap — g

For further analysis, it is convenient to rewrite the
previous sum as

efa(kfko)

g
z(x) — xad/apnad/ap Z

k=1

ne*ap(k*ko) + 1 ) (16)

One can now consider different cases:

o if ne_ap(k_ko) < 1forany k=1,...,g, this term
can be omitted in the denominator that leads to

1-e®9 1 (1/hg)I

z(x) =
( ) e — 1 hg—1
i.e. the constant term at the asymptotic limit of
low frequencies. Written for k = 1, the above

inequality gives x> 1/h,,.
o if ne=@r(k=F0) > 1 for any k =1,..., g, the unity
can be omitted in the denominator that leads to
1—(h,/hg)Y
Z(SC) — ( p/ d)
ha/hy — 1

i.e. a linear proportionality at the asymptotic
limit of high frequencies. Written for k = g, the
above inequality gives < (1/h;)Y.

e In the intermediate case (1/h,)9 < = < 1/hy,
the main contribution is given by terms with k&
around kg, since the others terms exponentially
decrease with |k — ko|. This leads to a power law
dependence of the function z(x) on x:

2(x) ox xd/

where the prefactor can be calculated numeri-
cally from (16). Since x is proportional to A,
one deduces the CPA behavior of the model
impedance ng oq(A) with exponent
Qg 1

ﬁ = —— = —
o Dy
where Dy is the fractal dimension of the consid-
ered self-similar curve, Dy = Inhy,/In hg.





